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Abstract 

Scientific evidence related to the aromatase reaction in various biological processes 
spanning from mid-1960 to today is abundant; however, as our analytical sensitivity in-
creases, a new look at the old chemical reaction is necessary. Here, we review an ir-
reversible aromatase reaction from the substrate androstenedione. It proceeds in 3 
consecutive steps. In the first 2 steps, 19-hydroxy steroids are produced. In the third step, 
estrone is produced. They can dissociate from the enzyme complex and either accumu-
late in tissues or enter the blood.
In this review, we want to highlight the potential importance of these 19-hydroxy steroids in 
various physiological and pathological conditions. We focus primarily on 19-hydroxy steroids, 
and in particular on the 19-hydroxyandrostenedione produced by the incomplete aromatase 
reaction. Using a PubMed database and the search term “aromatase reaction,” 19-hydrox-
ylation of androgens and steroid measurements, we detail the chemistry of the aromatase 
reaction and list previous and current methods used to measure 19-hydroxy steroids.
We present evidence of the existence of 19-hydroxy steroids in brain tissue, ovaries, 
testes, adrenal glands, prostate cancer, as well as during pregnancy and parturition 
and in Cushing’s disease. Based on the available literature, a potential involvement of 
19-hydroxy steroids in the brain differentiation process, sperm motility, ovarian function, 
and hypertension is suggested and warrants future research.
We hope that with the advancement of highly specific and sensitive analytical methods, 
future research into 19-hydroxy steroids will be encouraged, as much remains to be 
learned and discovered.
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The functional aromatase enzyme is a product of the 
CYP19A1 gene and consists of 503 amino acid residues 
and a heme group (protoporphyrin IX). Aromatase is a 
monooxygenase that transfers 1 oxygen atom from mo-
lecular dioxygen to the substrate and 1 to the water. There 
are several endogenous substrates for aromatase: andro-
stenedione, testosterone (T), 16-α hydroxytestosterone, 
and dihydrotestosterone (DHT), although DHT is only 
oxidized and not aromatized [1–3].

Aromatase complex consists of 2 highly conserved com-
ponents: P450 aromatase and NADPH P450 reductase, a 
product of the POR gene. The expression of POR starts at 
the 2-cell stage of embryonic development, and a germ-line 
deletion of this gene in mice results in embryonic lethality, 
indicating its importance for embryogenesis [4]. POR 
contains flavin adenine dinucleotide (FAD) and Flavin 
mononucleotide (FMN), which bind FAD and FMN, and 
act as a port of entry and exit, respectively, for the electrons 
transferred from the NADPH to POR gene [5]. Binding 
of NADPH induces a conformational change in POR to a 
“closed form” ready for interflavin electron transfer. When 
the connecting domain loop extends, the whole structure 
changes to an “open form,” which is also a preferred form 
when interacting with aromatase [6, 7].

Aromatase catalyzes an irreversible and complex trans-
formation of androgens to estrogens, and it is the only en-
zyme in vertebrates known to catalyze the aromatization 
of a six-membered ring [8–11] (Fig. 1). This reaction, first 
reported in 1959, involves 3 consecutive hydroxylations. 
When androstenedione is the substrate, the first 2 steps pro-
duce two 19-hydroxy steroids, 19-hydroxyandrostendione 
(19-OH AD), and 19-oxoandrostenedione (19-oxo AD). 
The third step of aromatase reaction is aromatization of 
the steroid A  ring, which results in the formation of es-
trone (E1) and formic acid [12–17]. The interaction be-
tween aromatase and POR is critical for this reaction and 
the extent of hydroxylations are highly dependent on this 
reductase [18]. Limitation of POR results in reduced elec-
tron supply and increases the production of 19-OH AD 
and 19-Oxo AD relative to E1 [19]. Aromatase exists as 
a homodimer and oligomer, and forms heterodimers only 
with POR [20, 21]. A proposed ratio of 2:2 (1:1 aromatase 
homodimer × 2 POR) was suggested, as this ratio leads to 
the greater activity and reduced release of 19-hydroxy ster-
oids [20].

Aromatase binding pocket is about 400 Å 3 big and con-
sists of heme porphyrin rings and hydrophobic side chains, 
which form van der Waals contacts and tightly bind andro-
stenedione, with C19 of the methyl group of the substrate 
androstenedione only 4 Å away from the Fe atom [2, 22]. 
Binding pocket hosts the proton relay network, and a 
doorway/access channel through which oxygen, water, and 

steroids can pass (Fig. 1 inset, dash-circled blue, the “gate-
keepers” residues Arg192 and Glu483 are dash-circled 
red [22]). The aromatase/membrane interface is critical 
for these access/egress channels and studies have shown 
that this access channel “breathes,” thus allowing steroids, 
oxygen, and water to enter and exit the binding pocket [23, 
24].

Detailed analysis of aromatase reaction steps dem-
onstrated that aromatase allows a free dissociation of 
19-hydroxy steroids, which has been attributed to its 
distributive-dissociative nature [10, 25]. Similar results 
were obtained from kinetic studies [14], and also in recon-
stitution assays [26]. Thus, aromatase is a distributive en-
zyme, and 19-OH AD and 19-Oxo AD as an aromatase 
reaction product can dissociate from the complex and may 
accumulate in the blood and tissues.

Documented Presence and Measurements of 
19-hydroxy Steroids in Different Cell Lines, 
Tissue, and Blood

The first report of the existence of 19-hydroxy ster-
oids dates back to 1955, when Meyer incubated 
dihydroepiandrostenedione (DHEA) and androstenedione 
with bovine adrenal homogenate preparations and dis-
covered a 19-OH AD among a “wide galaxy of conversion 
products” [27]. Later, it was demonstrated that 19-OH 
AD is also produced by placental and brain aromatase 
[28–30]. These early measurements employed a radio-
metric method, in which a tritiated substrate androstene-
dione was used, and both (1) a transfer of tritium to the 
water as an indicator of hydroxylation, as well as (2) ex-
pulsion of the tritiated C19-fragment with the generation 
of 3H-formic acid, as an indicator of aromatization were 
measured [30–34]. These experiments demonstrated much 
higher concentrations of tritiated 19-OH AD and 19-oxo 
AD than tritiated estrogens, indicating that these sub-
stantial hydroxylations were not followed by the aroma-
tization step. However, it seems that results in these early 
studies were not corrected for the kinetic isotope effect 
known to be present in radiometric studies [14]; thus, they 
were later largely abandoned. In parallel to the radiometric 
methods, a radioimmunoassay (RIA) was developed and 
used for measurements of 19-hydroxy steroids in human 
plasma [35–38]. The RIA method was also used to observe 
an age-related decrease in endogenous plasma 19-OH AD 
and androstenedione levels [39].

Because different steroids with similar structures—and 
differing only in their hydroxyl or carbonyl groups—can 
cross-react with specific antibodies, their reliability have 
been recently questioned [40, 41]. Furthermore, radio-
immunoassay can measure only 1 analyte at a time.
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Currently, gas chromatography-mass spectrometry (GC-
MS) and liquid chromatography-mass spectrometry (LC-MS) 
are considered accurate, efficient, and reliable methods for the 
measurement of steroids and their various metabolites [42]. 
These methods have sufficient analytical selectivity and speci-
ficity and can overcome immunoassay deficiencies. Here, we 
review literature related to measurements of 19-hydroxy ster-
oids in the plasma, tissues, and cell lines.

The GC-MS method was used to measure 19-OH AD in 
serum from pregnant women and in placenta samples [43]. 
The high performance liquid chromatography (HPLC) 
method was used to measure 19-OH AD production from 
kidney fibroblast-like cells with stable expression of porcine 
ovarian aromatase [44]. The HPLC method was also used 
to evaluate the production of 19-hydroxy steroids from 
HEK293 cells expressing either porcine placental or go-
nadal aromatase [45, 46]. We have also recently applied the 
LC-MS method to measure the release of 19-OH AD from 
the prostate cancer cells [47]. LC-MS method was recently 
applied to quantify the release of many steroids (using both 
targeted and untargeted approaches), and among them also 
19-OH AD and 16-hydroxytestosterone, from the human 

adrenal H295R cells [48], which also express aromatase 
transcripts [49] and are positive for aromatase activity [50].

Production of 19-hydroxy steroids and estrone was also 
measured using a bioelectrochemical method [51]. In add-
ition, ultra performance liquid chromatography (UPLC)/
MS-MS method was used to assess changes in steroid pro-
files from boar testis tissue, including 19-OH AD, in the 
presence and absence of aromatase inhibitors [52].

The detectable presence of 19-hydroxy steroids in these 
studies demonstrate they are not just short-lived intermedi-
ates of the aromatase reaction but are likely active metabol-
ites, of which their functions have yet to be revealed.

The aromatase enzyme is expressed in brain, ovary, 
testis, placenta, adrenal gland, adipose tissue, bone, olfac-
tory system, and also in some malignancies (such as breast 
cancer [53], prostate cancer [54], malignant human liver 
cell line HepG2 and HuH7 [55], malignant human lung 
carcinoma cell line A549 and LK87 [56], and human endo-
metrial carcinoma [57]), and its expression is regulated by 
tissue-specific promoters [1, 9, 58–60]. Several excellent re-
views and manuscripts on aromatase and steroidogenesis 
have been already published [1, 13, 58, 61–65], and here 

Figure 1. Aromatase reaction. The oxidation of androstenedione to estrone by aromatase complex involves NADPH, NADPH P450 reductase, and 
aromatase. It does not follow a clear linear trajectory of sequential reactions but has a distributive character, where 19-OH AD and 19-oxo AD freely 
dissociate from the aromatase binding site and enter blood and/or tissue, or re-enter the aromatase reaction again for further oxidation and estrone 
production (adapted from [154] and [25]). Inset: A closeup look at the aromatase binding pocket with a substrate androstenedione. The residues lining 
binding pocket are labelled as: hydrophobic-green, acidic-red, basic blue, polar-purple and S-containing yellow. Residues associated with a doorway/
access channel are dash-circled (adapted from [22]) and in dash-circled red Arg 192 and Glu 483 gatekeepers are indicated. Abbreviations: 19-OH AD, 
19-hydroxyandrostenedione, 19-oxo AD, 19-oxo-androstenedione.
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we will only review literature related to the measurements 
of 19-hydroxy steroids and their potential effects in various 
physiological and pathophysiological processes.

Neurosteroidogenesis and Potential Roles for 
19-hydroxy Steroids

All steroidogenesis enzymes are detected in fetal and adult 
brain [66–68], and aromatase in particular is present in the 
hypothalamus, preoptic area (POA), limbic lobe, the olfactory 
bulb, hippocampus, lateral septum, amygdala, bed nucleus 
of the stria terminalis, and nucleus accumbens [59, 69–74]. 
Aromatase substrate androstenedione was also detected in the 
human adult brain [75]. Furthermore, 3β hydroxysteroid de-
hydrogenase (3β HSD), an enzyme that converts DHEA to 
androstenedione (Fig. 2), has been also detected, indicating 
that oxidation of DHEA to androstenedione is indeed possible 
in the adult brain [76–81]. Recent mass spectrometry analysis 
of human proteome was also detected 3β HSD in fetal brain, 
indicating that androstenedione can be also synthesized in the 
fetal brain [82]. These results also suggest the potential pres-
ence of 19-hydroxy steroids in both fetal and adult brain, and 
that was indeed demonstrated.

Aromatization of androstenedione by human fetal 
hypothalamus and amygdala was first reported in 1971 
[83]. Studies revealed a 2-fold greater aromatization in 
the male vs female hypothalamus [84, 85]. These results 
provided a basis for the aromatization hypothesis [86], 
according to which T synthesized by fetal testis diffuses 

into the male brain, where it is locally aromatized and 
thus initiates the process of masculinization. In male mice, 
this process starts at E17 and extends until postnatal day 
P10 [61, 87–89]. It is believed that the differences that 
emerge during this initial phase result in sexually di-
morphic circuits [90], and aromatase plays an essential 
role in brain development and sexual differentiation [91]. 
Aromatase expression in sexually dimorphic regions of 
the brain is at its highest level during this perinatal period, 
demonstrating its critical role in the development of sexu-
ally dimorphic patterning [74, 92, 93]. In female embryos, 
steroid-secreting ovaries develop after the first postnatal 
week, and the process of feminization has been classic-
ally viewed as “default” [94, 95]. Estradiol presence was, 
however, detected in the female newborn brain, suggesting 
that female rat fetal brain can also synthesize estrogens de 
novo [68, 90]. This intriguing finding is hard to explain 
by the aromatization hypothesis, which implies that only 
circulating T is a precursor for estrogen, because in the 
female fetal brain T is nondetectable [75]. These results 
suggest potential roles for aromatase reaction products 
derived from androstenedione, warrant future research, 
and call for a re-evaluation of the initial aromatization 
hypothesis. A recent study by Nugent et al demonstrated 
active repression of male-typical genes mediated by DNA 
methylation during the brain feminization process [96]. 
Thus, the brain differentiation process is far from being 
clearly defined, and novel mechanisms, such as epigenetic 
control, is currently being actively investigated.

Figure 2. Aromatase acts on substrates androstenedione and testosterone, producing a variety of 19-hydroxy steroids. 17β HSD enzymes catalyzing 
the conversion of T to AD and AD to T, as well as E1 to E2 and E2 to E1 are indicated. 3β HSD mediates oxidation of DHEA to AD. The third substrate 
for aromatase reaction is 16-α hydroxytestosterone. It has been omitted here, as very little is known about it, and it has not been discussed. T is 
converted to DHT by the enzyme SRD5A2 (steroid 5-alpha reductase A2). Abbreviations: AD, androstenedione; DHEA, dehydroepiandrostenedione; 
DHT, dihydrotestosterone; E1, estrone; E2, estradiol; HSD, hydroxysteroid dehydrogenase; SRD5A2, steroid 5-alpha reductase A2; T, testosterone.
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Do 19-hydroxy steroids accumulate during a 
critical perinatal period to contribute to the brain 
differentiation?

Brain aromatase activity is developmentally regulated and 
expressed in different regions of the male rat brain [93]. 
The number of aromatase-positive neurons in rodent 
studies of both sexes increases during gestation and peaks 
around birth, with higher expression in males, but estrogen 
content (although increased at birth in the male hypo-
thalamus) decreases significantly already at 2 hours after 
birth, at the time when aromatase activity is still high [97–
101]. Thus, there is a lack of a clear correlation between 
aromatase activity and estrogen content during this critical 
period, which may be indicative of potentially incomplete 
aromatase reaction. The evidence that the first 19-hydrox-
ylation step can exceed the final third aromatization step 
in male rat neonatal hypothalamus and amygdala was first 
published in 1985 [34]. These results demonstrated in-
creased accumulation of 19-OH AD and 19-Oxo AD when 
compared with E1 [34]. In addition, it was demonstrated 
that the ratio of 19-hydroxylation/aromatization was 
similar in the neonate and adult rat hypothalamus in both 
sexes [33]. However, since these results were obtained using 
a radiometric method, a more accurate and specific analysis 
using a more specific LC-MS method is now necessary to 
confirm these early results.

Estrogen injection in male rats 4 days after birth pro-
duced adults unable to achieve intromission, although they 
mounted as frequently as control animals [102]. On the 
contrary, androstenedione injection during this period re-
sulted in normal patterns of sexual behavior in adulthood 
[103]. Blocking aromatase blocked the brain differentiation 
of the male rodent brain [104]. These results indicate that 
aromatase reaction products derived from androstenedione 
may be implicated in brain differentiation during the crit-
ical perinatal period.

The sexually dimorphic nucleus of the POA (sexually 
dimorphic nucleus [SDN]-POA) in the hypothalamus is im-
portant for male copulatory behavior, and it is several-fold 
larger in male rats than in female rats [105]. Testosterone 
treatment of females during a perinatal period produced 
larger SDN-POA, similar to the one seen in males, and 
the application of aromatase inhibitor during this critical 
period reduced the size of SDN-POA and changed male 
copulatory behavior [105, 106]. As no sex differences in es-
trogen receptor expression (ERs) in SDN-POA has been de-
tected, the current view is that ER expression has not been 
proven informative as the basis of sex differences during 
brain development [90, 107, 108]. We suggest that conver-
sion of T to androstenedione by 17β-hydroxysteroid de-
hydrogenase (HSD17B2) may occur [64, 109]. HSD17B2 is 
present in the fetal brain, where it can convert T to andro-
stenedione, thus making it available to act as a substrate 

for aromatase during this critical period (Fig. 2) [82, 93]. 
Recent elegant experiments using a brain-specific ArKO 
model demonstrated the importance of brain aromatase for 
T-dependent male sexual activity and feedback regulation 
of T of testicular origin in the adult mice [65].

Ovaries

Human ovarian follicles synthesize estrogen in a compart-
mentalized fashion; androgens are produced in the outer 
theca interna cells layer, while estrogens are produced in the 
inner granulosa layer [110]. This “2-cell” organization of 
follicular estrogen synthesis may have its basis in avoiding 
the competition between CYP17A1 and CYP19A1 for re-
ducing equivalents provided by POR if both enzymes are 
expressed in the same cell [111]. Follicle stimulating hor-
mone (FSH) increases both aromatase and POR activity, 
and it induces differentiation of rat granulosa cells into 
steroidogenic cells [112].

Do ovaries produce 19-hydroxy steroids?

Ovarian synthesis of estrogens in ovarian granulosa cells 
is associated with the parallel synthesis of 19-OH AD and 
19-Oxo AD, and tritiated water assay indicated that these 
metabolites accumulate in higher quantities than estrogens 
[113, 114]. Production of 19-OH AD was also reported 
in the human ovarian HOSE 17 cells using an reverse-
phase-HPLC method [115]. How exactly 19-hydroxy ster-
oids affect ovarian function has not been investigated, but 
an intriguing hypothesis of their potential role in sperm 
chemotaxis described below is proposed.

Testes

Adult testicular germ cells express aromatase, and 
estrogens play an important role in sperm maturation [1, 
116]. Association between aromatase and sperm count 
and motility has been clearly established, and both 19-OH 
AD and 19-OH T were also detected in the testicular vein 
blood, suggesting their role in in sperm motility [117–
122]. Recently, it has been demonstrated that prolonged 
treatment with letrozole decreased 19-OH AD levels in 
testis when analyzed by the highly specific UPLC-MS/MS 
method; however, the effects on sperm motility were not 
analyzed [52].

Is 19-OH AD involved in sperm motility and 
chemotaxis?

It is interesting to mention that about 90 transcripts of 
olfactory receptors (ORs) have been found in human 
spermatozoa [123]. Previously, another olfactory receptor, 
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hOR17-4, has been implicated in sperm chemotaxis [124], 
and more recently several highly expressed ORs have been 
detected in seminal plasma, sperm, testes, and epididymis 
using a high-resolution mass-spectrometer approach 
[125]. Olfactory receptor OR51E2 is highly expressed on 
the acrosome cap, the midpiece, and the entire flagella in 
spermatozoa [123]. Recently, 19-OH AD has been iden-
tified as a potent agonist for olfactory receptor OR51E2 
[47]. Thus, activation of this receptor by 19-OH AD may 
contribute to sperm motility. In addition, secretion of 
19-OH AD from the ovarian cells has also been reported 
[115]. Taken together, these studies suggest that: (1) 19-OH 
AD and 19-OH T originating from testes may contribute 
to sperm motility, and (2) 19-OH AD secreted from the 
ovarian cells may activate OR51E2 in the sperm, and thus 
contribute to sperm chemotaxis. Future studies are neces-
sary to test these assumptions.

Pregnancy and Parturition

An increase of 19-OH AD measured by the GC-MS method 
during pregnancy was reported and 6-fold higher concen-
trations were detected at the end of the third trimester [43]. 
This increase of 19-OH AD in the maternal blood is also 
combined with its dramatic decrease in the umbilical ar-
tery at delivery, indicating that all 19-OH AD is completely 
transferred and taken up by the baby and/or placenta at de-
livery, while no such effect was observed with either T or E1 
[43]. High amounts of 19-OH AD were also detected in the 
end-term placenta tissue [43], indicating that the placenta 
may be the major source of 19-hydroxy steroids produc-
tion. Unfortunately, there was no follow-up on this study.

Taken together, these results suggest that 19-OH AD is 
likely to originate from the placenta. What is the function 
of this newly produced steroid and is it important for par-
turition? These remain open questions, as we still lack a 
full understanding of the role of different steroids in the 
parturition process.

A recent transcriptomic study of the fetal–ma-
ternal interface from Vento-Tormo et al.  demonstrate an 
overlapping aromatase and OR51E2 receptor presence in 
the syncytiotrophoblasts [126]. As 19-OH AD is a ligand 
for OR51E2 receptor, it would be interesting to study their 
potential molecular interactions with respect to aromatase 
during early placentation period (https://maternal-fetal-
interface.cellgeni.sanger.ac.uk/).

No correlation between androstenedione levels and ges-
tation in normotensive pregnant women was found; how-
ever, in hypertensive women, a highly significant correlation 
was demonstrated [127]. Furthermore, increased levels of 
circulating T were found in women with preeclampsia and 

although the early studies reported an increase in circulating 
19-OH AD in the hypertensive pregnant women, a subse-
quent study on the small number of participants did not 
support this claim [43, 127–130]. Thus, future studies on 
a larger sample-set are warranted to clarify if 19-hydroxy 
steroids play any role in pregnancy and parturition.

Adrenal Glands

Adrenal steroidogenesis is regulated by sympathetic in-
nervation, ACTH, and by complex paracrine interactions 
of interdispersed medulla and cortex cells. As aromatase is 
expressed in the adrenal gland, it is highly likely that this 
gland also produces 19-OH AD [131, 132]. This has been 
indeed demonstrated in several early studies using the RIA 
method.

The secretion of 19-OH AD increased during ACTH 
and angiotensin II stimulation [35, 36, 133]. These results 
support the view that 19-OH has an adrenal origin. In 
addition, these studies further strengthen the notion that 
the first C-19 hydroxylation step (in which 19-OH AD is 
produced under ACTH control) is to a certain extent un-
accompanied by subsequent aromatization and thus may 
represent a potentially significant physiologically relevant 
transformation. The regulation of 19-OH AD secretion 
from cultured human adrenal cells by ACTH was also 
demonstrated [134]. Of note, when ACTH is suppressed, 
angiotensin II acts to stimulate secretion of 19-OH AD [37, 
133]. Since the highest expression of aromatase in the ad-
renal gland was detected in zona reticularis, the synthesis of 
19-OH AD is most likely to be in that area, however direct 
evidence for this is still lacking [135]. Positive correlations 
between basal plasma 19-OH AD and androstenedione, 
as well as cortisol, were reported, and the suppression of 
19-OH AD secretion by dexamethasone indicates that 
19-OH AD secretion is regulated by the hypothalamic pi-
tuitary adrenal axis (HPA) axis (Fig. 3) [39, 136].

Various neuroendocrine modulators, such as epineph-
rine and vasoactive intestinal peptide (VIP) are released 
from the adrenal nerves, while androstenedione and other 
C19-androgens are released from the adrenocortical cells 
[137, 138], suggesting that these cells may also potentially 
release 19-OH AD. In contrast, it was demonstrated that 
atrial natriuretic peptide (ANP) decreases the secretion of 
19-OH AD [134]. Cytokines produced by either immune 
cells within the gland or by adrenal cells can also affect ad-
renal steroidogenesis. For example, IL-6 activates the HPA 
axis and stimulates a release of ACTH, and also stimulates 
a release of aldosterone, cortisol, and DHEA [139, 140]. 
Thus, cytokines are likely to also increase 19-OH AD secre-
tion. Further research is needed to prove these assumptions.

https://maternal-fetal-interface.cellgeni.sanger.ac.uk/
https://maternal-fetal-interface.cellgeni.sanger.ac.uk/
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What are the functional consequences of 
increased 19-OH AD secretion in Cushing’s 
disease?

High levels of 19-OH AD were detected in Cushing’s dis-
ease, a benign pituitary adenoma, characterized by the 
increased secretion of ACTH, which stimulates adrenal 
glands to secrete cortisol and 19-OH AD, while decreased 
levels of 19-OH AD are seen in Cushing’s syndrome [141]. 
Whether this secretion exerts a negative feedback loop in 
the hypothalamus is currently unknown (Fig. 3).

Obesity is one of the symptoms of Cushing’s disease, 
and since aromatase is abundantly expressed in adipose 
tissue, increased production of 19-OH AD from the adipose 
tissue is also likely. Future research is needed to unravel the 
functional consequences of high 19-OH AD found in the 
blood of patients with Cushing’s disease, who also develop 
hypertension.

Hypertension and 19-OH AD

19-OH AD–treated rats developed hypertension, and ele-
vated 19-OH AD was reported in patients with high renin 
essential hypertension [36, 38]. 19-OH AD and 19-Oxo 
AD also amplify the sodium-retaining action of aldosterone 
[142, 143]. These results suggested a potential role of the 
renin-angiotensin system (RAS) in 19-OH AD secretion [37, 
144]. Aldosterone-producing adenoma patients have lower 
levels of circulating 19-OH AD, likely due to a suppressed 

RAS; however, it seems that 19-OH AD does not play a 
causative role in hypertension seen in these patients [145]. 
Future experiments are warranted to dissect the role of this 
steroid in hypertension. It is interesting to note that Olfr78, 
a mouse ortholog of human olfactory receptor OR51E2, 
is activated by 19-OH AD and is also expressed in renal 
afferent arterioles where it can affect renin release when 
stimulated with short chain fatty acids (SCFA) [47, 146]. 
Olfr78 knock-out mice also have lower circulating plasma 
renin [146, 147]. Olfactory receptors, like most G-protein 
coupled receptors (GPCRs), are quite promiscuous, and it is 
possible that their activation by various agonists including 
19-OH AD contributes to blood pressure regulation.

19-OH AD, POR, and Cancer

Aromatase overexpression in tumor tissue results from 
a shift in promoter use, which allows for the activation 
of cAMP-dependent signaling pathway and results in 
increased estrogen synthesis [58]. Both aromatase and 
CYP17A1 require POR for their electron transport and 
catalysis, and if expressed in the same cell, which is 
the case in the cancer cell, these 2 cytochrome enzymes 
compete with one another for POR, reducing equiva-
lents NADPH and O2. A 30-fold increase in CYP19A1 
and a 17-fold increase in CYP17A1 was measured in 
the metastatic prostate cancer tissue, while the enzyme 
SRD5A2 (5α reductase), which converts T to DHT, is 
decreased 9 fold (Fig. 3) [148]. A disbalance in the T:E 

Figure 3. Regulation, detection, and the potential involvement of 19-OH AD in human physiology and pathophysiology. Secretion of 19-OH AD is 
under control of the hypothalamic pituitary adrenal axis (HPA) and is directly stimulated by ACTH. LH and FSH acting on testis and ovary also in-
crease 19-OH AD secretion via the hypothalamic pituitary gonadal (HPG) axis. Cytokines likely indirectly increase 19-OH AD via ACTH. Positive and 
negative regulation of 19-OH AD secretion by VIP, epinephrine, and ANP are indicated. 19-OH AD increases blood pressure and renin secretion and is 
increased during pregnancy and Cushing’s disease. Tissues, where 19-OH AD has been measured, are indicated, and a list of potential involvement 
in several physiological and pathophysiological processes is presented. Abbreviations: 19-OH AD, 19-hydroxyandrostenedione; ACTH, adrenocor-
ticotropic hormone; ANP, atrial natriuretic peptide; FSH, follicle stimulating hormone; LH, luteinizing hormone; VIP, vasoactive intestinal peptide.
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ratio has been associated with prostate cancer progres-
sion, and increased secretion of 19-OH AD was detected 
in the prostate cancer cells following activation of ol-
factory receptor OR51E2, indicating a potential role 
for aromatase reaction products in prostate carcino-
genesis [47, 149]. Administration of abiraterone acetate 
(a CYP17A1 inhibitor) may actually save NADPH and 
POR for the aromatase reaction, thus driving androgen 
metabolism via aromatase with a consequent release of 
19-OH AD, 19-Oxo AD, and estrone. This may poten-
tially contribute to chemotherapy resistance. Steroid 
hormones stimulate prostate cancer progression and 
ArKO mice have reduced prostatic hyperplasia and in-
cidence of prostate cancer following exposure to T and 
estrogens, indicating that 19-hydroxy steroids are likely 
involved in prostate carcinogenesis [150, 151].

Aromatase inhibitors have major roles in the treatment of 
hormone-sensitive breast cancer and, recently, POR was identi-
fied as an independent prognostic biomarker of short recurrence-
free survival of triple-negative breast cancer patients [152]. It 
has been demonstrated that patients with triple-negative breast 
cancer and with high POR expression in the primary tumors 
have a 2-fold higher risk of tumor recurrence [153].

Conclusion

A list of potential roles of 19-hydroxy steroids, and of 
19-OH AD in particular, in various physiological and 
pathophysiological processes is presented in Fig. 3.

Research in the brain differentiation process started 
over 5 decades ago, and although much has been learned, 
it is still not completely understood. We believe that future 
studies of steroid metabolites, and in particular 19-hydroxy 
steroids, using state-of-the-art analytical tools will help to 
better understand this extremely complex process.

Striking data from pregnancy studies indicate an under-
appreciated role of 19-OH AD and should be followed by 
future studies.

Both ovarian and testicular synthesis of 19-OH AD has 
been documented, but its role has not been examined so far.

Increased secretion of 19-OH AD in Cushing’s disease 
may warrant future research to determine its role in dis-
ease pathology. Could 19-OH AD serve as a diagnostic bio-
marker in Cushing’s disease? As 19-OH AD secretion from 
the adrenal gland is under the HPA axis, we assume it will 
be also involved in stress-related behaviors. Does it con-
tribute to hypertension?

Many questions still remaining unanswered. Is 19-OH 
AD an androgen? Does 19-OH AD produced by ad-
renals send negative feedback to the hypothalamus? Do 
19-hydroxy steroids act as ligands for other GPCRs (ex-
cept OR51E2), transporters, or channels? Which signaling 

pathways are regulated by 19-hydroxy steroids? This review 
raises interesting questions that merit further investigation. 
We hope that it will stimulate future studies related to the 
roles of 19-OH AD and 19-Oxo AD in the brain, pregnancy, 
blood pressure regulation, Cushing’s disease, and cancer.

Numerous studies related to aromatase reaction have 
been listed here, and many more are certainly missing, but 
we hope that the information provided will stir discussion 
and stimulate future research endeavors. As our analytical 
sensitivity and methodology are nowadays significantly im-
proved, it is time to re-examine 19-hydroxy steroids, the 
products of aromatase reaction.
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