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Abstract: Purpose. This work investigates the relations between the production of reactive oxygen
species (ROS) by epicardial adipose tissue (EAT) adipocytes and parameters of glucose/insulin
metabolism, circulating adipokines levels, and severity of coronary atherosclerosis in patients with
coronary artery disease (CAD); establishing significant determinants describing changes in ROS EAT
in this category of patients. Material and methods. This study included 19 patients (14 men and
5 women, 53–72 y.o., 6 patients with diabetes mellitus type 2; 5 patients with prediabetes), with CAD,
who underwent coronary artery bypass graft surgery. EAT adipocytes were isolated by the enzymatic
method from intraoperative explants obtained during coronary artery bypass grafting. The size of
EAT adipocytes and ROS level were determined. Results. The production of ROS by EAT adipocytes
demonstrated a direct correlation with the level of postprandial glycemia (rs = 0.62, p < 0.05), and
an inverse correlation with serum adiponectin (rs = −0.50, p = 0.026), but not with general and
abdominal obesity, EAT thickness, and dyslipidemia. Regression analysis demonstrated that the
increase in ROS of EAT adipocytes occurs due to the interaction of the following factors: postprandial
glycemia (β = 0.95), postprandial insulin (β = 0.24), and reduced serum adiponectin (β = −0.20).
EAT adipocytes in patients with diabetes and prediabetes manifested higher ROS production than in
patients with normoglycemia. Although there was no correlation between the production of ROS
by EAT adipocytes and Gensini score in the total group of patients, higher rates of oxidative stress
were observed in EAT adipocytes from patients with a Gensini score greater than median Gensini
score values (≥70.55 points, Gr.B), compared to patients with less severe coronary atherosclerosis
(<70.55 points, Gr.A). Of note, the frequency of patients with diabetes and prediabetes was higher
among the patients with the most severe coronary atherosclerosis (Gr.B) than in the Gr.A. Conclu-
sions. Our data have demonstrated for the first time that systemic impairments of glucose/insulin
metabolism and a decrease in serum adiponectin are significant independent determinants of oxida-
tive stress intensity in EAT adipocytes in patients with severe coronary atherosclerosis. The possible
input of the interplay between oxidative stress in EAT adipocytes and metabolic disturbances to the
severity of coronary atherosclerosis requires further investigation.

Keywords: reactive oxygen species; adipocytes; epicardial adipose tissue; postprandial glycemia;
postprandial insulin; adiponectin; leptin; coronary atherosclerosis

1. Introduction

Reactive oxygen species and redox signaling are important regulators of cellular
functions in physiological conditions [1]. In adipocytes, ROS are involved in the regulation
of lipolysis [2], transcription [3], homeostatic intracellular signaling, and the functioning
of key intracellular signaling pathways [4], and provide regular renewal of adipocytes,
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taking part in the processes of differentiation of multipotent mesenchymal stem cells
into mature adipocytes [5]. In physiological conditions, ROS are involved in intracellular
signal transduction in response to insulin reception. For example, hydrogen peroxide
mediates the action of insulin on adipocytes, which leads to a rapid translocation of glucose
transporters, an increase in glucose uptake [6], and lipid synthesis [7], while the rate of
lipolysis decreases [8]. In a study by Loh et al. (2009), ROS are also reported to increase cell
sensitivity to insulin [9].

However, excessive production of ROS, known as adipocyte oxidative stress, charac-
terized by the excessive formation of reactive oxygen species and a decrease in antioxidant
protection, is a pathological process known to be a significant factor in cardiovascular
pathology associated with metabolic disorders, including obesity [10–15]. Many clinical
and experimental studies have demonstrated that obesity contributes to the development
of systemic oxidative stress [11,12,16]; however, there are only a few studies evaluating the
production of reactive oxygen species by adipocytes of adipose tissue [17–21].

In experimental studies, it was found that a significant factor in the increase in oxida-
tive stress in adipocytes is the growth of glycemia and insulin resistance [11,18,19,22]. It
has been established that a significant increase in ROS production in isolated adipocytes
of mice with metabolic syndrome occurs at a high level of glucose in their incubation
medium [19]. Adipocytes of visceral adipose tissue from rats and mice with hyperglycemia
developed on a high-fat diet were characterized by both an increase in lipid peroxidation
and a decrease in antioxidant enzymes (catalase, SOD, and glutathione peroxidase) activ-
ity [23–25]. Similar results were demonstrated in a model of genetically determined obesity
in mice of the KK-Ay line [11]. Previously, hyperglycemia has also been reported to promote
the superoxide anion production by activating a metabolic pathway within the cell that
includes diacylglycerol, protein kinase C, and NADPH oxidase (the so-called “dangerous
metabolic pathway in diabetes”) [26]. Subsequently, superoxide anion, spontaneously or
under the influence of superoxide dismutase, turns into hydrogen peroxide, acquiring the
ability to penetrate the cell membrane, and is released into the environment, contributing
to an increase in systemic oxidative stress [27].

There is evidence that ROS production in visceral fat adipocytes of patients with
metabolic syndrome is five-fold higher than that in the control group [18]. The authors
conclude that metabolic syndrome contributes to oxidative stress in adipose tissue, mainly
due to the activation of ROS production by adipocytes. To date, the mechanisms of
adipogenic oxidative stress in patients with cardiometabolic diseases have not been fully
established; the data on the ability of epicardial adipocytes to produce reactive oxygen
species in patients with coronary heart disease are extremely limited [20]. Recently, in
our pilot study, we have demonstrated that the production of ROS by EAT adipocytes
in CAD patients with severe coronary atherosclerosis is directly related to the level of
postprandial glycemia [28]. It has been demonstrated that EAT has a greater potential for
ROS production compared to subcutaneous adipose tissue, due to a higher expression of
the NADPH components gp91phox and p47phox [29]. In addition, patients with coronary
artery disease have an increase in the relative content of catalase in EAT, which, possibly,
has a compensatory nature due to an acceleration of ROS production [30].

At the same time, the association of oxidative stress in EAT adipocytes with dis-
orders of carbohydrate metabolism, the adipokine profile, and the severity of coronary
atherosclerosis in patients with coronary artery disease (CAD) has not yet been evaluated.

The purpose of this study was to investigate the relations between the production of
reactive oxygen species (ROS) by epicardial adipose tissue (EAT) adipocytes and parameters
of glucose/insulin metabolism, circulating adipokines levels, and severity of coronary
atherosclerosis in patients with CAD; to establish significant determinants describing
changes in ROS EAT in this category of patients.
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2. Methods

The study was conducted following the Declaration of Helsinki of the World Medical
Association “Ethical principles for conducting scientific medical research involving humans” as
amended in 2000 and “Rules of Clinical Practice in the Russian Federation”, approved by the
Order of the Ministry of Health of the Russian Federation on 19 June 2003 No. 266. The study’s
protocol was approved by the Biomedical Ethics Committee of Cardiology Research Institute,
Tomsk NRMC, protocol No. 210 from February 18, 2021. All subjects provided their written
informed consent before being enrolled in the study. All patients received the optimal therapy.

2.1. Study Population

The clinical characteristics of patients are presented in Table 1. This pilot study
included 19 patients (14 men and 5 women; 53–72 y.o.) with coronary artery disease
scheduled for coronary artery bypass grafting.

Table 1. Clinical characteristics of patients (n = 19).

Parameters.

Gender (m/f), n (%) 14 (74)/5 (26)

Age, years, Me (max-min) 62 (53–72)

History of myocardial infarction, n (%) 7 (37)

Hypertension, n (%) 19 (100)

Diabetes mellitus, n (%) 6 (31.6)

Prediabetes, n (%) 5 (26.3)

Patients with normoglycemia, n (%) 8 (42.1)

Duration of hypertension, years 14 (10; 20)

Duration of CAD, years 2 (1; 7)

Systolic blood pressure, mmHg 135 (123.5; 144)

Diastolic blood pressure, mmHg 80 (70; 85)

Smoking, n (%) 7 (37)

Body mass index, kg/m2 30.1 (27.4; 33.3)

Obesity, n (%) 7 (37)

Waist circumference, cm 105 (97; 114)

Waist-to-hip ratio 0.98 (0.93; 1.09)

Fat-free mass, kg 57.90 (47.05; 62.05)

Fat mass, adjusted to BMI, kg 33.50 (28.95; 39.05)

Skeletal muscle mass, kg 26.30 (20.20; 28.50)

Gensini score, points 70.0 (28; 110)

Gensini score adjusted to gender, points 70.55(48; 149)

EAT thickness, mm 4.65 (4.30; 5.60)

EAT adipocyte size, mm 87.05 (84.82; 89.52)

Metformin, n (%) 4 (21)

Angiotensin-converting enzyme inhibitors, n (%) 8 (42)

Angiotensin receptor blockers, n (%) 7 (37)

Calcium channels antagonists, n (%) 10 (53)

Diuretics, n (%) 17 (90)

Statins, n (%) 7 (37)
Note: data are presented as median (Me) and interquartile range (Q25%; Q75%), n (%).
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The exclusion criteria were acute cardiovascular events within the last 6 months; active,
ongoing inflammatory diseases other than atherosclerosis or elevation of high-sensitive
C-reactive protein (hsCRP) ≥ 10 mg/L; history of active, ongoing, or recurrent infections;
chronic kidney disease class above C3b; cancer, hematological, and autoimmune diseases,
as well as a change in body weight of more than 3% in the previous 3 months.

Anthropometric measurements were performed to assess total obesity according to
the level of body mass index (BMI) and abdominal obesity according to the size of the waist
circumference, hip circumference, and waist-to-hip ratio (WHR). Body composition was
assessed by Bioelectrical Impedance Analysis.

EAT thickness was measured on the free wall of the right ventricle in a still image
at the end-diastole on the parasternal long-axis view in 3 cardiac cycles at the end of
the systole [31]. EAT thickness was measured at the point of perpendicular orientation
of the ultrasound beam on the free wall of the right ventricle, using the aortic annulus
as an anatomic landmark. The thickest point of EAT was measured in each cycle. The
EAT thickness was calculated as an average value from echocardiographic views in 3
cardiac cycles.

All patients underwent selective coronary angiography on a Cardioscop-V angio-
graphic complex and Digitron-3NAC computer system, Siemens (Germany). The severity
of CAD was assessed by the value of Gensini score [32]. Since the severity of coronary
atherosclerosis differed significantly in men and women (median values 88 points and
53 points for men and women, respectively), this parameter was adjusted by sex.

2.2. Biochemical Study

The content of leptin (Mediagnost, Reutlingen, Germany), adiponectin (Assaypro,
St. Charles, MO, USA), insulin (AccuBind, Diagnostic System Laboratories, Lake Forest,
CA, USA), and hsCRP (Biomerica, Irvine, CA, USA) were determined in blood serum by
enzyme-linked immunosorbent assay (ELISA). An adjustment of differences in the leptin
level for gender and BMI was carried out. The level of adiponectin did not depend on
gender; this parameter was adjusted only for BMI.

The level of glucose was detected by hexokinase assay (EKF diagnostic, Leipzig,
Germany). The Enzyme colorimetric method was used to estimate the serum concentration
of total cholesterol, triacylglycerol, and high-density lipoprotein (HDL) cholesterol (Di-
akon, Pushchino, Russia). Concentration of low-density lipoprotein (LDL) cholesterol was
calculated using the formula [LDL] = [Total cholesterol] − [Triacylglycerol (TG)] − [HDL].

The diagnosis of diabetes was based on generally accepted European guidelines. The
term “prediabetes” was used to identify conditions of impaired fasting glucose (IFG, fasting
plasma glucose between 6.1–6.9 mM and with plasma glucose after OGTT 2-h < 7.8 mM) or
impaired glucose tolerance (IGT, fasting plasma glucose < 7.0 mM and OGTT 2-h glucose
7.9–11.1 mM) or a combination of both [33].

2.3. Adipose Tissue Explants

The explants of EAT weighing 0.2–1 g obtained during the CABG surgery comprised
the material for the study, as we reported earlier [34]. Shortly, epicardial fat tissue explants
were taken from the tissue surrounding the proximal parts of the right coronary artery.
Adipose tissue cells were isolated enzymatically in type I collagenase sterile solution
(PanEco, Moscow, Russia) at 1 mg/mL in Krebs-Ringer buffer. The cell suspension was
filtered through a nylon filter (Falcon™ Cell strainer, pore diameter 100 µm) and washed.
The number and size of the obtained adipocytes were counted using light microscopy (Axio
Observer.Z1, Carl Zeiss Surgical GmbH, Oberkochen, Germany). Cells were stained with
Hoechst 33,342 (5 µg/mL, stains nucleus of viable cells) and propidium iodide (10 µg/mL,
Sigma-Aldrich, St. Louis, MO, USA, stains nucleus of dead cells) to distinguish viable
cells from dead cells (Figure 1) [35]. Samples with viability lower than 95% were excluded
from the study. The remaining samples did not differ significantly in the percentage of
viable cells.
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Figure 1. Accumulation of reactive oxygen species (ROS) and viability of adipocytes in epicardial adi-
pose tissue (EAT) culture. Notes: Fluorescence staining. Dyes: green—2,3-dihydrodichlorofluorescein
(ROS), red—propidium iodide (dead cells), blue—Hoechst 33,342 (viable cells). Magnification ×200.

To measure the level of reactive oxygen species, 200 µL adipocytes in Krebs-Ringer
buffer (1.25 × 106 cells/mL) were added to the two wells of a 96-well plate (500,000 cells per
well) and were incubated for 30 min in the presence of 125 µM 2,3-dihydrodichlorofluorescein
diacetate (DCF-DA) in a microplate reader (INFINITE 200M; Tecan, Grödig, Austria) at
37 ◦C. The fluorescence of DCF was measured at a wavelength of λex = 500, λem = 530.
The accumulation of reactive oxygen species by adipocytes was verified microscopically
(Figure 1).

Data analysis was performed using STATISTICA 13.0 software (StatSoft Inc., Tulsa, OK,
USA). The normality of the distribution of sample data was verified by the Shapiro–Wilk test.
Data were presented as the median and interquartile range (Q25th–Q75th) when distribution
was different from normal. Categorical data were described by absolute (n) and relative
(%) frequencies. To identify statistically significant differences in independent groups, the
Mann–Whitney test was used for quantitative parameters and Pearson’s chi-square test was
used for categorical parameters. The study of correlations between variables was carried out
using the Spearman correlation coefficient. We also investigated the associations between
carbohydrate metabolism disturbances, adiponectin level, and ROS EAT production using
the multifactor linear and nonlinear regression analysis. All the statistical hypotheses were
accepted when the significance level was less than p < 0.05.

3. Results

Table 2 presents the biochemical characteristics of the patients included in the study.
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Table 2. Biochemical characteristics of patients.

Parameters The General Group of Patients, n = 19

Fasting glycemia, mmol/L 5.7 (5.15; 6.05)

Postprandial glycemia, mmol/L 7.5 (5.7; 7.89)

Fasting insulin, µU/mL 5.6 (4.65; 8.60)

Postprandial insulin, µU/mL 16.76 (11.06; 32.31)

HbA1c, % 6.36 (5.57; 7.04)

Total cholesterol, mmol/L 3.74 (3.01; 4.31)

Triacylglycerol, mmol/L 1.31 (1.05; 1.45)

HDL, mmol/L 1.04 (0.95; 1.23)

LDL, mmol/L 1.95 (1.60; 2.42)

Serum adiponectin, adjusted to BMI, µg/mL 6.36 (5.12; 10.44)

Serum leptin, adjusted to BMI and gender, ng/mL 18.18 (11.98; 27.79)

Adiponectin, adjusted to BMI/leptin, adjusted to BMI
and gender 0.41 (0.27; 0.64)

hsCRP, mg/L 2.99 (0.96; 6.72)

We did not detect linear relationships of EAT ROS with BMI, WHR, basal glycemia,
and insulinemia, as well as parameters of blood lipid transport function.

Correlation analysis revealed three possible non-collinear markers of increased ROS in
EAT: postprandial glucose (rs = 0.616, p = 0.013, Figure 2A), postprandial insulin (rs = 0.061,
p = 0.126, (Figure 3A), and adiponectin (rs = −0.503, p = 0.026, Figure 4A).

Variables EAT ROS and postprandial glucose had a distribution close to normal (ac-
cording to the Shapiro–Wilk test p = 0.057 and p = 0.078, respectively), with the relationship
between EAT ROS and postprandial glucose being the closest to linear. However, the
possibility to create a simple linear regression model of postprandial glucose on EAT ROS
was limited due to the high heteroscedasticity of the sample data and the small sample size
(n = 19). The empirical correlation ratio of the degree of strength of the relationship between
ROS EAT and postprandial glucose was ρ = 0.693, 95% CI (0.586; 0.767) (Figure 2B).

Even though we did not reveal the statistically significant linear relationship between
EAT ROS increase with elevated postprandial insulin (Figure 3A), clinical considerations
prompted us to explore the presence and form of relationship between EAT ROS and
postprandial insulin level. The relationship between these variables appeared to be highly
nonlinear and was approximated by a third-degree polynomial (Figure 3B). The correlation
ratio of the degree of the relationship strength between ROS EAT and postprandial insulin
constituted ρ = 0.613, 95% CI (0.581; 0.692) (Figure 3B).

The relationship between EAT ROS and adiponectin also appeared to be close to linear
(Figure 4). However, as in the case of postprandial glucose, it was not possible to build
a linear regression model with normally distributed residuals due to the lack of normal
distribution of the adiponectin variable (according to the Shapiro–Wilk test p = 0.00011)
and data heteroscedasticity. The empirical correlation ratio of the degree of strength of the
relationship between ROS EAT and adiponectin constituted ρ = 0.726, 95% CI (0.511; 0.832).

Thus, we concluded that the variables postprandial glucose, adiponectin, and post-
prandial insulin could be chosen as screening markers of EAT ROS increase in patients
with coronary atherosclerosis.

The direct correlation with serum leptin was not statistically significant.
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Figure 4. Scattering diagram of ROS production by EAT adipocytes and the serum level of adiponectin
in patients with coronary artery disease and coronary atherosclerosis. (A)—Spearman correlation
coefficient (rs). (B)—empirical regression line. Adiponectin level was adjusted to BMI.

A non-linear multivariate regression analysis was performed, which revealed that
postprandial glycemia and postprandial insulinemia positively affected the production of
ROS EAT in a complex way (Figure 5).
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Figure 5. Response surface of the regression model of postprandial glycemia and postprandial
insulinemia on ROS EAT.

A statistically significant multiple linear regression model (without the intercept),
which included postprandial glycemia, postprandial insulinemia, and serum adiponectin
as determinants of the intensity of ROS EAT production, was also constructed (Table 3).

ROS EAT = 236.63 + 0.563 PPG + 0.357 PPI − 0.348 Adipo (1)

Table 3. Regression coefficients of links between postprandial glycemia, postprandial insulinemia,
serum adiponectin, and ROS EAT.

Parameter Beta p

Postprandial glucose 0.950704 <0.001

Postprandial insulin 0.236687 0.012

Serum adiponectin * −0.203832 0.04
Notes: * Serum adiponectin was adjusted to BMI.

Note: PPG—postprandial glucose, mM; PPI—postprandial insulin, µU/mL; Adipo—
serum adiponectin, adjusted to BMI, µg/mL. Analysis of the residuals of the model showed
their normality.

Further, the patients were divided into two groups, depending on their glycemic state.
The patients with normoglycemia constituted the first group; patients with diabetes and
prediabetes (IFG, IGT, or a combination of both) constituted the second group. The levels
of fasting, postprandial glycemia, and glycated hemoglobin were higher in the patients of
the second group, as expected, while there were no intergroup differences in fasting and
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postprandial insulinemia, obesity measurements, lipid metabolism, and serum adipokines
(Table 4).

Table 4. Comparison of clinical and biochemical characteristics of patients depending on
glycemic status.

Parameters
Group 1

Patients with
Normoglycemia (n = 8)

Group 2
Patients with Diabetes or

Prediabetes (n = 11)
p

Gender (m/f), n (%) 6 (75)/2 (25) 8 (73)/3 (27) >0.05

Age, years, Me (max-min) 62 (53–71) 62 (53–72) >0.05

BMI, kg/m2 29.1 (27.4; 30.8) 31.3 (26.3; 36.8) 0.21

Waist circumference, cm 102 (94.5; 107) 109 (98; 118) 0.139

Waist-to-hip ratio 0.96 (0.92; 1.01) 1.02 (0.93; 1.11) 0.46

Fat-free mass, kg 52.30 (47.00; 58.30) 60.70 (56.70; 67.70) 0.22

Fat mass, adjusted to BMI, kg 34.40 (27.70; 40.00) 33.35 (30.20; 36.70) 0.93

Skeletal muscle mass, kg 23.35 (18.00; 27.20) 27.30 (25.80; 31.30) 0.29

Fasting glycemia, mmol/L 5.2 (4.95; 5.7) 6.0 (5.7; 8.0) 0.01

Postprandial glycemia, mmol/L 5.7 (4.95; 6.43) 7.8 (7.7; 7.9) <0.001

Fasting insulin, µU/mL 6.0 (5.0; 8.0) 5.6 (4.5; 8.7) 0.98

Postprandial insulin, µU/mL 16.9 (13.9; 19.6) 11.9 (9.2; 34.6) 0.59

HbA1c, % 5.6 (5.5; 6.04) 6.8 (6.3; 7.3) 0.028

Total cholesterol, mmol/L 3.84 (3.13; 4.21) 3.74 (3.01; 4.72) 0.71

Triacylglycerols, mmol/L 1.14 (0.91; 1.31) 1.37 (1.09; 1.78) 0.1

HDL, mmol/L 1.04 (1.00; 1.18) 1.06 (0.80; 1.36) 0.96

LDL, mmol/L 2.06 (1.61; 2.56) 1.95 (1.60; 2.42) 0.9

Serum adiponectin,
adjusted to BMI, µg/mL 7.14 (5.37; 9.68) 6.36 (5.11; 10.6) 0.96

Serum leptin,
adjusted to BMI and to gender, ng/mL 17.40 (10.61; 25.14) 18.34 (13.89; 27.79) 0.5

Adiponectin, adjusted to BMI/leptin, adjusted to
BMI and gender 0.41 (0.26; 0.68) 0.43 (0.27; 0.64) 0.82

Metformin, n (%) 0 4 (36) >0.05

Angiotensin-converting enzyme inhibitors, n (%) 2 (25) 6 (55) >0.05

Angiotensin receptor blockers, n (%) 3 (38) 4 (36) >0.05

Calcium channels antagonists, n (%) 3 (38) 7 (64) >0.05

Diuretics, n (%) 7 (88) 10 (91) >0.05

Statins, n (%) 2 (25) 5 (45) >0.05

Notes: HDL, high-density lipoproteins; LDL, low-density lipoproteins.

The ROS production by EAT adipocytes was significantly higher in patients with
diabetes and prediabetes than in patients with normoglycemia (p = 0.023) (Figure 6).
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Figure 6. The production of reactive oxygen species by EAT in patients with coronary artery disease,
depending on the glycemic states.

EAT thickness and EAT adipocyte size had no intergroup differences (Table 5). Even
though we did not detect statistically significant differences between groups in respect of
the Gensini score (possibly due to the small number of enrolled patients), its values were
higher in Group 2 (Table 5).

Table 5. Comparison of coronary atherosclerosis severity and morphological parameters of epicardial
adipose tissue of patients with different glycemic state.

Parameters
Group 1

Patients with
Normoglycemia (n = 8)

Group 2
Patients with Diabetes or

Prediabetes (n = 11)
p

Gensini score, points 38.50 (28.00; 70.50) 88.00 (36.00; 121.00) 0.18

Gensini score adjusted to
gender, points 59.80 (35.75; 70.01) 109.24 (48.04; 172.55) 0.18

EAT thickness, mm 4.60 (4.10; 5.13) 4.65 (4.30; 5.60) 0.67

EAT adipocyte size, µm 83.24 (79.18; 89.19) 87.59 (86.37; 89.52) 0.11

We did not find a significant linear relationship between ROS EAT and the severity of
atherosclerosis as assessed by the Gensini score (rs = 0.44, p = 0.065) (Figure 7).

To perform an in-depth analysis of the involvement of EAT ROS in the modulation
of the severity of coronary atherosclerosis, we divided the entire group of patients with
coronary heart disease into two groups depending on the values of the Gensini score. After
adjusting Gensini’s score to gender, its median constituted 70.55 points. Hence, patients
with an adjusted Gensini score less than 70.55 points were referred to as group A, and those
with a Gensini score equal to or exceeding 70.55 points were referred to as group B.
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The median Gensini score was 48 points in group A and 148.6 points in group B
(Table 6). The production of reactive oxygen species by EAT adipocytes was more intense
in patients with Gensini scores over 70.55 points, compared to patients with Gensini scores
less than 70.55 points (Figure 8).

Table 6. Comparison of coronary atherosclerosis severity and morphological parameters of epicardial
adipose tissue in patients with Gensini score of more or less than 70.55 points.

Parameters
Group A

Patients with Gensini
Score < 70.55 (n = 11)

Group B
Patients with Gensini ≥

70.55 (n = 8)
p

Gensini score, points 33.0 (24.5; 69.0) 115.5 (88.0; 149.8) <0.001

Gensini score adjusted to
gender, points 48.0 (27.8; 68.5) 148.6 (114.7; 172.7) <0.001

EAT thickness, mm 5.1 (4.4; 5.7) 4.3 (3.9; 4.8) 0.075

EAT adipocyte size, µm 85.5 (79.3; 89.1) 88.1 (86.5; 90.0) 0.12
Notes: Gensini score = 70.55 points—median value of Gensini score in the sample adjusted to gender.

Group B primarily consisted of diabetic and prediabetic patients, who demonstrated
higher levels of leptin and lower values of the adiponectin-to-leptin ratio (Table S1,
Supplementary Material). We did not reveal any differences between the groups in terms
of obesity, lipid transport function, as well as the morphological characteristics of EAT
(Tables 6 and S1, Supplementary Material).
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4. Discussion

The association of oxidative stress in the EAT adipocyte with impaired carbohydrate
metabolism in patients with coronary heart disease has not been reported in clinical studies
to date. Our study is the first one to establish a direct correlation between ROS production
in EAT and multiple metabolic parameters in patients with coronary heart disease. It
should be noted that in this small sample of patients with coronary artery disease, the
significant factors of oxidative stress in EAT adipocytes appeared to be not just manifest
disorders of carbohydrate metabolism (diabetes mellitus type 2), but primarily the state
of prediabetes, which encompassed latent disorders of glucose/insulin metabolism and
was associated with postprandial hyperglycemia and hyperinsulinemia. Thus, we have
demonstrated that the production of ROS by EAT adipocytes remains at a low level only
in patients with preserved carbohydrate metabolism, while patients with diabetes and
prediabetes have a higher rate of oxidative stress in these cells. The presented results
indicate that insulin, along with glycemia, acts as an additional factor increasing oxidative
stress in EAT adipocytes. Our earlier data evidenced the insulin-mediated dysregulation
of EAT adipocytes. The relationships between serum insulin levels (both postprandial
and basal) and insulin resistance of EAT adipocytes were demonstrated in patients with
coronary heart disease [28]. In the same study, we demonstrated that insulin resistance
of the EAT adipocyte in this category of patients was closely associated with the severity
of coronary atherosclerosis [28]. These data support the current view that, in contrast to
the physiological role of ROS in insulin signaling, ROS overproduction promotes insulin
resistance and impairs glucose uptake in adipocytes [36,37].

Metabolic disorders observed in obesity are closely associated with an imbalance of
the blood adipokines profile, an increase in the activity of pro-inflammatory adipokines,
and a decrease in the content of adiponectin [38–41].

It is well known that there is a reduced level of adiponectin in patients with coronary
atherosclerosis [42] as well as in the combination of CAD with obesity [43]; it was the
establishment that adiponectin is an independent risk factor of coronary artery disease



Biomedicines 2022, 10, 2054 15 of 19

occurrence, but not its advancement [44]. However, to date, a potential relationship
between blood adiponectin and oxidative stress in EAT adipocytes in patients with coronary
atherosclerosis has not been reported. Our study revealed an inverse relationship between
serum adiponectin and ROS of EAT adipocytes with rs = −0.50. Moreover, the multivariate
regression analysis performed in our study demonstrated that the decrease in adiponectin
acts as a factor that enhances the pro-oxidative effect of carbohydrate metabolism disorders
on EAT.

The mechanisms of the inhibitory effect of adiponectin on the oxidative stress of
adipocytes are mainly mediated through its anti-inflammatory activity [38,45], and its effect
on ROS production by mitochondria [42].

The beneficial effects of adiponectin on the intracellular mechanisms of ROS regulation
through nitric oxide synthase and NADPH+-oxidase should also be emphasized [46,47]. In
addition, it was found that adiponectin increases the sensitivity of cells to insulin, possibly
through the realization of its anti-inflammatory effect [48]. Thus, a decrease in the content
of adiponectin may be associated with the development of insulin resistance in adipocytes
and is of relevance due to the initially lower production of adiponectin by EAT adipocytes
compared to subcutaneous adipose tissue [49]. Moreover, the presence of coronary artery
disease in patients leads to an even more pronounced deficiency of adiponectin in EAT [50].
It should be noted that the relationship between the production of ROS EAT and the content
of serum leptin was not established in our study.

What are the consequences of increased oxidative stress in adipocytes? In recent
studies, the significant role of oxidative stress of adipocytes in the formation of functional
and structural cardiac disorders, the consequence of which is the development of heart
failure, has been discussed [10]. It was also reported that the consequence of oxidative
stress in adipocyte is represented by the change in its adipokine profile towards the release
of pro-inflammatory adipokines [11,51]. It has been demonstrated that the secretion of pro-
inflammatory adipokines by EAT adipocytes contributes to coronary endothelial damage in
patients with coronary artery disease and obesity and can be prevented by adiponectin [52].
In this article, it was demonstrated that the patient’s metabolic status and obesity amplify
the pro-inflammatory effect of adipokines on the vascular endothelium.

The relationships between oxidative stress of EAT adipocytes, an increase in the secre-
tion of pro-inflammatory adipokines, and a decrease in the release of adiponectin with the
incidence of cardiac arrhythmias, are discussed [53]. The experimental study demonstrated
that metformin amendment of EAT adipocytes’ adiponectin secretion prevented pathologi-
cal atrial remodeling and weakened the vulnerability to atrial fibrillation induced by atrial
pacing [54].

The association of oxidative stress of adipocytes of perivascular adipose tissue with
dysregulation of vascular tone and homeostasis has been established [55].

It is known that both an increase in postprandial glycemia and oxidative stress of the
EAT adipocyte may be associated with pro-inflammatory status [38]. Meanwhile, chronic
low-grade inflammation is a significant pathogenetic factor in atherosclerosis and coronary
artery disease [56].

However, the relationship between oxidative stress in the EAT adipocyte and coronary
atherosclerosis has been reported only in one study. It was found that patients with
coronary atherosclerosis have a higher level of EAT ROS than patients without coronary
pathology [20]. However, there are no data on a potential relationship between ROS
production in EAT and the severity of coronary atherosclerosis. In our study, we failed
to demonstrate a significant linear relationship between the production of ROS by EAT
adipocytes and the severity of coronary atherosclerosis, assessed by the Gensini score index.
It may be due to both the insufficient predictive power of the Gensini score index and the
small sample size. At the same time, we found that in the group of patients with more
severe coronary atherosclerosis, the production of ROS by EAT adipocytes is higher. Since
group B primarily consisted of diabetic and prediabetic patients, one cannot exclude that it
is an interplay between metabolic impairments and increased EAT ROS, but not oxidative
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stress alone, that was associated with the severity of atherosclerosis. The division into
groups was arbitrary and does not allow us to consider the Gensini score = 70.55 points as
the threshold for determining oxidative stress. Moreover, the cross-sectional design of the
study does not allow us to establish the consecutive links between EAT oxidative stress and
the progression of atherosclerosis. Despite the predominant opinion about the direction
of humoral reactions from EAT to the myocardium, the possibility of increased oxidative
stress of EAT as a consequence of coronary circulation disorders and the humoral effect of
ischemic myocardium on adipose tissue cannot be ruled out. Further prospective studies
aiming to elucidate the involvement of EAT ROS in atherogenesis are required.

In further clinical studies, it is important to evaluate the potential beneficial effect of
postprandial hyperglycemia correction with hypoglycemic therapy on ROS production by
EAT adipocytes in patients with documented atherosclerosis, regardless of the presence
or absence of type 2 diabetes mellitus, as well as to investigate the nature of changes in
glucose/insulin metabolism and ROS production by adipocytes under the influence of
antioxidant treatment.

5. Conclusions

It has been demonstrated for the first time that oxidative stress of EAT adipocytes in
patients with coronary artery disease receiving conventional therapy is associated with the
complex effect of low circulating adiponectin and elevated postprandial levels of glycemia
and insulinemia, but not with parameters of general, abdominal obesity and dyslipidemia.
The highest intensity of ROS production in EAT adipocytes in patients with coronary heart
disease occurs in patients with manifest and latent disorders of carbohydrate metabolism.
Further prospective studies are required to confirm the role of oxidative stress of EAT
adipocytes in mediating the relationships between impaired glucose/insulin metabolism,
adipokines profile, and progression of coronary atherosclerosis.

6. Limitations

The main limitations of our study include the relatively low number of the recruited
patients and its cross-sectional design. In our study, no relationship was found between the
diagnosis of diabetes mellitus and adipocyte ROS. This may be due to the presence of latent
disorders of glucose/insulin metabolism in some patients and the use of hypoglycemic
drugs in all diabetic patients. In addition, due to the small sample size, we did not find
statistically significant differences in the use of drug therapy in groups 1 and 2. However,
these differences for a larger sample may be important.
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