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Contemporary asthma management requires a proactive and individualized

approach, combining precision diagnosis and personalized treatment. The

introduction of biologic therapies for severe asthma to everyday clinical

practice, increases the need for specific patient selection, prediction of

outcomes and monitoring of these costly and long-lasting therapies. Several

biomarkers have been used in asthma in disease identification, prediction

of asthma severity and prognosis, and response to treatment. Novel

advances in the area of personalized medicine regarding disease phenotyping

and endotyping, encompass the development and application of reliable

biomarkers, accurately quantified using robust and reproducible methods.

The availability of powerful omics technologies, together with integrated and

network-based genome data analysis, and microbiota changes quantified in

serum, body fluids and exhaled air, will lead to a better classification of distinct

phenotypes or endotypes. Herein, in this review we discuss on currently used

and novel biomarkers for the diagnosis and treatment of asthma.

KEYWORDS

biomarkers, severe asthma, T2 asthma, non-T2 airway inflammation, omics,

microbiome & dysbiosis

Introduction

In the past decades, asthma has been increasingly recognized as a heterogeneous

disease, with many diverse pathogenetic mechanisms and variable responses to standard

therapy (1). Targeting of the underlying inflammatory pathways is the current

therapeutic approach in asthma, especially for patients with severe or difficult-to-control

disease (2).

Particularly in severe asthma, diverse inflammatory pathways may be activated in

different patient subsets, leading to the emergence of distinguished clinical characteristics

or phenotypes (3). Based on cluster analysis of several large asthmatic cohorts, we

have identified four major clinical phenotypes in adult patients with severe asthma,

considering relevant observable characteristics such as age at onset, potential triggers,

type of inflammation, lung function impairment, and response to treatment: (a) the

early-onset, atopic asthma phenotype, presenting partially variable airflow obstruction,

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.992565
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.992565&domain=pdf&date_stamp=2022-09-26
mailto:evafouka@gmail.com
mailto:kporpodis@yahoo.gr
https://doi.org/10.3389/fmed.2022.992565
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.992565/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Fouka et al. 10.3389/fmed.2022.992565

frequent symptoms and relative response to corticosteroid

treatment, (b) the late-onset, non-atopic, eosinophilic

phenotype, with fixed airway obstruction, corticosteroid

resistance and frequent asthma-related comorbidities (c) the

late-onset, non-allergic, non-eosinophilic, obesity-related

asthma phenotype, usually female predominant, with increased

symptom burden and resistance to corticosteroids despite

relatively normal lung function, and (d) the late-onset,

non-atopic, neutrophilic phenotype, with corticosteroid

resistance and severe lung function impairment (4–6). However,

considerable overlapping between asthma phenotypes is often

observed, and this phenomenon may be attributed to the

different variables assessed in various studies and ethnic,

geographical and other methodological issues.

Moreover, based on the presence or absence of Type

2 (T2) inflammation, asthma is now frequently categorized

into T2 high (T2 asthma) and T2 low (non-T2 asthma) (7).

The characterization of the distinct disease endotypes, that

is the underlying pathophysiologic mechanisms, has currently

become the central therapeutic strategy in asthma management,

as it enables clinicians to better diagnosing, stratifying and

monitoring of their patients (8).

Consequently, the clinical and pathophysiological

heterogeneity of asthma makes it extremely suitable for

precision medicine (9). Biological markers (biomarkers),

defined as measurable indicators of a biological state or disease

with clear cutoff values (10), are considered valuable clinical

tools for diagnosing, predicting, and monitoring asthma, with

the aim to reduce its burden and to minimize future risk (11).

During the last decades, as the contribution of atopy,

eosinophilic-driven inflammation and airway epithelial

dysfunction have been recognized in the pathogenesis of

severe asthma, significant progress has been made in the

identification of valid asthma biomarkers (12, 13). Hence,

serum immunoglobulin E (IgE), sputum and blood eosinophils,

and the fraction of nitric oxide in exhaled air (FeNO), have all

been used as potential biomarkers, suggestive of the underlying

activation of these respective pathogenetic pathways (14–17). In

this review, we aimed to discuss on the most important existing

and emerging biomarkers with the greater clinical applicability

in asthma (Figure 1).

Biomarkers in T2 asthma

At present, T2 asthma comprises the best defined asthma

subtype, regarding underlying immunopathology, associated

biomarkers and targeted therapies (18). Airway eosinophilic

inflammation constitutes the main characteristic of this type of

asthma, so the latter is often classified merely as eosinophilic

or non-eosinophilic (19). Eosinophilic inflammation is driven

predominantly by T2 immune responses regulated by T2-

helper (Th2) cells and group 2 innate lymphoid cells (ILC-2)

and their relative Th2 cytokines, and it is reflected, to some

extent, by sputum or blood eosinophilia and elevated FeNO

concentration (20).

Eosinophils

Among the asthmatic patients, the prevalence of

eosinophilic inflammation is referred as almost as 50% in

various studies (21). Upon their activation, eosinophils release

a number of inflammatory mediators from their intracellular

granules, that are rsponsible not only for the appearance of

asthmatic symptoms, but also, in more advanced stages of

the disease, for the observed fixed airflow obstruction and

airway remodeling (22). IL-5, IL-4, and IL-13 are key cytokines

in the eosinophilic inflammatory process, as they regulate

the eosinophilic migration, activation and survival into the

asthmatic airway (23).

The association between asthma and eosinophilia is well-

established. Airway eosinophilia is significantly increased in

asthmatic patients compared with healthy subjects, and has been

found to correlate with the degree of airway hyperreactivity

(AHR), exacerbation severity and poor clinical outcomes (24,

25). Sputum eosinophilia as an index of airway eosinophilia, has

been found to predict response to treatment with corticosteroids

(26) and may be used as a therapeutic target for guiding

the intensity of treatment with inhaled corticosteroids (ICS)

(27). Additionally, treatment adjustments according to sputum

eosinophil levels have been associated with reductions in the

rate of severe exacerbations and with decreased need for

hospital admissions, compared to the standard clinical-guided

management, in patients with moderate-to-severe asthma (28).

Pizzichini et al., in a small cross-sectional study suggested

that sputum eosinophilia (cut-off >3%) is a more reflective

biomarker of asthmatic airway inflammation than the absolute

peripheral blood eosinophil count (BEC) (29). However, sputum

eosinophil levels have been found to vary over time and after

treatment (30), and induced sputum technique may also be

laborious and time-consuming. Moreover, a recent post-hoc

analysis of data from patients who had provided both baseline

sputum and blood samples participating in DREAM study (31)

revealed that, among the placebo group, increasing baseline

sputum eosinophil count predicted a decrease in exacerbation

rate in the following 52 weeks, while, on the contrary, predicted

exacerbations increased with increasing baseline BEC (32).

The authors of the study suggest that this finding may be

due to the small number of patients included in the analysis;

however, this may also represent an interesting new finding

suggesting that sputum eosinophils may not represent a more

useful predictive biomarker than BEC in patients with severe

eosinophilic asthma. Furthermore, BEC is considered superior

to FeNO in identifying sputum eosinophilia (33) and, most

importantly, is easily measured and widely used in the context
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FIGURE 1

Asthma biomarkers categorized as those related to type 2 (T2) Inflammation and those that relate to other biological processes.

of whole blood count testing; therefore a recent (or historical)

BEC is usually available for most the patients. For these reasons,

the use of BEC as the basic biomarkers of T2 inflammation has

now prevailed in daily clinical practice.

From a clinical standpoint, BEC are useful in the early

detection of exacerbation risk, loss of asthma control and lung

function deterioration in patients with severe asthma (34, 35).

Baseline BEC have been shown to predict the degree of reduction

in severe exacerbation rate in patients with severe eosinophilic

asthma treated with ICS (36). BEC values between 150 and 400

cells/µL have also been used to predict response to treatment

with monoclonal antibodies (mAbs) targeting IL-5 and its

receptor IL-5R (16, 37–39). In the pooled analysis of theDREAM

and MENSA studies (37), a better response to treatment with

the anti-IL5 mAb mepolizumab was observed in patients with

severe asthma and BEC of ≥150 cells/µL in baseline. Similarly,

data from the pooled analysis of the CALIMA and SIROCCO

studies showed that BEC ≥ 300 cells/µL, along with the rate

of exacerbations during the previous year, were the stronger

predictors of treatment response to benralizumab, an anti-IL5R

biologic (16). In the early efficacy studies of the anti-IL5 mAb

reslizumab, significant reductions in asthma exacerbation rate

(38) and improvements in lung function (39) were observed

in patients with persistent asthma and BEC ≥400 cells/µL.

However, BEC should be considered a continuous variable, with

higher levels predicting a greater response to treatment (40).

The inconsistency observed between sputum and blood

eosinophil counts may be attributed to the heterogeneity of

the studied populations in several studies (41). Moreover,

a single BEC measurement may be insufficient for asthma

diagnosis and therapeutic decisions, with greater variability

observed for BEC values between 150 and 299 cells/µL (42).

Finally, the utility of BEC also seems to be restricted by their

considerably low specificity, as elevated levels can be observed

in several autoimmune and atopic diseases and inmany parasitic

infections (43).
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FeNO

In asthma, the bronchial airway is usually rich in Nitric oxide

(NO), produced from inducible nitric oxide synthases (iNOS)

under the mediation of the T2 inflammatory cytokines IL-4

and IL-13 (44). NO has been used as an indirect marker of

asthmatic inflammation, as its fraction in exhaled breath (FeNO)

can be measured non-invasively with the use of a hand-held

analyzer, making it a valuable clinical tool in everyday clinical

practice (45).

However, FeNO can only modestly predict airway

eosinophilia, with many studies suggesting moderate sensitivity

and specificity for detecting sputum eosinophilia ≥3% (46).

Several cut-off values have been proposed, though it has

become evident that values <25 ppb generally rule out airway

eosinophilic inflammation, whereas values >50 ppb are strongly

suggestive (47).

Elevated FeNO levels may reflect ongoing airway

inflammation and may predict an increased risk for asthma

exacerbations and decline in lung function (48, 49). In steroid-

naive asthma patients, FeNO levels are higher in patients

with allergic asthma and are associated with greater AHR and

reversibility of airway obstruction (50). A FeNO level >50

ppb has been found predictive of response to ICS (47) and,

in the appropriate clinical setting, may support the decision

for the initiation of ICS. FeNO levels are usually responsive

to ICS therapy and their changes have been used to monitor

adherence to treatment in patients with uncontrolled asthma

(51). In an 8-week, randomized, placebo-controlled trial, FeNO

levels significantly decreased and then remained stable after

only 2 weeks of treatment with ICS compared with placebo,

while they again significantly increased shortly after the 2-week

washout period (52). In an Australian RCT including 220

pregnant, non-smoking asthmatic women, 53% of whom

had non-eosinophilic, treatment adjustments made according

to FeNO levels resulted in more significant reductions in

exacerbation rates compared to clinical assessment only

guided-therapy (53). A 36-week double-blind, parallel RCT

comparing FeNO-guided vs. symptom-based management in

80 asthmatic adults with a history of atopy in two-thirds (54),

demonstrated a significant decrease in AHR at the end of the

study in the FeNO group compared with the control group. In

a more recent double-blind, multicenter RCT, baseline FeNO

levels were useful in predicting response to treatment with ICS

in patients with no previous asthma diagnosis, non-specific

respiratory symptoms (cough, wheeze, or dyspnea), and <20%

bronchodilator reversibility, mean BEC < 260 cells/µL, after

exclusion of COPD diagnosis (55). The findings of these studies

indicate that the use of FeNO in guiding asthma management

may be more appropriate in atopic patients.

However, although airway eosinophilia and T2-

inflammation may overlap, they are not synonymous.

That has been clearly illustrated in the early mepolizumab

(anti-IL5 mAb) and Dupilumab (anti-IL4Rα mAb) studies, in

which blood eosinophil and FeNO levels, respectively, were

affected by therapy to a different extent (15, 17). In addition,

the inconsistency between FeNO levels and asthma control

may be, at least partially, explained by the fact that numerous

factors, such as age, gender, body weight, atopy, smoking,

food and upper respiratory allergic diseases, can affect FeNO

and should be taken into account in clinical decisions (56).

Therefore, the 2021 National Asthma Education and Prevention

Coordinating Committee (NAEPPCC) made a conditional

recommendation for FeNO use in clinical practice, suggesting

its use in combination with compatible clinical parameters

including history, symptoms and clinical and spirometric

findings (46).

IgE

The role of IgE in atopic asthma has been well-described

for many decades (57). However, although robust evidence

of the observed immunological changes produced by anti-IgE

therapies have been produced by the times of the first clinical

studies of omalizumab (14, 58), the utility of IgE as a biomarker

of allergic inflammation in asthma has not yet been fully

clarified. However, it has been suggested that total IgE levels

can serve as a biomarker for monitoring IgE production and

treatment guidance in an individual level (59).

In allergic asthmatics, several studies have shown an

association between allergic sensitization in early life and lung

function impairment in adulthood”. (60–63). Total serum IgE

levels have been shown to correlate with asthma severity, and

with increased risk for loss of asthma control and severe

exacerbations both in children and adults (64–66). However, an

old study by the TENOR study group, did not demonstrate a

relationship between total IgE geometric mean and severity of

asthma, although IgE total levels were higher in children with

severe asthma compared to those with mild-moderate disease

(67). Moreover, therapeutic efficacy of omalizumab has been

shown to be comparable in patients with baseline IgE levels

between 30 and 700UI/mL (68, 69), therefore IgE cannot reliably

be used as a biomarker for prediction of treatment response

in omalizumab.

On the contrary, measurement of specific IgE (sIgE) to

aeroallergens has shown relatively high sensitivity concerning

asthma diagnosis (70). Furthermore, Matsui et al. (71),

demonstrated that sIgE levels were associated with more severe

asthma in a large cohort of young inner-city asthmatics.

Similarly, in a more recent study, the number of specific allergen

sensitizations correlated with asthma severity and exacerbation

risk in children (72). As total serum IgE is not allergen-specific

andmay be influenced by several extrinsic factors and pathologic

conditions, sIgE may be considered a more reliable biomarker

both for asthma diagnosis and severity assessment.

Frontiers inMedicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2022.992565
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Fouka et al. 10.3389/fmed.2022.992565

Periostin

Periostin is a secreted extracellular matrix protein produced

by bronchial epithelial cells and fibroblasts under the stimulus of

IL-4 and IL-13, therefore it is also considered to be a T2-related

biomarker (73). However, periostin differentiates from other

T2 biomarkers in that it is implicated in airway remodeling,

therefore it is considered to be associated with chronic rather

than acute T2 inflammation (74).

Serum periostin has been associated with fixed airflow

limitation and subepithelial fibrosis in a number of clinical

studies (75, 76). An RCT evaluating the effect of ICS therapy on

serum periostin levels revealed that, ICS significantly lowered

both serum periostin and sputum eosinophil counts, and that

decrease was associated with improvements in lung function and

airway remodeling (77).

However, several studies underline the existing discordance

between serum periostin and sputum eosinophilia. Findings

from the BOBCAT study showed that periostin was a good

predictor of airway eosinophilic inflammation, with an AUROC

of 0.84 (78), however, in another study, periostin was unable

to differentiate eosinophilic from non-eosinophilic asthma (33).

Moreover, wide periostin use is confined by the lack of

standardized measurement techniques and validated predicted

values (79).

Anti-IL-13 therapies have not so far been authorized for

the treatment of severe eosinophilic asthma. However, in

a phase-2 RCT including 219 patients with uncontrolled

asthma, lebrikizumab, an anti-IL13 mAb, significantly

increased FEV1 compared with placebo, only in patients

with high serum periostin levels at baseline (80). In a 52-week

RCT of tralokinumab, another anti-IL13 mAb, significant

improvements in asthma exacerbation rate, lung function, and

asthma symptoms were also found in patients with increased

pre-treatment periostin serum levels (81). Therefore, periostin

is also an emerging biomarker of T2 inflammation.

A summary of the main characteristics of the T2-biomarkers

presented above is illustrated in Table 1.

Biomarkers in non-T2 asthma

Non-eosinophilic asthma has traditionally been defined as

asthma without evidence of T2 inflammation, and in general is

characterized by the predominance of neutrophils or the absence

(or normal levels) of other granulocytes in induced sputum (82).

Neutrophilic phenotype constitutes a proportion of non-

T2 asthma (83), although until recently it was thought to

be a misdiagnosis of chronic obstructive pulmonary disease

(COPD) or a consequence of corticosteroid treatment (84).

The normal range of neutrophils in induced sputum in healthy

individuals ranges between 30 and 50%, and subsequently

airway neutrophilia is defined as between 51 and 70% (85).

However, age-specific reference values are warranted, as airway

neutrophilia varies with age (86). The neutrophilic phenotype is

widely associated with smoking, obesity, acute airway infections,

underlying anti-inflammatory therapies and various forms of

air pollution (87, 88). Airway neutrophilia has been found

to be facilitated by local, IL-17 mediated (89) and systemic

inflammatory pathways (90).

Paucigranulocytic asthma comprises another component of

non-T2 asthma, and is by default defined as asthma without

T2 biomarkers (91). Therefore, targeted treatment options, as

well as clinically applicable biomarkers, are still largely under

exploration (92). In this context, the clinically relevant issue of

whether “true” non-T2 asthma really exists has been raised, as

high-dose ICS and oral corticosteroids (OCS) may potentially

minimize blood eosinophils and FeNO levels, therefore masking

preexisting T2 inflammation (93).

However, “prototype” non-T2 asthma is associated with

poor response to corticosteroid treatment (94), therefore some

authors suggest that high doses of ICS may be reduced in

the majority of patients with non-eosinophilic asthma (95),

and in the absence of targeted therapies, other treatable traits

should be investigated e.g., exposure to smoking, obesity,

chronic respiratory infections, and airway smooth muscle

dysfunction (96). Although smoking cessation is favorable for

all asthmatic patients, independently of their inflammatory

phenotype, this intervention might be even more important

for asthmatic patients with neutrophilic inflammation (97).

Similarly, although obesity has been linked with neutrophilic

inflammation, there is evidence that weight loss interventions

may reduce symptom burden in obese asthmatics through

inflammation-independent pathways (98). Long-term, low-

dose macrolide therapy may also be a therapeutic option

for this subset of patients. In the AMAZES study (99),

long-term, low does oral azithromycin therapy significantly

decreased exacerbations and improved quality of life in patients

with uncontrolled asthma, irrespectively of the underlying

inflammatory phenotype. A range of biologics targeting non-T2

cytokines, such as IL-17, IL-6, IL-1, and TNFα, have been tested

in several clinical trials, but none of them has shown particular

benefits for non-T2 asthma (100).

Emerging biomarkers

The omics approach

As our understanding of asthma heterogeneity increases,

it has become evident that best clinical practice demands

new approaches in the era of personalized medicine. The

omics technologies currently emphasize on the identification of

clinically applicable proteomic and genomic-based biomarkers

to facilitate health-care development (101).
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TABLE 1 Summary of characteristics of major T2-biomarkers.

Biomarker Utility Advantages Limits

Sputum eosinophils counts Define the airway eosinophilic phenotype

(29). Predict AHR, severity of exacerbations

and disease outcomes (24, 25). Predict

response to treatment with CS (26).

Non-invasive Time consuming, requires specialized

equipment, not all patients can provide

adequate samples. Time and

treatment-dependent variations (30)

Blood eosinophils counts Define the eosinophilic phenotype (33).

Predictive of exacerbations, loss of asthma

control and lung function decline

(32, 34, 35). Predict response to biologic

therapies (16, 36–40)

Minimally invasive

Easily measured in the clinical setting.

Good correlations with sputum

eosinophils compared to FeNO (33)

Varying cut-off points, variable stability over

time (42), relatively low specificity (43)

FeNO Identifies airway eosinophilic inflammation

(45). Prognostic of exacerbations, lung

function decline, and degree of AHR (48–50).

Predicts response to treatment with CS and

biologics (17, 47, 55) and detects adherence

to treatment (51) and treatment success

(5–54).

Non-invasive. Easily collected in clinical

setting

Moderate sensitivity and specificity for

sputum eosinophilia ≥3% (46). Affected by

multiple confounders (56)

Total IgE Predictive of asthma severity and risk for

exacerbations and loss of asthma control

(64–66).

Minimally invasive. Identifies patients

eligible for anti-IgE therapy (14, 58)

Not-predictive of response to anti-IgE

therapy (68, 69). Not asthma-specific;

outperformed by sIgE in diagnosing asthma

and predicting asthma severity and

exacerbation risk (70–72)

Periostin Identifies T2-inflammation (73), airway

remodeling and fixed airway obstruction

(74–76). Predicts response to treatment with

anti-IL-13 biologicals (80, 81).

Not currently available in clinical

practice. Lack of standardized

measurement techniques and reference

values (79)

Poorly associated with sputum eosinophilia

(33, 78)

FeNO, fraction of nitric oxide in exhaled air; IgE, immunoglobulin E; sIgE, specific immunoglobulin E; CS, corticosteroids; AHR, airway hyperreactivity.

Genomics

The chromosome 17q21 is in the epicenter of current

genomic epidemiological studies in asthma, as it encloses many

genes and single nucleotide polymorphisms (SNPs) of interest

(102). Several genes (CLC, EMR4P, IL- 5RA, FRRS1, HRH4,

SLC29A1, SIGLEC8, and IL1RL1) have been identified to be

overexpressed in allergic diseases such as asthma, dermatitis

and rhinitis, with IL-5/JAK/STAT and IL-33/ST2/IRAK/TRAF

pathways being central in disease multimorbidity, both in

children and adoloscents (103). Similarly, genetic variations of

the interleukin-1 receptor-like 1 (IL1RL1) gene have also been

related with asthma exacerbations in children (104).

However, although transcriptomics studies have been

valuable in the characterization of genome variations between

the different asthma subtypes, asthma susceptibility cannot

be linked to just a number of genetic signatures, due to the

complex underlying disease-pathogenetic mechanisms (105).

Therefore, genome-wide, large-scale approaches are essential,

such as those performed in the U-BIOPRED consortium (106),

which evaluated over 1,500 differentially expressed genes from

large asthma cohorts and revealed three distinct clusters of

disease: (i) an eosinophilic cluster, characterized by the IL-

33R, CCR3, and thymic stromal lymphopoietin (TSLP) receptor

(TSLPR) transcript expression, that was associated with the

highest sputum eosinophilia, more elevated FeNO levels, and

more severe asthma; (ii) a neutrophilic cluster, characterized

by overexpression of genes related to interferon (IFN) and

tumor necrosis factor (TNF), sputum neutrophilia, high levels

of systemic inflammation and prevalence of eczema; and

(iii) a paucigranulocytic-eosinophilic cluster, characterized by

genes regulating various metabolic pathways and mitochondrial

functions, that shows the lowest prevalence in severe asthma.

Proteomic/metabolomics

In recent years, both proteomics and metabolomics

technologies have been increasingly used for the recognition

of novel biomarkers in asthma. Exhaled breath, mainly

comprised of water vapor and inert gases, also contains

thousands of volatile organic compounds (VOCs) (107), with
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pH, H2O2, and several indirect by-products of oxidation, like 8-

isoprostane and ethane in exhaled breath, being the most often

analyzed by breathomics technology in asthma (108). Exhaled

VOC analysis technologies include two main methodological

headings approaches: (a) pattern recognition sensors termed

“electronic noses” (e-noses), which “signal” the differential

of multiple overlapping VOCs, and (b) chemical analytical

techniques, typically with the use of mass spectrometry, that

measure ions created by VOCs according to their mass/charge

ratio (109). Emerging evidence supports the hypothesis that

measurement of VOCs concentrations alterations in exhaled

air of asthmatic patients may reflect different disease states,

suggesting potential usefulness in non-invasive, early diagnosis

and effective management (110–112).

Abdel- Aziz et al. (113) used an electronic nose tool to

successfully distinguish healthy from asthmatic subjects, while

Nieto-Fontarigo et al. (114), combining liquid chromatography

with mass spectrometry, identified 18 serum proteins as

potential biomarkers of asthma phenotypes (e.g., FCN2 and

MASP1 for non-allergic asthma, or HSPG2 and IGFALS for

allergic asthma) and disease severity. Moreover, exhaled breath

pH has been found significantly lower in severe refractory

asthma compared to moderate disease and healthy subjects

(115) and in asthmatic smokers compared with non-smokers

(116). Lower EBC pH values have been associated with high

BMI, high BAL neutrophil counts, impaired lung function, and

increased allergic and gastroesophageal reflux symptoms (117).

Brinkman et al. have also illustrated differences in exhaled

volatiles such as methanol, acetonitrile, and bicyclooctan-1-ol,

4-methyl in patients with loss of asthma control compared

with the recovery period (111). On the contrary, the results

of the ALLIANCE study failed to show differences in exhaled

VOCs and inflammatory markers in asthmatic patients (118).

Although further work is required to validate these preliminary

findings, several systematic reviews suggest the large potential

for the breathomics biomarker approach (112).

Microbiota and respiratory infections
biomarkers

Modern lifestyle has fundamentally disrupted the

human microbiome ecology and this may explain, at least

in part, the increased incidence of immune-mediated

diseases such as allergy and asthma (119). These highly

sophisticated host–microbe interactions are currently

being intensely studied by many researchers around

the world.

It is evident that early-life alterations in gut microbiome

composition may be involved in asthma pathogenesis (120). In

adult asthmatics, a positive correlation between the increased

abundance of histamine-secreting bacteria in the gut and asthma

severity has been found (121). Similarly, in murine models

of asthma, bacterial-derived histamine released within the gut

has been demonstrated to mediate significant inflammatory

responses in the lungs (122). In addition to increased abundance,

more interestingly, decreased microbiome diversity in the gut

has been associated with dysbiosis and enhanced prevalence

of allergies and asthma (123, 124). Therefore, due to the close

interaction of intestinal microbiota on the mucosal immune

system, the gut can be considered as an essential site of immune

cross-talk, with an opposing impact on allergy development and

treatment, the so-called gut-lung axis (125).

In addition to the gut microbiota, several studies have also

showed significant alterations in the microbial communities in

the asthmatic airways. Zhou et al., have shown that the relative

abundance of Veillonella and Prevotella spp in the airways of

newborns was associated with increased risk of asthma incidence

by the age of 6 years (126). In another study, alterations in

the microbiome composition in the upper airways in infants

were associated with a higher risk of severe asthma exacerbation

in asthmatic children (127). In adults, predominance of the

phylum Proteobacteria in the lungs may be associated with more

severe asthma or with loss of asthma control (128), with more

profound microbial changes observed in obese asthmatics (129).

Microbial metabolites may also potentially serve as valuable

biomarkers in asthma, as dysfunctional relationships have

been found between respiratory microbes and their circulating

metabolites (130).

Limitations and future perspectives

Unfortunately, at the moment, all the available asthma

biomarkers used in severe asthma lack of specificity for the

identification of the precise disease endotype that will respond

to the existing targeted treatments i.e., blood eosinophilia

predicts therapeutic response to all currently available biological

therapies (10). Similarly, biomarkers cannot differentiate

eosinophilic asthma from eosinophilic COPD, although the

relationship between airway and systemic eosinophilia and T2

inflammation appears stronger in severe asthma than in COPD

(131). In line with the above, the use of blood eosinophils

as the sole biomarker for the eosinophilic phenotype may be

misleading, as the amount of eosinophils in the blood is both

time and treatment-dependent (132, 133), therefore a single low

BEC may not necessarily rule out airway eosinophilia (134).

In recognition of the inherent heterogeneity of asthma

phenotypes, Pavord et al. (135), proposed a gradient rather than

a dichotomous approach for the classification of severe asthma

phenotypes. Similarly, Heaney et al. (136), using data of 1,716

patients from the International Severe Asthma Registry (ISAR),

proposed an eosinophilic-probability algorithm to assess severe

asthma phenotypes, classifying eosinophilic status from Grade

3 (most likely eosinophilic) to Grade 0 (non-eosinophilic).
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With the use of this approach, the authors showed that

the eosinophilic phenotype prevails in the majority of severe

asthmatics, with 83.8% of subjects belonging into the “most

likely” eosinophilic phenotype and only 1.6% characterized as

“non-eosinophilic”. Supportive evidence on this issue comes

from the real-world Wessex AsThma CoHort of difficult asthma

(WATCH) study (137), that searched historical electronic blood

count records of patients with difficult asthma over a period

of 10 years, and reported a strikingly increased prevalence of

“eosinophilia ever” when viewed longitudinally.

The combination of different biomarkers may add

additional discriminatory value in predicting exacerbations and

response to treatment. Price et al., in an observational study

with participation of primary care patients, demonstrated

that the combination of both high FeNO (>50 ppb)

and high BEC (>300 cells/µL) resulted in an almost

4-fold greater exacerbation risk the preceding year,

compared to patients with the low biomarkers reference

group (138).

More interestingly, the combination of biomarkers with

relevant clinical characteristics may be more accurate in the

characterization of asthma phenotypes. Recently, a severe

asthma expert consensus proposed a set of diagnostic criteria

for severe eosinophilic asthma, however, this approach has

not been validated in a clinical setting (139). To this point,

the ISAR study group (140), developed a multicomponent

algorithm for use in real life, incorporating many variables

associated with severe eosinophilic asthma (BEC FeNO, atopic

status, age of asthma onset, asthma related comorbidities,

and OCS use), while both the Severe Asthma Research

Program (SARP) and the Leicester cohorts have also used

this approach (141). Based on the combination of feasible

biomarkers with clinical meaningful disease characteristics,

current asthma guidelines have now adapted algorithms

for the initial choice of targeted biologic treatments and

for the monitoring of subsequent treatment response (142–

144).

Conclusions

Biomarkers are significant elements of precision medicine,

as they may provide valuable information, in terms of

characterization of disease phenotypes and endotypes, selection

of the appropriate targeted therapy, and monitoring of

treatment efficacy. The advent of new techniques, combined

with biomarker combination strategies, will likely assist the

identification of novel functional traits for patients non-

responsive to currently available targeted treatment options,

including patients with non-T2 asthma.
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