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Abstract: Cereal grains provide half of the calories consumed by humans. In addition, they contain
important compounds beneficial for health. During the last years, a broad spectrum of new cereal
grain-derived products for dietary purposes emerged on the global food market. Special breeding
programs aimed at cultivars utilizable for these new products have been launched for both the main
sources of staple foods (such as rice, wheat, and maize) and other cereal crops (oat, barley, sorghum,
millet, etc.). The breeding paradigm has been switched from traditional grain quality indicators (for
example, high breadmaking quality and protein content for common wheat or content of protein,
lysine, and starch for barley and oat) to more specialized ones (high content of bioactive compounds,
vitamins, dietary fibers, and oils, etc.). To enrich cereal grain with functional components while
growing plants in contrast to the post-harvesting improvement of staple foods with natural and
synthetic additives, the new breeding programs need a source of genes for the improvement of the
content of health benefit components in grain. The current review aims to consider current trends and
achievements in wheat, barley, and oat breeding for health-benefiting components. The sources of
these valuable genes are plant genetic resources deposited in genebanks: landraces, rare crop species,
or even wild relatives of cultivated plants. Traditional plant breeding approaches supplemented with
marker-assisted selection and genetic editing, as well as high-throughput chemotyping techniques,
are exploited to speed up the breeding for the desired genotуpes. Biochemical and genetic bases for
the enrichment of the grain of modern cereal crop cultivars with micronutrients, oils, phenolics, and
other compounds are discussed, and certain cases of contributions to special health-improving diets
are summarized. Correlations between the content of certain bioactive compounds and the resistance
to diseases or tolerance to certain abiotic stressors suggest that breeding programs aimed at raising
the levels of health-benefiting components in cereal grain might at the same time match the task of
developing cultivars adapted to unfavorable environmental conditions.

Keywords: barley; breeding; marker-assisted selection; genes; genetic resources; genome editing;
health benefits; metabolomics; oat; QTL; wheat

1. Introduction

Cereal crops are the main food and feed sources worldwide, supplying more than half
of the calories consumed by humans [1]. An overwhelming majority of plant breeders and
geneticists work on no other crops but cereals. Breeding methods depend on the biological
features of a crop and on the genetic research standards, traditions, economic objectives,
and levels of agricultural technologies in the country where plant breeding is underway.
The general breeding trend of the past decades, however, was finding solutions to the
problem of higher yields in cereal crops; furthermore, special attention was paid in many
countries to increasing plant resistance against diseases and various abiotic stressors. The
concentration of all efforts on these two targets and none other resulted in a certain decline
in the genetic diversity in those plant characters that are associated with the biochemical
composition of cereal grain [2]. In the last few years, cereal crop breeding generated a trend
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aimed at combining high biochemical and agronomic parameters in one cultivar [3–5]. In
addition to protein, cereal grains are rich in other chemical compounds, such as fats with
their good assimilability by the organism and a well-balanced composition of chemical
constituents, including fatty acids [6–10], vitamins of the B, A, Е, and F groups, organic
compounds of iron, calcium, phosphorus, manganese, copper, molybdenum, and other
trace elements [3], and diverse biologically active compounds–polysaccharides, phenolic
compounds, carotenoids, tocopherols, avenanthramides, etc.

In recent years, the world food market has seen the emergence of a wide range of
new cereal crop products designed for dietetic purposes. Currently, available data confirm
the importance of biochemical composition in cereal crop grains since it underpins their
dietetic, prophylactic, and curative effect on the human organism [11]. Cereals are rich in
protein, starch, oils, vitamins, micronutrients, and various antioxidants. The research that
examines the potential of a number of cereal crops for prophylactic or medicinal uses has
been expanding from year to year [12–16]. In addition to determining types of bioactivity
for different grain components, an important challenge is to concentrate further efforts of
researchers on disclosing the mechanisms of their effect [17].

It is admitted that breeding techniques can help to increase the percentage of indi-
vidual constituents in the grain to a very high level. An important role in promoting this
breeding trend is played by the achievements in modern genetics of cereal crops and traits
associated with the quality and dietary value of their products. New breeding programs
imply that the developed high-yielding cultivars will combine maximum contents of the
abovementioned components and optimal correlations among them with other grain qual-
ity indicators and resistance to biotic stressors. Marker-assisted selection techniques are
used more and more often to accelerate the development of cultivars enriched in useful
grain components [4,18]. There are examples of the works employing genetic editing
technologies for these purposes [19–21]. The current review aims to consider current trends
and achievements in wheat, barley, and oat breeding for health-benefiting components.

2. Major Dietary Components in Grain and Breeding Programs for Health Benefit
2.1. Micronutrients

The long-standing problem of micronutrient deficiencies in human diets is the most
significant for public healthcare worldwide. It is especially true for cereal-based diets:
They are poor in both the number of micronutrients and their bioavailability for the
organism since breeding of these major food and feed crops primarily aims at developing
higher-yielding varieties to meet global demand. Due to dilution effects, an increase in
grain mass sometimes causes a reduction in micronutrient contents. In most countries,
people eat meals produced from cereal crops with low micronutrient content; it is a serious
global problem invoked by the uniformity of different diets and may lead to significant
health deteriorations [22,23]. Iron-deficiency anemia is one of the most widespread health
disorders provoked by the worldwide deficit in micronutrients [24], while zinc deficiency
in food is faced on average by one-third of the world’s population [25]. Increasing the
content of these trace elements in wheat by breeding techniques is considered one of the
ways to enhance the consumption of micronutrients with food [26].

It has been noticed that cereal crop cultivars can be enriched in the desired micronu-
trients through the application of agricultural practices or by plant breeding [22,27–30].
Such procedures, however, might lead to an increase in micronutrient content in leaves but
not in grain [31]. Methods combining breeding and agrochemical approaches were pro-
posed to solve this problem: They helped accumulate micronutrients in the edible parts of
plants [27–29,32]. There are considerable variations in the concentration of micronutrients
in seeds or kernels of most crops [3,32]. Genetic variability in the micronutrient content is
often observed to be less expressed in fruit and more in leaves. Nevertheless, screening
large collections of staple cereal crops reveals extensive diversity of micronutrient concen-
trations in their grains [26,32,33]. Increased content of most micronutrients was observed
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in local varieties and landraces of wheat and other cereals, compared with improved
commercial cultivars [34].

The content of micronutrients in grain was analyzed in 65 commercial Russian cul-
tivars of four major cereal crops: wheat, barley, rye, and oat. Statistically significant
variations were found in the content of all studied trace elements (Fe, Zn, and Mn). The
highest levels were registered for barley and oat cultivars. Among barley genotypes, the
content of Fe, Zn, and Mn varied with a 3-to 5.5-fold difference between the extremes
(Table 1). Oat cultivars manifested a 7-fold difference between the extremes in the Zn
content and nearly 3-fold in Mn [3].

Table 1. Average values and ranges for the content of micronutrients (Fe, Mn, Zn) in caryopses of
cereal crops [3].

Crops Content, mg/kg

Fe Mn Zn

Winter soft wheat (Triticum aestivum L.) 21.8 (19−4) 4.3 (3.3−4.9) 17.1 (13−21)
Spring soft wheat (T. aestivum) 17.5 (15−22) 3.3 (2.4−4.1) 19.2 (14−22)

Soft wheat (mean) 19.7 (15−24) 3.8 (2.4−4.9) 18.2 (13−22)
Winter and spring rye (Secale cereale L.) 20.3 (14−30) 4.2 (2.6−7.0) 18.4 (15−24)

Spring barley (Hordeum vulgare L.) 33.2 (24−79) 10.1 (7−21) 10.6 (6−33)
Oats (Avena sativa L.) 26.7 (19−37) 6.1 (3.5−9.9) 26.3 (10−70)

A detailed study of a set of commercial oat cultivars of different geographical origin
in the context of their micronutrient content and biochemical parameters showed that
genotypic differences in the Fe and Zn levels in grain were small (1.9–2.7 times), but in
Mn, they were relatively high (10.5 times). A 1.8-fold difference was observed between the
lowest (10.9%) and the highest (19.3%) protein content levels in oat grain [3]. A wide range
of variation in oil content (2.7–8.1%) was found in all studied oat accessions. The amounts
of protein, oil, oleic acid, and Zn in grain demonstrated statistically significant positive
correlations among themselves [3]. The identified oat cultivars with high nutritive value
will be included in breeding programs and used directly in high-quality food production.

Molecular-genetic research on 335 spring barley accessions was conducted for more
effective utilization of the micronutrient diversity in cereal crop breeding. A genome-wide
association study (GWAS) was employed for mapping quantitative trait loci (QTL) linked
to the content of macro- and micronutrients in grain (Fe, Zn, Ba, Ca, Cu, K, Mg, Mn, Na, P,
S, Si, and Sr). The analyses of the tested populations helped to identify specific QTL for
each of the studied indicators and map them on chromosomes. The QTL identified are
valuable for the future development of barley cultivars with increased content of nutrients,
especially Zn and Fe [35].

2.2. β-glucans

A physiologically important dietary component in the grain is (1,3;1,4)-β-D-glucan,
or the non-starchy water-soluble polysaccharide β-glucan. This component is reported
to be typical of some species of the Poaceae family: its content varies within 3–11% in
barley, 1–2% in rye, and <1% in wheat, while in other cereals, it is present only in trace
amounts [36]. At the same time, the content and composition of dietary fibers in various
cereal crop species are genetically determined. It means, as opined by many scientists, that
it is possible to produce new lines of such crops with different correlations between the
levels of β-glucan polysaccharides and arabinoxylans that would be optimal for various
uses [37–39]. Studying of the β-glucan content in oat and barley cultivars is associated
with their uses for dietetic and medical purposes [37,38].

The β-glucans are not evenly distributed within a grain: its larger amount is found
in the endosperm cell walls, aleurone, and subaleurone layers, and its content varies
from 1.8 to 7% [40,41]. The concentration of β-glucans in oat grain and their degree of
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polymerization depend not only on the cultivar but also on the conditions of cultivation,
grain processing, and post-harvest storage [42].

The presence in the grain of a higher amount of β-glucans, which are dietary soluble fiber
(or soluble non-starch polysaccharide), determines the viscosity of oat and barley broths, which
have a beneficial effect on important functions of the human gastrointestinal tract, so they are
widely used in the food industry for dietetic and curative purposes [36,43]. Among numerous
products of barley and oat biosynthesis, probably the most valuable for the human organism
is soluble cellulose fibers and β-glucans first of all (also arabinoxylan, xyloglucan, and some
other secondary cellulose components), as they can reduce the level of cholesterol in the blood
and noticeably mitigate the risk of cardiovascular diseases [38,44,45]. Multiple evidence of the
beneficial role played by β-glucans impelled the U.S. Food and Drug Administration (FDA)
to make an official statement that soluble dietary fibers extracted from whole oat grain to
produce flakes, bran, or flour helped to reduce the risks of cardiovascular diseases [46].
Insoluble fractions of dietary fiber are partly cellulose, xylose, and arabinose [39]. Insoluble
dietary fiber has general gastrointestinal effects and, in most cases, has an impact on weight
loss. There is convincing evidence that β-glucans contained in oat grain are partially
responsible for decreasing the levels of glucose in the human blood and of cholesterol in
serum [12]; it is associated with its physicochemical and rheological characteristics, such as
molecular weight, solubility in water, and a viscosity [42,47].

Genetic diversity of barley and oats in the content of β-glucans in their grain was eval-
uated in the framework of two European Union (EU) programs. The HEALTHGRAIN Di-
versity Screen project resulted in finding significant differences in the content of β-glucans
and antioxidants in the grain of five tested oat cultivars [48]. The AVEQ project (Avena
genetic resources for quality in human consumption) analyzed 658 oat cultivars and con-
firmed the contribution of both genetic and environmental aspects to the formation of the
tested character [49]. It is worth mentioning that, compared with cultivated and other wild
di- and tetraploid oat species, higher contents of β-glucans and other antioxidants were
found in the hexaploid (wild) A. fatua, A. occidentalis, and (cultivated) A. byzantina, and
diploid (wild|) A. atlantica [38,39,49–51].

Measuring the content of β-glucans in oat grain in large and diverse sets of cultivars
and species showed that its values were significantly dispersed [37,38,49]. Naked oat
forms demonstrated a higher total content of the analyzed polysaccharide than hulled
ones, but the latter contained more insoluble β-glucans in their grain [52–54]. Computer
modeling helped to provide a ranking of the factors affecting the β-glucan content in hulled
and naked oat cultivars during their cultivation. The analysis showed that the selection
of the cultivar is the most important parameter of the model for determining the final
β-glucan accumulation in grain, among the other factors [55]. There are contradictory data
concerning the results of comparative studies on naked and hulled barley as well. Some
authors failed to disclose significant differences between these two forms of the crop [56,57],
while others found that naked barleys contained more β-glucans than hulled ones [43,58].
Meanwhile, the group of Tibetan naked barleys was reported to have the highest content
of β-glucans in their grain [59].

In the meantime, the amount of β-glucans in oat grain is associated with protein and
fat accumulation, grain volume weight, and grain productivity [60,61]. The content of
these polysaccharides depended on meteorological conditions and agricultural practices
used in oat cultivation [61]. The content of β-glucans in barley grain is determined by
both the genotype and the growing conditions [43,59,62]; some authors insist that it is
the genotype that plays a decisive role [63,64], while others give preference to the envi-
ronmental conditions [65,66]. When 33 barley cultivars and lines were tested in two arid
areas in the United States, it was shown that the variability in the content of β-glucans
in grain was determined by the genotype for 51% [64] to 66% [67]. At the same time, the
protein content in grain depended on environmental conditions for 69%, whereas yield
size and the grain volume weight for 83 and 70%, respectively [64]. The study of 9 barley
cultivars and 10 oat ones showed that cultivar-specific differences in the β-glucan content
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persisted across the years [63]. The content of β-glucans in the grain is also influenced
by plant development phases. It was reported that the content of β-glucans gradually
increased in the process of grain formation, and in the maturation phase, it either reached
the plateau or decreased [57]. At present, there are contradictory data concerning the
linkage of β-glucan accumulation in barley grain with 1000 grain weight, protein content,
or starch content [56,62]. Some authors did not find any interplay between these characters,
while others reported a positive correlation. When the content of β-glucans was measured
in the grain of six-row and two-row barley cultivars, no differences between these two
cultivar groups were reported [43].

The 1700 oat lines with mutations induced by TILLING of high-frequency mutagenesis
have been produced for breeding purposes with molecular-based, high precision selection
methods from cv. ‘Belinda’ (Sweden) to evaluate the variability of β-glucans content in this
crop [68]. Their assessment resulted in identifying 10 lines with β-glucan concentrations
in their grain higher than 6.7% and 10 lines with the content of β-glucans less than 3.6%
(β-glucan concentration in cv. ‘Belinda’ was 4.9%). The maximum range of variation in
the content of these polysaccharides was from 1.8 to 7.5% [69]. The comparatively recent
identification of genes participating in the biosynthesis of β-glucans in cereals [70] and
their first genetic map open new opportunities for genetic improvement of grain quality
indicators and resulting food products, which is very important for human health [71].

Three markers (Adh8, ABG019, and Bmy2) significantly linked to β-glucan content
regulation were identified in barley grain, and a group of HvCslF genes was mapped: At
least two of them were in the region of barley chromosome 2H explained by the QTL for
(1,3;1,4)-β-glucan near the Bmy2 marker [72]. A genome-wide association study (GWAS)
employing oat germplasm of worldwide origin from the American Gene Bank was aimed
at the identification of QTL linked to β-glucan content in grain and resulted in finding three
independent markers closely associated with the target character. A comparison of these
results with the data obtained for rice showed that one of the described markers, localized
on rice chromosome 7, was adjacent to the CslF gene family responsible for β-glucan
synthesis in grain. Thus, GWAS in oat can be a successful QTL detection technique with
the future development of higher-density markers [73].

By now, the GWAS approach has already started to be used to analyze the association
between the genotype and the content of β-glucans and fatty acids in oats. Researchers
have identified four loci contributing to changes in the fatty acid composition and content
in oat grain. However, genome regions conducive to changing the content of proteins,
oils, saccharic and uronic acids, which, in their turn, produce a direct effect on grain
quality, remain unexplored [74]. Furthermore, positive correlations were demonstrated in
barley between 1000 grain weight and tocol concentration, between dietary fiber content
and phenolic compounds, and between husk weight and total antioxidants in hulled
barley [38,50].

2.3. Antioxidants

Cereal crop grains are known to have high nutritive value and contain diverse chemical
compounds with antioxidant properties. Research efforts have been undertaken in recent
years to study the content of antioxidants in the grain of various cultivated cereals [50,75–79].

Starting in the mid-1930s, oat flour has been used as a natural antioxidant. Later,
more in-depth research was done to assess the antioxidative properties of oat flour versus
those of chemical antioxidants. It was ascertained that adding sterols extracted from oat to
heated soybean oil significantly decelerated its oxidation compared with the reference. At
present, along with the extensive utilization of synthetic antioxidants, oat flour has found
its stable niche as a natural ingredient in eco-friendly food products [7].

A comparison of bakery products made from wheat that synthesized such antioxidant
compounds as anthocyanins with those from an anthocyanin-free wheat line demonstrated
that the presence of anthocyanins increased the shelf life of bakery products and their
resistance to molding under provocative conditions [80]. Cereal crops contain secondary
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metabolites with antioxidant activity belonging to three groups: phenolic compounds,
carotenoids, and tocopherols [81].

2.4. Phenolic Compounds and Avenanthramides

Oat and barley grains contain a considerable amount of various phenolic compounds
exhibiting biological activity, including antioxidative, anti-inflammatory, and antiprolif-
erative (preventive activity against cancerous and cardiac diseases) effects [50]. One of
the most abundant and powerful antioxidants found in nature, the flavonoid quercetin,
has been found in wheat. It is characterized by numerous biological effects, including
antithrombotic activity [82].

Many published studies testify that a major part of phenolic compounds in grain
occurs in a bound form: Their content in oat and wheat grains reaches 75% [83,84]. Phenolic
acids, like most flavonoids in cereal crops, are concentrated in structures bound to the cell
wall: 93% of the total flavonoid content in wheat and 61% in oats [83]. The highest level
of total flavonoids is characteristic of maize grain, followed by wheat, oats, and rice [83].
Phenolic acids are the most widespread phenolic compounds in oats, especially ferulic acid
(250 mg/kg), which is present mainly inbound forms linked through ester or ether bonds
to cell wall components but also exists in the free form [85].

Bioactive chemical compounds are unevenly distributed within the grain. Grains of
four naked barley cultivars were divided into five layers to measure the total phenolic
content and total antioxidant activity. The total content of soluble phenolic compounds
was observed to decrease from the outer layer (2.8–7.7 µg/g) towards the inner endosperm
structures (0.87–1.35 µg/g) [78,86]. It has been proven that most antioxidants contained in
whole grain are located in the bran and germ fractions of the grain. For example, whole-
grain wheat flour was found to contain in its bran/germ fraction 83% of the total phenolic
content in grain and 79% of total flavonoids [87].

In the study of molecular mechanisms of ‘melanin-like’ black seed pigments known
to be strong antioxidants, comparative transcriptome analysis of two near-isogenic lines
differing by the allelic state of the Blp (black lemma and pericarp) locus revealed that black
seed color is related to the increased level of ferulic acid and other phenolic compounds [88].
The melanic nature of the purified black pigments was confirmed by a series of solubility
tests and Fourier transform infrared spectroscopy, while intracellular pigmented structures
were described to appear in chloroplast-derived plastids designated “melanoplasts” [89].
The most frequently mentioned flavonoids of cereal crops are the flavonols kaempferol and
quercetin, the flavanone naringenin and its glycosylated forms, catechin, and epicatechin
in barley [90–93].

Pigmentation of the grain’s outer coating can be analyzed as an important indicator of
antioxidant activity. A barley cultivar with purple grain contained 11 anthocyanins, while
only one anthocyanin was observed in black and yellow barley grains. The purple barley
bran extract had the highest total antioxidant activity [94]. Another study of naked barley
demonstrated the presence of higher antioxidant activity in pigmented grains compared with
non-pigmented ones [78]. A study of naked and hulled oats showed that naked oat cultivars
had significantly higher values of total antioxidant activity. Among hulled oat cultivars, these
values were higher in dark-hulled forms compared with white-hulled oats [50].

Differences between naked and hulled oats and barleys, generated a perfect model
interesting for comparative analyses: the mutant barley line for the Nud gene (nakedness),
derived by gene editing from cv. ‘Golden Promise’ [21]. Using this model will help to
distinguish the pleiotropic effects of the Nud gene on the grain’s biochemical composition
from the influence of closely linked genes.

Analyzing grain extracts of wheat lines with different combinations of the Ba (Blue
aleurone) and Pp (Purple pericarp) genes on the genetic background of elite cultivars demon-
strated a higher diversity of flavonoid compounds in the carriers of dominant alleles of
Ba and Pp genes. Comparing the products made from the grain of a purple-grained line
with those from an anthocyanin-free isogenic line revealed significant differences, which
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was also true for the samples that had passed a full processing cycle, including baking
at elevated temperatures [80,95]. The analysis of anthocyanin extracts obtained under
conditions simulating those of food digestion by a human organism showed that ingesting
100 g of bread crisps or biscuits made from flour with added purple wheat grain bran raised
the assimilation of anthocyanins to 1.03 and 0.83 mg, respectively, i.e., 100 g of bran would
supply the organism with up to 3.32 g of anthocyanins. Besides, purple-grained wheat
matched or even exceeded the reference line in the quality and taste of its products [95].

Recently, new high-yielding wheat cultivars, resistant to fungal diseases and having
high anthocyanin content in grain have been developed [4]. The efficiency of the breeding
strategy lasting only three years from the first cross until the state cultivar competitive
testing has been demonstrated. The strategy is based on marker-assisted selection (MAS) [4].
MAS also demonstrated its efficacy in creating barley with certain alleles of anthocyanin
regulatory genes [18]. For breeding blue-grained wheat, besides molecular markers, FISH
or C-banding are needed since the Ba gene is alien for wheat and can be inherited from
wheat lines with either 4B or 4D chromosome substituted by the Thinopyrum ponticum
chromosome 4 [96,97]. Unlike bread wheat, barley has its own Ba gene. Recent findings
of regulatory features of anthocyanin biosynthesis in barley [98] are useful for both MAS-
based and genetic editing-based breeding strategies.

Interestingly, 30 years ago, the purple- and blue-grain characters were regarded
as having “a limited practical use from a scientific point” [99]. Since that time, some
studies demonstrating the health benefit of plant anthocyanins, including those from
wheat grain [16], have been carried out, denying the old point of view and proving
these traits to be economically important. Commercial cultivars of wheat with increased
anthocyanin content have been released in Canada, China, Japan, and several European
countries [100,101].

The class of phenolics with antioxidative effect and bioactivity includes avenan-
thramides (AVA), a class of hydroxycinnamoyl anthranilate alkaloids contained only
in oats. Twenty-five components of these compounds were detected in kernels, and
twenty in hulls [102]. The most widespread in oats are AVA-A (2p), AVA-B (2f), and
AVA-C (2c) [9,103,104]. There is documented evidence that avenanthramides demonstrate
antioxidant, anti-inflammatory, antiatherogenic, and antiproliferative activity [105–107].

It has been shown that oat cultivars differed in the AVA content in grain. The cultivated
diploid species A. strigosa had a very high AVA content reaching 4.1 g/kg, and the hexaploid
A. byzantina contained 3.0 g/kg. Contrariwise, wild oat species with different ploidy
levels were characterized by relatively low AVA content values (240–1585 mg/kg) [108].
Analyzing a representative set of cultivated and wild oat species revealed an even wider
diversity of the AVA content in grain [109]. A conclusion has been made that wild oat
species are an important source of diversity for breeding programs, which dictates the
necessity of further studies into the pattern of AVA content and composition variability
across the genus Avena L. Wild oat species might incorporate a unique AVA composition,
promising for crosses with cultivated oats.

2.5. Tocols

The health benefits of oats are also associated with the presence of several antioxidant
compounds known as tocols, specifically tocopherols and tocotrienols. The fat-soluble
vitamin E contains tocopherols and tocotrienols [110], which make the oil more resistant to
oxidation. Both tocopherols and tocotrienols have several isomeric forms designated as α,
β, γ, and δ [111]. All in all, vitamin E can comprise eight isomers, with prevailing α-isomers
(70–85%) and δ-isomers not exceeding 1%. The total tocopherol content in oat cultivars can
reach 2.6–3.2 mg/100 g, which is many times lower than in barley [101]. Tocopherols are
mainly present in the germ fraction of grain, while tocotrienols are found in the pericarp
and endosperm. Tocotrienols prevail in oats, barley, and wheat; their concentrations vary
from 40 to 60 µg/g depending on the crop [112].
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Eight isomers of tocols have been found in barley grain oil (four tocopherols and
four tocotrienols). They play an exceptionally important role, regulating cholesterol in
human blood. Tocols also demonstrate very high activity as antioxidants, blocking harmful
peroxidation of lipids in cell membranes [101]. Tocols (16–94 mg/kg) consist of a polar
chromanol ring linked to an isoprenoid-derived hydrocarbon chain. They are powerful
scavengers of free radicals, also demonstrating an ability to inhibit the proliferation of
some cancer cells [108].

Furthermore, positive correlations were demonstrated in barley between 1000 grain
weight and tocol concentration, between dietary fiber content and phenolic compounds,
and between husk weight and total antioxidants in hulled barley [38,50]. Presently,
molecular-genetic studies of this type of antioxidant are based on simple-sequence re-
peats (SSR) markers. It is worth mentioning that the naked barley with the Waxy gene and
zero amylase content in starch has higher contents of both β-glucans and tocols [113].

2.6. Sterols

Sterols are important components of vegetable oils. Their content in oat grain varies, ac-
cording to different sources, from 0.1% to 9.3% of the total fatty acid content. This indicator
often depends not only on the oat genotype but also on the extraction technique. Cultivars
of rye, wheat, barley, and oats grown in the same year and same location were compared,
the highest plant sterol content was observed in rye (mean content 95.5 mg/100 g, wb),
whereas the total sterol contents (mg/100 g, wb) of wheat, barley, and oats were 69.0, 76.1,
and 44.7, respectively [114]. Among the six components of sterol content, the main one is
sitosterol, whose content reaches 70% of the total sterol content; additionally, about 20%
are allocated to campesterol and stigmasterol [7,101]. The content of sterols in oats can
reach 447 mg/kg and include, in addition to the abovementioned, D-5 and D-7 avenas-
terols [114] and phytic acid (5.6–8.7 mg/g); the latter manifests antioxidant activity due to
its ability to chelate metal ions, thus making them catalytically inactive and inhibiting the
metal-mediated formation of free radicals. However, this chelating activity reduced the
bioavailability of major minerals [110].

2.7. Carotenoids

Carotenoids (yellow, orange, and red pigments) relating to isoprenoids are among
the most widespread plant antioxidants. Carotenoid content in oat grain can reach
1.8 µg/g [86]; besides, lutein is considered the main xanthophyll in wheat, barley, and
oat grains, and zeaxanthin is the secondary one [115].

Comparative investigation of four groups of wheat genotypes (spelt wheat, landraces,
old cultivars, and primitive wheat) for carotenoid content and composition in grain re-
vealed a high level of variation among the genotypes and the groups in the content of
carotenoids. Lutein contributed 70–90% of the carotenoids in the grain [116]. In durum
wheat, which is used for the production of pasta, carotenoid content is also an important
technological and market indicator. In semolina and pasta, a yellow color is desirable, and
it depends on the carotenoid accumulation in kernels. Genetic dissection of the carotenoid
content character showed quantitative trait loci (QTL) on all wheat chromosomes [117].
The major QTL, responsible for 60% of heritability, is located on the long arms of chromo-
somes 7A and 7B. Variability in these QTL is explained by allelic variations of the phytoene
synthase (PSY) genes. Molecular markers for MAS-based breeding programs aimed at the
enrichment of durum wheat grain with carotenoid content are available [117].

2.8. Other Antioxidant Compounds

Oat is the only cereal grass that contains saponins, steroidal glycosides known as
avenocosides A and B (65.5 and 377.5 mg/kg, respectively), which exhibit anticancer
activity at the expense of diverse, complex mechanisms, including inhibition of neoplasm
cell growth through cell cycle arrest and, inter alia, stimulation of cancer cell apoptosis [13].
Oat also accommodates two classes of saponins: avenocosides (steroid-linked saccharides)
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and avenacides (triterpenoid-linked saccharides), which were shown to drop the cholesterol
level, stimulate the immune system, and demonstrate anticancer properties [14]. Targeted
breeding for increased content of these compounds in oat lines has not yet been attempted,
but interline and interspecies differences in this indicator have already been identified [118].
Grains of five Finnish barley cultivars grown in 2006–2008 were analyzed for their total
content of folic acid. It was noted that the external and germ-containing grain layers had
the highest levels of this compound (up to 1710 ng/g) [77,79].

3. Assessment of Cereal Crop Genetic Resources According to the Diversity and
Concentration of Health-Friendly Dietary Grain Components

Secondary metabolites associated with quality traits in the released and processed
products are presently identified using metabolomic profiling or chemotyping. Such an
approach enables researchers to evaluate plant genetic resources according to these traits,
including varieties of cultivated species and populations of wild ones. Chemotyping the
grain of cultivated and wild Avena L. spp. showed that the range of variability in the
metabolomic profile of improved cultivars was significantly narrower than that of wild
species. Metabolites, the content of which may have been reduced in the process of domes-
tication and breeding in comparison to wild oats, are identified [2]. Presumably, it might
be connected with the selection during oat domestication and a decline of metabolome
diversity while “domestication syndrome” traits were shaped [119]. The diversity of
metabolomic profiles may be lost in the process of selection when highly specialized single-
line intensive-type cultivars are developed because this process is always accompanied by
a decrease in genetic polymorphism in a breeding object compared with the metagenome
of numerous ecotypes, local varieties, and natural races of dozens of wild species [2,119].
A study of naked and hulled oat forms disclosed differences in their metabolites, which
serves as an additional justification of the differentiation between these subspecies of
common oat [2]. Landraces, which are plant varieties selected and grown regionally but
not officially tested and released as registered varieties, are a source of special genetic
characteristics derived by (many years of) adaptation to the respective territory. Such local
varieties are often more resistant to biotic and abiotic stresses typical for their environment.
In addition, such varieties may be a source for special phytochemicals (also known as
bioactives) considered as health-beneficial, while the content of these compounds may be
lower in commercial cultivar [2,120].

The bands of secondary metabolites in oat accessions exposed to Fusarium infection
were analyzed, and correlations between metabolites and resistance were disclosed. High-
protein oat forms with increased content of certain secondary metabolites demonstrated
less damage from Fusarium, accumulated fewer toxins, and were more adaptable to the
biotic stress [121].

Matthews et al. [122] used metabolite profiling to compare 45 lines of tetraploid and
hexaploid wheat. The extracts were analyzed by the ultraperformance liquid chromatogra-
phy coupled with time-of-flight mass spectrometry (UPLC-TOF-MS). Two different species
of bread and durum wheat formed two distinct groups differing in sterols, fatty acids, and
phospholipids, while T. aestivum L. split into two groups (corresponding to hard and soft
bread wheat) according to differences in heterocyclic amines and polyketides. This and
similar studies underpin the use of chemotyping in breeding both for desired agronomic
traits and for higher contents of health-benefiting compounds in cereal grain.

Information obtained with the molecular metabolomic approach on mQTL (metabo-
lite quantitative trait loci) and mGWAS (metabolome-based GWAS) ensures a new level
for qualitative and quantitative characterization of secondary metabolites interesting for
breeding. Such analyses can provide knowledge about the interactions among metabolites
themselves and between them and important breeding indicators. It may lead to the
development of more rational models linking a certain metabolite with such characters
as plant productivity or end-product quality. Even more promising is the possibility to
examine the interplay between quantitative variation in metabolites and changes in the
plant phenotype [123].
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Due to the genetic potential of grain crops through the directed formation of the
properties and structure of the kernel in the process of ontogenesis, when developing new
cultivars, it is possible to attend to the target component composition of the final product.
Wider application of chemotyping, chemical research methods, metabolomic analysis
of grain quality, and searching for high content of rare beneficial (dietary or curative)
components will result in the release of new crop cultivars, thus promoting next-generation
breeding trends and technologies [50].

4. The Effect of Dietary Components in Grain on Life Functions of Plants Themselves

Content of all biochemical components in the grain of cereal crops there are variations
in the composition of it. These variations arise from differences between environments,
variation in the genotype of the crop, and interactions between biotic and abiotic factors
and genotype. Biotic and abiotic factors change depending on climate change, soil, and
various stressors affecting plants. The genotypic variation includes the differences between
individual genotypes.

4.1. Biotic Stress Resistance

Generally, an explanation why grain in the soil is not affected by microorganisms
despite the environmental conditions favorable for infection was given by the presence
of antimicrobial flavonoid compounds in extracts from barley and wheat grains soaked
in water [124]. Higher disease resistance of plants with enhanced flavonoid biosynthe-
sis has been described in rye, barley, and wheat [125]. In vitro infection of developing
barley caryopses of wild type and proanthocyanidin-free mutants with fungal pathogens
Fusarium poae, F. culmorum, and F. graminearum revealed mutants to be more sensitive to
Fusarium attack than wild-type plants [126].

Considering the available data on interactions between compounds with antioxidant
properties in cereal crop kernels and Fusarium spp., it seems appropriate to suppose that
some of the former could significantly contribute to the grain’s protection mechanism
against toxicogenic fungi and mycotoxin accumulation. It has been proven that the crucial
role in Fusarium Head Blight (FHB) resistance is played by five main classes of antioxidant
metabolites: phenolic acids, flavonoids, carotenoids, tocopherols, and benzoxazinoids [127].

Cereal crop diseases caused by pathogenic and toxicogenic species of the Fusarium genus
(FHB) inflict serious economic losses worldwide. Therefore, the development of sustainable
strategies to prevent FHB contamination and mycotoxin accumulation has become a target
of intensive research in recent years, and the use of FHB-resistant genotypes has been chosen
as one of the prioritized trends in breeding practice [121,128,129]. Even now, however, the
knowledge of complex mechanisms regulating resistance in cereal crops is still insufficient,
and selecting resistant genotypes remains a difficult task for breeders. It has been established
that, in addition to their fungicidal properties, a number of antioxidant secondary metabolites
in cereals can regulate mycotoxin production by various pathogenic fungi [127].

The first weighty general argument in favor of phenolic compounds, carotenoids,
and tocopherols is their ability to suppress reactive oxygen species (ROS), thus protecting
biological cells. Besides, tocopherols and carotenoids can entrap free radicals of lipid
peroxides and, therefore, arrest lipid peroxidation chain development [130]. Cinnamic
acid derivatives, such as sinapic, caffeic, p-coumaric, chlorogenic, and ferulic acids, are
effective inhibitors of F. graminearum and F. culmorum development, while benzoic acid
derivatives, except syringic acid, produce an antiactivating effect [131,132]. There is an
opinion that cereal crop metabolites with antioxidant activity suppress toxigenic action
of a fungal infection. Numerous research works demonstrated the efficiency of phenolic
compounds [133,134], carotenoids [135], tocopherols, and even benzoxazinoids [136] in
restraining the growth and mycotoxin production of toxigenic Fusarium fungi. Finally,
phenolic compounds partaking in plant structure enforcement are known to contribute to
building a physical barrier against pathogenic infection. There is a positive interrelation
between the content of phenolic acids, both free and bound to the cell wall, and FHB
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resistance in wheat [137]. A high level of FHB resistance in barley with the black-pigmented
grain is supposedly associated with increased content of phenolic compounds [133].

High-protein oat forms were observed to be less affected by Fusarium head blight
and accumulate fewer toxins; they are more adaptable to biotic stress. A relationship was
identified between FHB resistance and accumulation of pipecolic acid, monoacylglycerols,
tyrosine, galactinol, certain phytosterols, saccharides, and adenosine [121].

There were, however, many unproven assumptions on the participation of metabolites
in the FHB resistance mechanism in cereals. Although the genetic architecture that supports
secondary metabolite synthesis and regulation in cereal crops is exceptionally intricate, such
proof may be retrieved in the process of comprehensive genetic and functional genomic
studies [127].

Accumulation of avenanthramides in oats is also associated with the penetration of a
fungal infection. Avenanthramides are mostly contained in oat grain, but under an attack by
crown rust or leaf blotch, they start to synthesize in leaves as a means of protection against
disease agents [110]. The fact that the amount of avenanthramides in grain significantly
increases during imbibition [138], plant development [139], steeping [140], and storage [141]
is also related to plant protection against potential susceptibility to pathogenic flora.

4.2. Abiotic Stress Resistance

Polyphenolic compounds in grain may protect seeds from unfavorable abiotic envi-
ronmental conditions. Some of these compounds may act as sunscreens against potentially
damaging UV-B radiation [142]. This may explain the presence of a purple grain color and
other parts of the plant in tetraploid wheat T. aethiopicum Jakubz. [143] adapted to intensive
solar UV-B radiation in highland areas in Ethiopia. Studies of near-isogenic wheat lines
differing in the anthocyanin content in the pericarp and coleoptile under various stress
conditions showed that both pericarp and coleoptile anthocyanins protected seedlings from
osmotic stress [144], while protection of seedlings under a moderate irradiation dose (pre-
treatment of dry seeds with 50 Gy before sowing) or moderate Cd toxicity (25 µM CdCl2)
was due to the coleoptile’s anthocyanins only [145,146]. Flavonoid substances can prevent
negative effects of excessive moisture, such as pre-harvest seed sprouting by reducing the
permeability of seed coat to water [147], inhibiting α-amylase (an enzyme whose activity is
directly related to seed germination of grain) [148], or inactivating dehydrogenase required
for the initial phase of respiration in ripening grain and young shoots [149].

Avenanthramide accumulation in oat grain is affected by weather and geographic
conditions under which the studied material is cultivated [109,150–153]. Changes in the
concentration of avenanthramides in response to salinity stress in CBF3 transgenic oat
demonstrated that these compounds might have a potential role in enhancing abiotic stress
tolerance in oats [154]. Havrlentova et al. [155] suggested that oats with higher β-D-glucan
content may have thicker and, therefore, more insulating cell walls, better adapted to heat
stress conditions. The same conclusion between higher content of β-D-glucan and greater
cell wall thickness has been reported in barley [156]. Sterol might be important for cold
acclimation of wheat [157,158] and oat [159]. Thus, breeding programs aimed at an increase
in the content of health benefit components in cereal grain are at the same time eligible to
solve the task of cultivar adaptability to unfavorable environmental conditions.

5. Conclusions

Each of the abovementioned natural components (dietary or curative) is promising
for use as a food additive or an ingredient of pharmaceutical and cosmetic products. They
are expected to play an ever-growing role in food industries, expanding the assortment
of healthy food for the population. The demand for such products has already instigated
plant breeders to launch new breeding programs aimed at the development of cereal crop
cultivars with higher contents of bioactive components in grain. Such programs have often
been based on molecular breeding techniques from the very beginning. Screening promis-
ing cultivars and hybrids for the content of antioxidants and other bioactive compounds in
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the grain is required to expand and promote this breeding trend. It also seems expedient to
apply simple, undamaging and, as a rule, indirect techniques of plant genotype assessment
for the levels of antioxidants in the grain to increase the performance and efficiency of
such screening, employing the entire genetic diversity of cereal crops for identification
of contrasting initial sources for breeding food and feed cultivars. The results obtained
in the process of studying already existing cereal cultivars and the achievements of plant
breeding in releasing new high-yielding and high-quality cultivars enable producers to
use them in the development of a wide assortment of health-friendly dietary products
contributing to the physical fitness of the human organism.
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