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The nearly 200 species of direct-developing frogs in the genus Eleutherodactylus
(the Caribbean landfrogs, which include the coquís) comprise an important
lineage forunderstanding the evolution andhistorical biogeographyof theCar-
ibbean. Time-calibrated molecular phylogenies provide indirect evidence for
the processes that shaped themodern anuran fauna, but there is little direct evi-
dence from the fossil record of Caribbean frogs about their distributions in the
past.We report adistal humerusof a frog fromtheOligocene (approx. 29 Ma) of
Puerto Rico that represents the earliest known fossil frog from any Caribbean
island. Basedon its prominent roundeddistal humeral head, distally projecting
entepicondyle, and reducedectepicondyle,we refer it to the genusEleutherodac-
tylus. This fossil provides additional support foran earlyarrival of somegroups
of terrestrial vertebrates to the Greater Antilles and corroborates previous esti-
mates based on molecular phylogenies suggesting that this diverse Caribbean
lineage was present in the islands by the mid-Cenozoic.
1. Background
Biogeographers have long been interested in how the geological history of the
Caribbean has shaped the biota of its islands. Studies combining modern and
palaeontological distributions of taxa with an understanding of the complex
geological history of the Caribbean have shaped hypotheses explaining the
origin of taxa found in the Greater and Lesser Antilles [1,2]. More recently, mol-
ecular genetic and phylogenetic studies of small animals have been used to test
hypotheses of dispersal overwater or via land-bridges as well as vicariance
scenarios [3–8] related to islands at the northern edge of the Caribbean plate
as it collided with the North American plate during the Cenozoic [9–11]. Yet
the poor fossil record of small terrestrial animals from the early Cenozoic of
the Caribbean provides limited direct evidence to corroborate the historical
biogeography derived from time-calibrated molecular phylogenetic analyses.

An excellent opportunity for understanding these biogeographic patterns is
provided by the rich modern Caribbean frog fauna comprising more than 240
species spread across all of the major island groups [12]. Based on time-calibrated
molecular phylogenetic analyses, at least some of the anurans found today on the
Hispaniolan and Puerto Rican banks are estimated to have reached there by
the Oligocene [13–15]. Approximately two-thirds of all Caribbean frog species
are Greater Caribbean landfrogs (genus Eleutherodactylus), part of a large clade
now called Terraranae [12,16,17]. On the Caribbean islands, these predominantly
direct-developing and terrestrial species occupy a range of microhabitats, leading
to their characterization as an adaptive radiation [18–20].
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Despite the rich extant fauna and its wide distribution, the
fossil record provides little insights into the estimated arrival
ofEleutherodactylus in theCaribbean. Time-calibratedmolecular
phylogenetic analyses provide contrasting views on the origin
of Eleutherodactylus, ranging from a recent suggestion of a
latest Oligocene or early Miocene colonization of the Caribbean
[20] andprevious estimates suggesting amid-Oligocene or even
earliest Cenozoic colonization [14]. Our current understanding
of the Caribbean fossil record for the genus is limited to the
Neogene, consisting of an amber-preserved fossil from the
Miocene of the Dominican Republic [21,22], an isolated ilium
from the Miocene of Florida [23,24; but see 25], and assorted
elements from the Pleistocene–Holocene of Antigua and
Barbuda, The Bahamas, Guadeloupe, Jamaica and Puerto
Rico [26–31]. Here, we report the oldest anuran record for the
Caribbean, which provides direct evidence for the presence of
Eleutherodactylus in the Greater Antilles by the mid-Cenozoic
(approx. 29 Ma).
0190947
2. Systematic palaeontology
Anura Fischer von Waldheim 1813

Eleutherodactylidae Lutz 1954
Eleutherodactylus Duméril and Bibron, 1841

(a) Specimen
LACM 162445, distal end of left humerus; collected by
J. Vélez-Juarbe, 20 November 2012.

(b) Locality and age
Specimen was collected from LACM Loc. 8059, a small outcrop
on west bank of Rio Guatemala, San Sebastián, Puerto Rico
(figure 1); 18°21’02.5900 N, 66°59’48.6000 W. This horizon consists
of a bluish grey mudstone of the basal San Sebastian Formation
as exposed along Río Guatemala, Puerto Rico. The lithology of
this horizon, aswell as the over- andunderlayinghorizons, indi-
cates terrestrial to shallowaquatic habitatswithin coastal deltaic
settings. The San Sebastian Formation along Río Guatemala has
yielded a vertebrate fauna that so far includes sharks, fishes,
gharials, turtles, sirenians and caviomorph rodents [34–36,38].
The age of LACM 162445 is estimated to be 30.0–29.5 Ma
(Early Oligocene). This is based on invertebrate shells from
about 80 m stratigraphically above this level that have been
strontium-dated as 29.47 ± 0.30 Ma ([37], figure 1).

(c) Description
LACM 162445 preserves the distal third of a left humerus
(figure 2). There is a large, prominent, and rounddistal humeral
head that is wider (1.34 mm) than the width of the diaphysis
(0.83 mm). The entepicondyle (ulnar epicondyle) is well-devel-
oped and projects beyond the distal margin of the condyle. The
crests along the medial and lateral surfaces of the diaphysis
extending towards the ent- and ectepicondyles, respectively,
are differently developed with the lateral one being more
defined. The ectepicondyle (radial epicondyle) is poorly devel-
oped and is represented as a small ridge extending from the
diaphysis and along the lateral surface of the condyle.

We compared LACM 162445 with representatives of all
extant anuran genera native to the Caribbean [12] (figure 2;
electronic supplementary material, table S1), including Boana
and Osteopilus (Hylidae), Leptodactylus (Leptodactylidae) and
Peltophryne (Bufonidae), as well as each of the subgenera
of Eleutherodactylus and representatives of its species series
and species subgroups (electronic supplementary material,
figure S1) on the Puerto Rican Bank [16]. Comparisons were
made based on data resulting from microcomputed tomo-
graphy scanning (electronic supplementary material). LACM
162445 differs from all modern Caribbean genera except
Eleutherodactylus by having an entepicondyle that projects
beyond the distal margin of the humeral head. In comparison
with the hylids Boana and Osteopilus, LACM 162445 lacks
well-developed lateral and medial crests along the distal
diaphysis; the medial crest is also more developed in the lepto-
dactylid Leptodactylus. The distally projecting entepticondyle
also differentiates LACM 162445 from other eleutherod-
actylids, incuding Adelophryne, Diasporus and Phyzelaphryne
as well as other non-Caribbean terraranans such as Pristimantis
and Strabomantis (electronic supplementary material,
figure S2).

Among the modern Caribbean genera examined, LACM
162445 has the clearest similarities to the species-rich genus
Eleutherodactylus (figure 2). The combination of being a well-
ossified humerus with a well-developed and rounded distal
humeral head, lack of prominent medial and lateral crests, and
a distally projecting entepicondyle, all suggest that LACM
162445 is referable to the genus Eleutherodactylus. Both the
rounded distal humeral head and an entepicondyle projecting
beyond thehumeralheaddiffer fromthat of the subgeneraPelor-
ias and Schwartzius, both endemic to Hispaniola. LACM162445
has the clearest similarities to species of three Eleutherodactylus
subgenera (electronic supplementary material, figure S1),
Eleutherodactylus, Euhyas and Syrrophus, which do not form a
clade [17]. In several species of these genera, the distal humeral
head is rounded and associated with a well-defined entepicon-
dyle projecting beyond its distal margin.

The adult body size of LACM 162445 is relatively smaller
than observed in adults of other modern Caribbean genera,
all of which attain body sizes of above 45 mm snout–urostyle
length (electronic supplementary material, table S1). Based on
comparisons with the modern Eleutherodactylus sampled here,
LACM 162445 likely represents an adult owing to its well-ossi-
fied distal humeral head and entepicondyle. For comparison,
note the subadult specimen of E. johnstonei in electronic sup-
plementary material, figure S1, for which the epicondyles are
not synostosed to the diaphysis. Extrapolating from the strong
positive relationship between humeral head width and snout–
urostyle length among modern Eleutherodactylus (electronic
supplementary material, figure S3 and table 2), this extinct
frog was likely a medium-sized species (approx. 36 mm
snout–urostyle length) that falls in the lower half of the size
range of extant species of Eleutherodactylus (11–88 mm snout–
vent length) [16].

This new record of the oldest Caribbean frog fossil provides
direct evidence that the genus Eleutherodactylus—representing
the vast majority of the modern Caribbean frog fauna—was
present on the Puerto Rican Bank by the early Oligocene
(approx. 29 Ma). Evidence for complete submergence of this
bank since the Oligocene is lacking, and it has most likely
been subaerially exposed since at least the late Eocene–early
Oligocene [39]. This supports an older colonization than
suggested by the most recent time-calibrated molecular
phylogenetic study [20], but corroborates similar past studies
suggesting that Eleutherodactyluswas established in the Greater
Antilles during the Eocene or early Oligocene, with the major
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Figure 1. Map of Puerto Rico showing distribution of Oligocene to Pliocene deposits (dark grey) and the location of the town of San Sebastián (a) (modified from
[32]). (b) Geological map of the study area (simplified from [33]), showing relevant exposures of the San Sebastian Formation shown in (c–e) (solid black lines
denote roads). (c) Type locality of Priscosiren atlantica. Other vertebrates from this level include pelomedusoid turtles and caviomorph rodents [34–36]. (d ) Fossil
invertebrate bed. Strontium dating of Kuphus incrassatus tubes found in situ in this unit yielded an age of 29.47 ± 0.30 Ma [37]. (e) LACM Loc. 8059, mudstone unit
of the basal San Sebastian Formation where Eleutherodactylus sp. (LACM 162445) was collected.
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lineages recognized as subgenera diversifying approximately
20–40 Ma [3,14]. This fossil may represent crown-group
Eleutherodactylus or instead a closely related stem taxon. Thus,
while it provides direct evidence that this lineage was present
in the Greater Antilles by the early Oligocene, it does not
directly inform us as to the early diversification of this genus.

In general, there are limited records of small terrestrial ver-
tebrates from the Palaeogene and Neogene of the Greater
Antilles. However, with fewexceptions [40], Oligocene–Miocene
terrestrial vertebrates from Puerto Rico, Hispaniola and Cuba
have extant representatives or are closely related to taxa that
became extinct during the Pleistocene (electronic supplementary
material, table S3). The presence of Eleutherodactylus in the early
Oligocene of Puerto Rico is consistent with overwater dispersal
or, alternatively, the hypothesized presence of a geologically
short-lived land connection between northern South America
and Puerto Rico, Hispaniola and eastern Cuba (GAARlandia
land span hypothesis) at or near the Eocene–Oligocene bound-
ary [2,10]. The presence of this land connection, or
alternatively, a set of closely spaced islands, during this time
would have facilitated colonization of terrestrial taxa from
South America to the Greater Antilles [4,41,42]. Although some
of the geological evidence for the presence of the GAARlandia
land span is still lacking [43], other palaeontological and



fossil

Peltophryne Boana Osteopilus Leptodactylus

Eleutherodactylus
LACM 162445 E. (Eleutherodactylus)

cochranae

P. lemur B. heilprini 0. septentrionalis L. albilabris

E. (Euhyas)
atkinsi

E. (Pelorias)
inopatus

E. (Schwartzius)
counouspeus

Figure 2. Comparisons of LACM 162445 to representatives of each extant Caribbean frog genus as well as each Caribbean subgenus of Eleutherodactylus (Eleuther-
odactylus, Euhyas, Pelorias and Schwartzius). Clockwise from top, LACM 162445 is in anterior, medial, posterior and lateral views. Information on specimens is
provided in electronic supplementary material, table S1. Scale bars, 1 mm.
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molecular evidence is consistent with the synchronous arrival of
terrestrial organisms to the region approximately 33.9 ± 1 Ma,
while others clearly arrived through multiple overwater disper-
sal events throughout the Neogene or even earlier
[8,13,15,35,36,44–50]. Furthermore, molecular phylogenetic
studies have suggested a similar Oligocene arrival for at least
some anuran taxa on the Puerto Rican and Hispaniolan banks,
such as Leptodactylus [13] and Peltophryne [15]. The persistence
of Eleutherodactylus in the Greater Antilles since the Oligocene
is evidenced by its presence in the Miocene amber deposits in
Hispaniola [21,22].

Finally, a potential argument against the presence of a land
span is the low taxonomic diversity during the early Oligocene
of theGreaterAntilles [4]. However, following the initial discov-
ery of an Oligocene sloth [2], more continuous effort aimed at
finding and documenting additional terrestrial and semi-
aquatic taxa from this time period have only been conducted
over the last 14 years and across a few available localities
[35,36,38], including the one documented here. Continuation
of this fieldwork in Palaeogene deposits in Puerto Rico and
across the Caribbeanmay reveal other instances of early arrivals
and further improve our understanding of the origins of the
Greater Antillean terrestrial fauna.
Data accessibility. CT scan data are available through www.morpho-
source.org. See the electronic supplementary material, including
table S1, for further details and dois.
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