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Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer and also one of the most poorly understood. Other
health issues that are affecting women with increasing frequency are obesity and diabetes, which are associated with dysglycemia
and increased blood glucose. The Warburg Effect describes the ability of fast-growing cancer cells to preferentially metabolize
glucose via anaerobic glycolysis rather than oxidative phosphorylation. Recent epidemiological studies have suggested a role for
hyperglycemia in the pathogenesis of a number of cancers. If hyperglycemia contributes to tumour growth and progression,
then it is intuitive that antihyperglycemic drugs may also have an important antitumour role. Preliminary reports suggest that
these drugs not only reduce available plasma glucose, but also have direct effects on cancer cell viability through modification of
molecular energy-sensing pathways. This review investigates the effect that hyperglycemia may have on EOC and the potential of
antihyperglycemic drugs as therapeutic adjuncts.

1. Introduction

The poor survival statistics of epithelial ovarian cancer
(EOC) are mentioned by way of introduction in almost all
review literature pertaining to the disease. Unfortunately, in
the past forty years there have been only small improvements
in overall ovarian cancer survival rates. Specific challenges to
the treatment of EOC include the problems of late detection,
metastasis within the peritoneal cavity, drug resistance, and
cancer recurrence even after initial response to treatment.
Up to 90% of EOCs do not have an identified genetic
component, and the development of specific and sensitive
screening tools has proven elusive [1]. A metabolic approach
to the targeted treatment of EOC has the potential to
address many of the issues that make this the most deadly
gynecologic cancer.

In recent years, it has been noticed that the influence of
lifestyle, in particular the high-fat Western diet, is associated
with the multisite development of cancers. The state of

chronic positive energy balance is linked to a cluster of
conditions including impaired glucose regulation and insulin
resistance, collectively called the metabolic syndrome [2].
Hyperglycemia is a distinguishing feature of over-nutrition
and it is believed to be an independent risk factor for cancer
development. To provide an idea of the clinical importance
of hyperglycemia, it is estimated that the incidence of type
two diabetes mellitus (T2DM), a common consequence of
the syndrome, will double in many regions in the next
fifteen years. However, the burden of T2DM, where as many
as one third of individuals are undiagnosed [3], almost
certainly underestimates the true incidence of abnormal
glucose homeostasis in the population. Given the emerging
association between hyperglycemia and cancer, it is conceiv-
able that there will be an increase in the incidence of EOC in
the near future.

We hypothesize that hyperglycemia provides a nutrient-
rich, growth signal-rich environment for epithelial ovar-
ian cancer cells, where tumour formation and growth
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is encouraged by free radical-induced DNA damage. We
address possible cellular mechanisms by which a hyper-
glycemic environment may increase the rate of develop-
ment of ovarian tumours, and discuss the implications for
metabolically targeted EOC treatments.

2. Hyperglycemia and EOC:
Epidemiological Evidence

While significant associations have been reported between
elevated glucose [4, 5], glycemic load [6], T2DM [2, 7], and
a number of cancers, there is little information to support
the influence of preexisting hyperglycemia on EOC [8].
However, much of the literature relating cancer and glucose
abnormalities comes from clinical or epidemiological studies
that were not originally designed to evaluate the effects
of hyperglycemia on cancer development [9]. This is a
particular limitation when looking at EOC because of its
relatively low population incidence. In addition, many of the
studies used diabetic status or a single glucose measurement
as a proxy for classifying glucose abnormalities, likely
underestimating the true hyperglycemic population. The
changing profile of insulin status over the course of T2DM
[10] probably further obscured any associations and there
was poor consideration of confounding variables such as
insulin, obesity, medication, and time since diagnosis.

The design of these population studies presumed that
hyperglycemia was a direct and sufficient cause of ovarian
cancer, when it may in fact be more important in the growth
promotion of previously transformed cells. In this way, end-
point analyses such as case-control or retrospective cohort
studies would not be expected to show any association. A
more useful consideration may be that of time to tumour
development in patients with hyperglycemia. For example, in
women already diagnosed with ovarian cancer, high glucose
appears to be a poor prognostic factor [11]. A further
complication of these studies is that both hyperglycemia and
EOC are notoriously quiet diseases in their early stages. This
makes it very difficult from a population health standpoint
to infer an association, or suggest causality, as the underlying
pathologies of both diseases begin and may interact well
before diagnosis.

Although population-based studies have not been sup-
portive for a role of preexisting hyperglycemia in the
development of ovarian cancer, recent basic science still
suggests that EOC may be subject to the influence of high
blood sugar. The rate of glucose uptake, which increases with
increasing extracellular glucose [12], has been linked with
tumour aggressiveness [13]. EOC cells are also sensitive to
complete glucose deprivation than nontransformed ovarian
epithelial cells [14]; thus, they may also be very responsive to
hyperglycemia.

3. Hyperinsulinemia versus Hyperglycemia

The impact of hyperinsulinemia on cancer has received much
more research attention than the impact of hyperglycemia,
although the two conditions are very closely related. It is well

established that insulin promotes tumour growth. Insulin
is mitogenic via its signaling through the insulin receptor
and the insulin-like growth factor (IGF) pathways and direct
anabolic signaling which is mediated by changes in the
insulin receptor (IR) population. Expression of the IR is
elevated in EOC, suggesting a tumour-promoting role in this
cancer [15].

However, we contend that the specific impact of hyper-
glycemia on EOC is also an important area of research
as abnormalities in glucose metabolism typically underlie
hyperinsulinemia. Elevated insulin levels arise as a result of
persistent hyperglycemia and peripheral insulin resistance.
Thus, although insulin has direct, isolated actions on tumour
growth, changes in glucose metabolism predispose changes
in insulin signaling. In addition, it is becoming clear that
there are insulin-independent mechanisms of glucose action
on cancer risk, particularly through energy-sensing pathways
and glucotoxic damage.

4. Hyperglycemia

4.1. Historical Perspective on Hyperglycemia and Cancer.
Almost 80 years ago, Dr. Warburg observed that, compared
to normal cells, cancer cells show a preference for glycolysis
and lactate production over oxidative phosphorylation [16].
Because glycolysis is 18 times less efficient at producing
ATP, this glycolytic switch suggests that cancer cells have
an inherently high need for glucose. Furthermore, tumours
are very active metabolically and require copious amounts
of cellular fuel to meet growth demands. Aerobic glycolysis
has been successfully exploited in EOC diagnostics in which
tumour visualization occurs through the detection of the
differential uptake of glucose in cancer cells compared
to normal cells [17]. The use of FdG-PET (18-fluoro-2-
deoxyglucose positron emission tomography) demonstrates
the association between tumour growth and energy availabil-
ity.

Glucose metabolism of tumours was studied extensively
starting in the 1950s. Warburg’s initial observation was
bolstered by evidence that tumours could induce host
hypoglycemia in a tumour mass-dependent fashion [18, 19].
In many tumour-bearing animals, there appeared to be host
compensation for hypoglycemia at the level of the liver, with
increased gluconeogenesis and glycogen mobilization [18].
Local hypoglycemia in the area around the tumour was
particularly pronounced [18, 20]. It was found that while
tumours had the capacity to take up larger volumes of glu-
cose in mildly hyperglycemic environments they were poor
at compensating for low blood glucose by increasing glucose
uptake [18, 20]. An important role for the vasculature was
identified in hyperglycemic conditions, as tumours were able
to increase glucose uptake by increasing glucose transfer
across the capillary walls [20].

Following these metabolic observations, a number of
groups looked at the growth characteristics of tumours
in hyperglycemic environments. It was reported widely
that profound hypoinsulinemia usually caused by
chemical destruction of pancreatic β-cells consistently
caused a decrease in tumour growth [19, 21, 22]. The
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hypoinsulinemia was generally associated with significant
hyperglycemia. However, in diabetic animals, combined
treatment of both antitumour and antihyperglycemia
therapies gave the best tumour-reductive outcome [19].

Although they demonstrated a negative effect of hyper-
glycemia on tumour development, these early studies have
a number of limitations. The large transplantable tumours
used were sustainable in vivo only for several weeks. The
alloxan used to induce diabetes was toxic and administered
systemically, and so may have had effects outside the target
endocrine cells within the pancreas. Also, the studies that
showed a decrease in tumour mass in the diabetic animals
did not report the changes with respect to total animal mass,
which is generally smaller in the diabetic animals.

The studies also seem to make the assumption that all
glucose taken up is immediately metabolized. However, it
was noted independently by several groups that glucose
uptake was too high to be fully explained by the amount of
tumour growth [20, 23]. These results suggest the possibility
that cancer cells may be able to store fuel in times of high
abundance. Nigam et al. concluded that low glycogen was
due to defective glycogen synthesis and reported low activi-
ties of key glyconeogenic enzymes phosphoglucomutase and
glycogen synthetase as compared to normal tissues [24]. The
low tumour glycogen was also linked to abnormally high
rates of glycogen breakdown by phosphorylase. A recent
article looking at glycogen levels in human colorectal cancer,
however, reported that tumour cells actually had higher
glycogen content than normal tissue [25]. The authors noted
that there was less glycogen in poorly differentiated tumours
compared to well-differentiated tumours, suggesting that low
glycogen may be an indicator of a poor prognosis. They
also found a very clear negative correlation between glycogen
level and proliferation index [25]. The little research in this
area has been carried out in normoglycemic conditions. It
seems likely that, given the high rate of fuel usage in a
tumour, at normoglycemic levels, there would be little need
for storage as most would be used immediately. This brings
up an intriguing question: could hyperfueled conditions
favour a storage phenotype in cancer cells? This might
explain the low growth rates of tumours in type one diabetic
conditions.

Glycogen synthase kinase 3β (GSK3) phosphorylates and
inactivates glycogen synthase, preventing the formation of
glycogen. High levels of GSK3 have been implicated in
the progression of a number of cancers, including ovarian
cancer [26]. GSK3 affects tumour growth through many
different mechanisms, including NF-κB and Wnt signaling
activation [26]. Although it was not discussed in the
literature reviewed here, GSK overexpression may be linked
with glycogen storage and proliferation index. In summary,
despite a number of investigations, carbohydrate metabolism
by tumours is still poorly understood.

4.2. Hyperglycemia in EOC. We consider the possible effects
of glucose on EOC development to be either “permis-
sive” or “contributing”. Permissive effects are those that
alter the energy status of cells, allowing tumour cells
greater access to fuel. Contributing effects are those that

directly damage protein or DNA in some cancer-promoting
way.

Persistent elevations in blood sugar occur once hyper-
secretion of insulin is no longer able to compensate for com-
bined insulin resistance and high glucose levels. The failure
of insulin to facilitate glucose entry into cells is evaluated
on a continuum, meaning that patients may have significant
pathological changes while being in a “prediabetic” state.
In fact, by time of diagnosis of T2DM, hyperglycemia has
already caused vascular complications in at least 20% of
patients [3, 27]. However, poor glycemic control is not
solely due to impaired insulin signaling, as glucose has
the ability to regulate its own clearance by mass action
[12]. Glucose self-regulation is impaired in people with
hyperglycemia, leading to a state of glucose resistance [12].
Chronic hyperglycemia downregulates enzymes responsible
for glucose metabolism, including those of the energy-
sensing AMP-activated protein kinase (AMPK) pathway
[28]. This results in fewer glucose transporters translocating
to the cell surface, further impeding the cell’s ability to take
up fuel. Gluconeogenesis also appears to be increased in
patients with already elevated blood sugar [29]. Thus, the
effects of glucose join insulin resistance in maintaining and
exacerbating hyperglycemia.

4.3. Permissive Effects of High Glucose: Energy Excess. It is
postulated that where there is energy available tumour cells
will have a suitable soil to grow. The biological plausibility
of this excess energy hypothesis has been supported by a
number of in vitro studies: Yamamoto et al. found that
increasing glucose concentration in the culture media of
MCF-7 breast cancer cells increased proliferation [30], medi-
ated by an upregulation of cdk2 and cyclin D1 [31]. In a line
of choriocarcinoma cells, sustained hyperglycemia was found
to stimulate the cell’s glucose transport system, increasing
glucose uptake rates [32]. In contrast, most nontransformed
cells downregulate glucose transport in the presence of
hyperglycemia. Studies in human breast cancer xenografts
also suggest that the amount of glucose metabolism is not
determined by metabolic demand, but rather by substrate
availability [33]. Conversely, energy restriction is protective
in several cancer models [34]. Together, these findings
support the idea that the fuel availability in hyperglycemia
may be permissive for cancer growth.

In hyperglycemia-induced insulin resistance, the ability
of normal cells to access fuel is impaired. The correlation
between cancer risk and T2DM suggests that where normal
cells fail metabolically cancer cells excel. Mechanistically,
this may involve the overexpression of components of the
AMPK pathway [35]. It is possible that in hyperglycemia
cancer cells are inherently better at responding to the
effects of insulin compared to insulin-resistant “normal”
cells. In their 2004 paper, Gatenby and Gillies argue that
mutations affecting substrate use cannot be early events
in carcinogenesis because they would offer no advantage
when there are no constraints on fuel availability, which
typically arise in a larger tumour mass [13]. While this is
true in a normal cellular environment, in hyperglycemia
there is a limit on substrate availability because of insulin
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resistance. Better access to the abundance of extracellular
glucose, therefore, confers a selective growth advantage and
could be an early marker of tumourigenic potential.

If conditions such as dysglycemia and diabetes prove to
be involved in EOC initiation as well as promotion, then we
propose that the selective pressures of the energy status may
be an early event in the formation of EOC tumours. Cells that
are best able to survive high glycemic conditions necessarily
have a key characteristic of cancer cells, essentially obtaining
self-sufficiency in growth signals [36]. Thus, cancers that
arise in a hyperglycemic environment may represent an
unregulated adaptive survival response. Although there is
currently no directly supportive data for this hypothesis,
possible mechanisms for this relationship are described in
the following sections.

4.4. Contributing Effects of High Glucose: Cellular and Genetic
Damage. The consequences of chronic exposure to high
glucose tend to be detrimental to cellular function and affect
the physiology of the normal ovary [37]. In fact, most long-
term diabetic complications (retinopathy, neuropathy, and
nephropathy) are consequences of hyperglycemia and cannot
be reversed despite glucose normalization [38]. However,
this damage might also provide a mutational advantage to
some cells by altering cellular proteins or DNA. Cancer
development is often thought of in terms of a series of “hits”.
The conditions of the tumour microenvironment, many of
them determined by an altered metabolic profile, have been
shown to contribute to the genetic instability of cancer cells
[39], providing the necessary “hits” for a more aggressive
tumour. Acidity, hypoxia, and formation of reactive oxygen
species may all be enhanced in tumours in a hyperglycemic
environment.

4.4.1. Acidic Environment. In tumour cells, high glucose flux
through the glycolytic pathway produces large quantities
of lactate, resulting in tumour tissue with pH 0.5 units
lower than normal tissue [40]. Cancerous cells adapt to this
acidification, exhibiting maximal growth at the relatively
low pH of about 6.8 [41]. Tumours also have a capacity,
similar to working skeletal muscle, to share lactate between
hypoxic and nonhypoxic cells, so it is not extruded as a waste
product [42]. Despite these survival adaptations, tumour
acidity has been shown to impair DNA repair mechanisms
[39] and to upregulate angiogenic molecules such as vascular
endothelial growth factor (VEGF) and IL-8 in order to
enhance lactate clearance [43, 44]. Experimental evidence
demonstrates that the acidic environment is supportive of
tumourigenesis, increasing resistance to chemotherapy [45],
mutation rate [46], and invasion capability [47]. The acid-
mediated tumour invasion hypothesis postulates that H+

ions from the tumour microenvironment diffuse down their
concentration gradient into the surrounding normal tissue
[48]. Because the normal cells cannot survive the increase
in acidity, the border of malignant tissue is progressively
pushed forward. In fact, mathematical modeling has shown
that tumour acid production alone can explain patterns
of tumour growth [40]. The effects of acidity are partic-
ularly important in a hyperglycemic environment because

increased glucose flux through tumour cells has been shown
to create a large increase in lactate production [33, 49].

4.4.2. Transient Hypoxia. The characteristic microvascular
damage caused by hyperglycemia [50] may lead to periods
of hypoxia, possibly through a nitric-oxide-mediated mech-
anism. The bioavailability of the vasodilator is decreased in
diabetes [51] as it is scavenged by superoxide radicals to
form the highly reactive ONOO˙ molecule [52]. Transient
hypoxia is thought to be one of the strongest pressures for
cells to undergo transformation and is a central hypothesis
explaining the glycolytic switch [13, 53]. Hypoxic conditions
also increase the activity of hypoxia-inducible factor (HIF-
1α) and VEGF, which are strongly associated with both
tumour angiogenesis and EOC tumour aggressiveness [54,
55].

4.4.3. Oxidative Stress. Levels of oxidative stress reflect the
ability to balance production and elimination of highly
reactive free radicals, which include the family of reactive
oxygen species (ROS). Oxidative stress is known to be
higher in diabetic patients than in healthy individuals [56],
and it is often cited as a unifying theory to explain tissue
damage by hyperglycemia [57]. Because ROS can also create
DNA damage through a number of mechanisms [58], it
has similarly been proposed that carcinogenesis in general
is caused by oxidative stress [59]. This stress in ovarian
epithelial cells specifically is thought to be a potential
initiator of tumourigenesis [60]. Hyperglycemia also causes
increased flux of glucose through the aldose-reductase
(polyol) pathway, which has been postulated to increase
sensitivity to oxidative stress by reducing regeneration of
the antioxidant glutathione [50]. While epidemiological
studies evaluating antioxidant use in diabetes [52, 61] and
ovarian cancer [62] have not been conclusive, preliminary
results suggest that this therapeutic avenue is worth further
exploration. A recent study of flavonoids with antioxidant
effects found that they inhibited cell growth and VEGF
expression in ovarian cancer cells [63].

4.4.4. Glycation. Much of the tissue damage and cellular dys-
function associated with hyperglycemia has been attributed
to advanced glycation end products (AGEs) created by
the nonenzymatic glycation of proteins [64]. While AGE
accumulation is a normal part of aging, it occurs at an
accelerated rate in diabetes where progressive modifications
can lead to irreversible cross-linking, impairing the actions
of other molecules [64, 65]. Receptors for AGE (RAGE)
mediate many more severe actions and potentiate the
cellular response [66]. RAGEs are upregulated by presence of
AGE ligands, and AGE-RAGE binding protects the ligands,
allowing them to persist in the environment [66]. AGE-
RAGE interaction has been shown to stimulate tumour cell
growth or invasiveness in pancreatic cancer [67], melanoma
[68], and glioma [69], while blocking the RAGE inhibits
tumour formation and metastasis [68, 69]. The ovarian
surface epithelium may be particularly susceptible to the
effects of glycation damage because not only the tissue is well
vascularized, but it is also in constant contact with peritoneal
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fluid, whose glucose content is reflective of blood glucose
levels [70].

Mechanistically, AGE-RAGE signaling has been linked to
induction of an inflammatory response in the vasculature
[71], as well as an increase in matrix metalloproteinases
(MMPs)-2 and -9 [66], and may, therefore, play a role
in determining tumour invasiveness. Because AGE-RAGE
signaling seems to be part of the chronic rather than
acute response [66], its contributions to the development of
tumour formation are quite plausible.

Glucose reactivity in hyperglycemia can also lead to
glucose autoxidation, generating hydroxide radicals, and
contributing to the burden of oxidative stress [72]. Also,
apart from RAGE signaling, glucose moieties on proteins
can donate electrons to form hydrogen peroxide, directly
activating NF-κB [73, 74] and contributing to an inflamma-
tory response. There is evidence that changes to local tissue
can enhance the possibility of tumour spread [75], possibly
implicating glucose-induced damage to the peritoneal cavity
as a permissive factor for ovarian tumour metastasis [76].

4.5. The Role of Glucose Transporters. Glucose is a large,
hydrophilic molecule that cannot diffuse through the lipid
bilayer of cells on its own, and thus requires specific
transporter proteins. Glucose enters cells by facilitated
diffusion mainly through glucose transporters (GLUTs),
and the activation of GLUT genes is one of the earliest
events in oncogenesis [77]. Because GLUTs have a role
in glucose sensing and respond to extracellular glucose
concentrations, these transporters may be very important
in a hyperglycemic environment. GLUT1 in particular is
highly expressed in ovarian cancer [78], where tumour status
(benign, borderline, or malignant) is correlated with the
level of GLUT1 expression [79]. Almost all invasive epithelial
carcinomas are positive for GLUT1, independent of stage,
grade, or histological subtype [79, 80]. Antibodies to GLUT1
decrease proliferation, induce apoptosis in nonsmall cell
lung cancer and breast cancer cell lines, and appear to
synergize with a number of chemotherapeutics to enhance
their apoptotic effects [81].

Very recently, another class of transporters, sodium/
glucose cotransporters (SGLTs), was shown to be associated
with the epidermal growth factor receptor (EGFR) in cancer
cells [96]. The authors of the study proposed that SGLTs
may enhance tumourigenesis by making cells independent
of the glucose concentration gradient, allowing them to take
up fuel in any situation. This hypothesis is in line with
the proposal made here that permissive effects of glucose
are cancer causing: removing restrictions on fuel availability
seems to enhance tumourigenesis. The EGFR is particularly
important in ovarian cancer; it is normally expressed on
ovarian surface epithelium and is often overexpressed in
EOC. The expression of key glucose transporters in ovarian
cancer is summarized in Table 1.

5. Inflammation and EOC

In both rats and humans, hyperglycemia has been shown
to be a major cause of the systemic inflammatory response

[99, 100]. Both oxidative stress [101] and AGE-RAGE
[66] signaling are also implicated in promoting systemic
inflammation in hyperglycemic environments.

Inflammation is thought to be associated with cancer
development mechanistically because of rapid cell division,
DNA excision and repair, oxidative stress, and high concen-
trations of cytokines and prostaglandins; all of which are
promoters of mutagenesis [102]. Moreover, inflammation
has been proposed as a unifying hypothesis for the develop-
ment of EOC [103]. The high concentrations of circulating
growth-promoting and inflammatory cytokines as a result
of hyperglycemia may mean that factors, which normally in
an autocrine or paracrine fashion [104] are instead coming
from the systemic environment and exerting an endocrine
effect, potentiate tumour growth. In support of this, animal
knockout studies have shown that MMP production by the
host may be more important in carcinogenesis than MMP
production by tumour cells themselves [105].

Cytokines can affect EOC tumour growth by acting as
growth factors, increasing angiogenesis, or an immunomod-
ulatory pathway whereby they prevent cellular recognition
and destruction of the tumour. A number of cytokines that
are increased as part of systemic inflammation in diabetes
also have tumour promoting effects in ovarian cancer [106].
IL-1 and TNF-α are thought to increase production of IL-
6, which promotes cell attachment and migration [107] and
also blocks apoptosis induced by cytotoxic agents [106]. IL-8
and TGF-β promote tumour angiogenesis [106]. In addition,
although TGF-β normally inhibits epithelial cell proliferation
[108], repeated exposure to high levels may attenuate the
response of cancerous epithelial cells [106].

The inflammatory hypothesis lends itself to testing with
a variety of antiinflammatory drugs and indeed early studies
show promise. A study evaluating human ovarian tumours
in nude mice concluded that cyclooxygenase inhibitors
limited tumour growth, in part through an antiangiogenic
mechanism [109]. Epidemiologically, patients with chronic
aspirin, NSAID, or acetaminophen use have been shown to
have a reduced risk of EOC [110]. However, as with antiox-
idant trials, these observational studies are still preliminary
[103].

5.1. The Incessant Ovulation Hypothesis. Recently, the
inflammation associated with postovulatory follicle repair
has received attention as a possible contributor to EOC pro-
motion [103]. The incessant ovulation hypothesis purports
that the repeated damage and repair cycles associated with
ovulation enhance the possibility for mutagenesis. Incessant
ovulation also increases the likelihood that inclusion cysts
will form, trapping epithelial cells in the hormone-rich
environment of the ovarian stroma [1, 111]. If these trapped
cells are inappropriately maintained, they are more likely to
transform [111–113]. Wound healing in hyperglycemia is
characteristically slow and almost certainly influenced by the
effects of inflammation and damage from glycation. Lowered
nitric oxide bioavailability in combination with the tissue
damage caused by hyperglycemia may be partly respon-
sible [114]. In one study AGE-RAGE blockade decreased
expression of inflammatory cytokines and MMPs resulting
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Table 1: Glucose transporter expression in ovarian and other cancers.

Facilitative Transporters: Class 1 GLUTs

Major site of
expression

Expression in EOC
[77–80]

Localization in EOC
[77–80]

Expression in other
cancers

GLUT-1
Fetal tissue,
erythrocytes; widely
distributed

Overexpressed in
almost all invasive
carcinomas;
expression increases
from benign to
invasive tumours

Cell membrane,
cytoplasm; more in
membrane in more
invasive; some studies
say stronger closer to
periphery; some say
farther from
tumour-stromal
interface

Breast [82, 83],
head, and neck [84],
colorectal [85],
prostate [86],
pancreatic [87],
cervical [88]

GLUT-2 Liver, pancreas Negative Unknown
Islet cell tumours
[89], sarcoma [90]

GLUT-3 Brain

Conflicting:
reported to be high
in >90% of EOC
tumours; also weak,
homogenous
expression in all
ovarian tissue; also
in ovarian tumours
but not normal
tissue

Cytoplasm and cell
membrane

Lymphoma [91],
head and neck [92],
lung [93]

GLUT-4

Insulin-responsive
tissues (skeletal
muscle, heart,
adipose tissue)

Conflicting: no
expression in
normal or
malignant; also
present in up to 84%
in ovarian tumour
cells

Unknown
Lung [94], breast
[95]

Active Transporters: SGLTs.

Major site of
expression

Expression in EOC Localization in EOC
Expression in other
cancers

SGLT1 Kidney and small
intestine

Not investigated Unknown
Breast [96], prostate
[96], head and neck
[97], pancreatic [98]

SGLT2 Kidney and small
intestine

Not investigated Unknown No reports

SGLT3 Skeletal muscle and
small intestine

Not investigated Unknown No reports

in normalization of wound closure in a genetic mouse model
of diabetes [115]. Taken together, the mutagenic risk and
the risk of entrapment in inclusion cysts from repeated
ovulations, combined with impaired wound healing, might
mean a greater risk for ovarian cancer development in a
hyperglycemic environment. This idea provides a possible
mechanism by which hyperglycemia may initiate cancer, in
addition to playing a role in promotion of EOC from an
unrelated transforming event.

6. Glucose, Angiogenesis, and
Tumour Formation

As hypothesized by Dr. Folkman [116], solid tumours
must recruit new blood vessels in order to grow beyond

1-2 mm in size. Most of the tumour vascularization occurs
through angiogenesis, which is the development of new
blood vessels from preexisting vasculature. The angiogenic
process is regulated by a balance between pro- and anti-
angiogenic factors and in ovarian cancer there is a con-
comitant overexpression of proangiogenic factors and an
inhibition of anti-angiogenic molecules [117]. There are
numerous reports concluding that elevated glucose levels
contribute to increased angiogenic processes. Granulosa cell
tumours of the ovary have been shown to have increased
expression of members of both the glycolytic and angiogenic
pathways [118]. Glucose directly increases expression of the
potent proangiogenic factor VEGF, which is thought to
be the mechanism involved in the vascular complications
associated with diabetes (reviewed in [119]). In a similar
fashion to tumour cells, endothelial cells that comprise the
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Epithelial ovarian cancer
Incessant
ovulation

Unchecked
proliferation

Growth + proliferation
signals

Resistance
to TGF-β

DNA
damageCdks,

cyclins
Insulin,
IGFs

Anti-oxidants
(glutathione)

Anti-angiogenics
(TSP-1)

Oxidative
stress Angiogenesis

Acidity

Excess
energy

Calorie
restriction

AGE-
rAGE Warburg

effect

HIF-1α

Hypoxia

Vascular
damage

Inflammation

NF-κB
VEGF
IL-6

ROS
HyperglycemiaHyperinsulinemia X

Insulin
resistance

Anti-diabetics
(TZDs, biguanides)

+ AMPK

↓ GLUTs

↑ GLUTs
Anti-inflammatories

(NSAIDs)

IR-A > IR-B
IGF-IR, ↓IGF-IIR

Transforming event

Cancer
Hyperglycemia (direct effect)

Hyperglycemia (secondary effect)
Possible therapeutic targets

Figure 1: Summary diagram of factors hypothesized to link hyperglycemia to the development of epithelial ovarian cancer. Hyperglycemia,
leading to hyperinsulinemia and inflammation, underlies the development of parallel pathologies affecting growth and death signaling,
formation of reactive species, and angiogenesis. Together, these aberrant signals converge on a hyperproliferative phenotype that may
promote or initiate the development of cancer. Possible therapeutic approaches, including the novel application of antidiabetic drugs, are
shown in green. Abbreviations: TZDs, thiazolidinedoines; GLUTs, facilitative glucose transporters; ROS, reactive oxygen species; NSAIDs,
nonsteroidal antiinflammatory drugs; AGE-RAGE, advanced glycation end product receptor complex; IR-A and IR-B, insulin receptor
isoforms A and B; IGF(R), insulin-like growth factor (receptor); cdk, cyclin-dependant kinase; TSP-1, thrombospondin-1; HIF-1α, hypoxia-
inducible factor alpha; NF-κB, nuclear factor kappa B; VEGF, vascular endothelial growth factor.

tumour vasculature also increase their utilization of glucose.
Glucose transporter expression is increased in the hypoxic
environment associated with most solid tumours [120], and
glucose increases survival of both tumour epithelial and
endothelial cells [96]. Because increased tumour vascularity
is correlated with increased metastatic potential and tumour
progression [121, 122], the proangiogenic inflammatory
environment of hyperglycemia may also promote carcino-
genesis. Unfortunately, inflammation may be self-promoting
as increased tumour perfusion can act to further exacerbate
the immune response [121].

In addition to the direct effects of glucose, the effects of
inflammation are likely mediated by VEGF. Inflammatory
mediators upregulate VEGF and VEGF receptors, which
are correlated with the clinical outcomes of ovarian cancer
patients [123]. For example, NF-κB can promote angiogen-
esis by activating VEGF and IL-8 [124] and may be central
to inflammation-induced tumour growth and progression

[125]. MMPs can also stimulate proliferation and release of
VEGF [126].

The possible impact of hyperglycemia-related inflam-
mation on cancer suggests that anti-angiogenic molecules
such as thrombospondin-1 may be of great benefit in
treating diabetic tumours [127]. The relationship between
angiogenesis, inflammation, and carcinogenesis is illustrated
by the fact that a number of anti-angiogenic drugs that are
promising in the treatment of cancer are also effective against
chronic inflammatory diseases [128].

7. Antidiabetic Drugs as
Targeted EOC Therapy

Because of the multitude of protumour effects of glucose,
it is intuitive that glucose deprivation may be a potent
antitumour treatment approach. From the literature, it is
apparent that glucose is an important energy substrate,
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survival factor, and proangiogenic molecule. There are a
number of antihyperglycemic treatments currently avail-
able for reducing serum blood glucose and these drugs
may effectively inhibit glucose availability to the tumour.
Although the effects of antihyperglycemic drugs are well
documented in diabetes, their effects in cancer are relatively
unknown. Preliminary reports show that these drugs may
have multi-modal effects in slowing tumour growth. In an
approach similar to that using anti-angiogenic drugs, the
class of antihyperglycemic drugs such as metformin and
rosiglitazone may reduce glucose availability to the tumour
and essentially starve the tumour of nutrients. These drugs
have also been shown to have direct effects on metabolic and
signaling pathways that may be independent of glucose.

Metformin is in the biguanide class of antidiabetic
drugs and decreases circulating glucose levels by suppressing
hepatic production of glucose [129]. Metformin, by reducing
insulin and glucose levels, reduced the size and increased
latency of mammary adenocarcinomas in HER-2/neu trans-
genic mice, demonstrating a potent antitumour effect [130].
In vitro, metformin significantly inhibits the growth of
epithelial ovarian cancer cells and may potentiate the effects
of the common chemotherapy drug cisplatin [131]. Met-
formin may preferentially increase peripheral glucose uptake
in skeletal muscle, as administration increases AMPK activity
in skeletal muscle [132] and stimulates translocation of mus-
cle GLUT-4 [133]. This favoured packaging of glucose into
skeletal muscle cells would decrease serum glucose levels and
availability to the tumour cells resulting in nutrient deple-
tion. Stimulation of AMPK by metformin also contributes
to the reduced hepatocyte production of glucose [134]. In
fact, AMPK activation is associated with an inhibition of
tumourigenesis through apoptosis induction, decreased cell
proliferation and may be a communal molecule utilized
by metformin as well as a number of anti-tumour drugs
that have been shown to have effects in EOC. C93 [135],
resveratrol [13, 136], 2-deoxy-D-glucose [137], and AICAR
[138] are targeted therapies that are effective in the treatment
of ovarian cancer. Interestingly, these molecules also cause
the stimulation of AMPK, indicating a common pathway
intersection with metformin. Although not yet investigated,
there is a possibility that metformin may have a synergistic
interaction with these molecules, in addition to its glucose
deprivation effects.

Rosiglitazone is another antidiabetic agent in the thi-
azolidinedione class of drugs designed to reduce the
hyperglycemia associated with this disease. Rosiglitazone
activates the peroxisome proliferator activated receptors
(PPAR) in target tissues, increasing insulin sensitivity and
decreasing serum levels of glucose. As with metformin,
rosiglitazone also stimulates increased expression of GLUT-
4 [139] causing glucose uptake in skeletal muscle [140].
One of the mechanisms by which rosiglitazone may have
a significant antitumour effect is through the inhibition
of angiogenesis. Rosiglitazone has been shown to inhibit
VEGF-induced angiogenesis [141] and is suggested as a
treatment option for vascular disorders associated with
diabetes such as diabetic retinopathy, macular degeneration,
and so forth. As VEGF expression is significantly elevated in

EOC [142] and is responsible for some of the ovarian tumour
vascularization (reviewed in [143]), rosiglitazone may have a
bimodal anti-tumour effect by decreasing glucose availability
and also by reducing tumour angiogenesis. Simply by
decreasing tumour vascularity, rosiglitazone will decrease
glucose delivery to the tumour by decreasing tumour tissue
perfusion.

8. Summary and Conclusions

An emerging view of cancer relies on an initiation-
promotion paradigm that suggests a fundamental role of
the tumour environment on cancer development. New data
suggests that hyperglycemia may be a contributing factor
to the onset and progression of EOC through a number of
complex mechanisms (summarized in Figure 1). We propose
that hyperglycemia has important effects on both the pro-
gression and somatic evolution of epithelial ovarian cancer.
Altered glucose homeostasis is common in cancer patients,
so antihyperglycemic therapies are applicable to even those
who have normal blood sugar. Although there are a number
of cellular mechanisms through which hyperglycemia may
effect the promotion or initiation of ovarian cancer, there
is almost no in vivo experimental data exploring the link
between hyperglycemia and EOC. Further research in this
area not only has applications in the development of cancer
therapeutics, but also will provide new insights into EOC
pathogenesis, early detection, and possible prevention.
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