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Abstract: Chronic kidney disease of unknown etiology (CKDu) has been recognized as a global
non-communicable health issue. There are many proposed risk factors for CKDu and the exact
reason is yet to be discovered. Understanding the inhibition or manipulation of vital renal enzymes
by pesticides can play a key role in understanding the link between CKDu and pesticides. Even
though it is very important to take metabolites into account when investigating the relationship
between CKDu and pesticides, there is a lack of insight regarding the effects of pesticide metabolites
towards CKDu. In this study, a computational approach was used to study the effects of pesticide
metabolites on CKDu. Further, interactions of selected pesticides and their metabolites with renal
enzymes were studied using molecular docking and molecular dynamics simulation studies. It
was evident that some pesticides and metabolites have affinity to bind at the active site or at
regulatory sites of considered renal enzymes. Another important discovery was the potential of some
metabolites to have higher binding interactions with considered renal enzymes compared to the
parent pesticides. These findings raise the question of whether pesticide metabolites may be a main
risk factor towards CKDu.

Keywords: CKDu; renal enzymes; pesticides; metabolites; molecular docking; molecular dynamics

1. Introduction

Chronic kidney disease (CKD) is a global health and economic issue. It is characterized
by a gradual decrement of glomerular filtration rate (GFR) over time due to structural and
functional defects of kidney in urinalysis, biopsy, and imaging [1]. The leading causes
for CKD are thought to be glomerulonephritis, hypertension, and diabetes mellitus [2].
CKDu is an evolving health problem in some low and middle-income nations, such as
El Salvador, Egypt, Cuba, Sri Lanka, Bangladesh, and India [3]. The poor rural areas are
most affected with agricultural work being the dominant occupation. Poverty with the
absence of access to health care makes it hard to determine the clinical features of CKDu.
In Nicaragua, Central America, the highest prevalence of CKDu has been reported with
10–20% cases among the adult population [4], where the third to fifth decade age group
is highly affected. In Southern India and Sri Lanka, CKDu prevalence is 1.6 and 1.5%,
respectively (ref), where a wide age range is affected. Generally, the male prevalence is
significantly higher than in females [5,6].

Progression of CKDu is usually symptomless until advanced phases of the disease,
in which the kidneys are irreversibly damaged, resulting in mortality unless dialysis or
transplantation occurs [7]. The CKDu endemic in Central America is called Mesoamerica
Nephropathy (MeN). The patients have elevated serum creatinine levels and normal
albuminuria [8]. Podocytic changes, Glomerulosclerosis and moderate tubulointerstitial
damages were observed in MeN patient kidneys [9]. This suggests that the added stress
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on kidneys due to loss of water from the body from sweating increases the risk factor for
CKDu [10].

Given its unknown origin, CKDu has spurred a variety of investigative efforts in
recent years. A number of research studies have been completed to identify the risk factors.
However, up to the present date, no specific reason has been proven scientifically to be
the exact cause. There are many factors thought to increase the getting CKDu, such as
dry climate, genetic vulnerability and family history of CKD, the hardness of water, and
occupational exposure to Agrochemical [11]. There are many proposed courses for CKDu,
such as pesticides, inorganic fertilizers, heavy metals, fluoride and hardness of drinking
water, and cyanobacterial toxins [12].

In the present study, the focus is on the studying effects of pesticides and their metabo-
lites towards CKDu. The exact mechanism of CKDu due to pesticides is unknown. It is that
the increased oxidative stress [13–15] due to inhibition or manipulation of enzymes, such
as Cytochrome P450 (CP450) and Glutathione S Transferase (GST), by pesticides, and their
metabolism plays a role [16,17]. Understanding inhibition or manipulation of vital renal
enzymes, such as Adenosine monophosphate (AMP) Activated Protein Kinase (AMPK),
Protein Kinase C (PKC), Glutaminase (GLS), Apoptosis Signaling Kinase 1 (ASK1), and
Acetylcholinesterase (AChE), by pesticide and metabolites may be a key to understand the
link between CKDu and pesticides.

It is suggested that interactions of different potential agents cause CKDu rather than a
single causative agent; thus, CKDu has also been termed as CKD of multi-factorial origin
(CKD-mfo) [18]. These factors include the negative effects of overuse of agrochemicals, the
effect of heavy metals, and other environmental pollutants which are synthetic compounds
used in industrial, agricultural, and domestic use and known as xenobiotic agents, present
in the environment. The potential interactions and synergism between probable agents
have not been studied thoroughly. Pesticides are xenobiotic compounds. There are mainly
2 classes of enzymes that are involved in xenobiotic biotransformation, phase I enzymes and
phase II enzymes [19]. CP450 has a role as phase I enzymes by increasing the hydrophilicity
or nucleophilicity which aid in the elimination process and to make suitable substrate
for phase II enzymes. GST has a role as phase II enzyme, which are responsible for the
conjugate formation [15,17].

Rajani R et al. [20] have reported that the activation of AMPK protein slows down the
progression of CKD. The effect of AMPK activation on kidney disease states is a reduction in
epithelial-mesenchymal transdifferentiation, apoptosis, fibrosis, cyst formation, metabolic
memory, inflammation, and cell grown and proliferation. AMPK activation also increases
autophagy. The initial observations in CKDu patients are that the fibrosis of interstitial
tubules, the defective function of AMPK, can be a reason for that.

When it comes to the PKC protein, balanced action of PKC protein is needed for
proper renal function. How unbalanced PKC can cause renal damage and CKD can be
summarized as follows. PKC participates in cellular signal transduction pathways, prolif-
eration, differentiation, cell cycle, and apoptosis [21]. These cellular activities are linked to
tumor development and cell proliferation. PKC-dependent NAD(P)H oxidase activation
and alteration of mitochondrial metabolism leads to an increase of reactive oxygen species
(ROS) in the cellular environment. ROS plays a central role in the excessive extracellular
matrix (ECM) synthesis and degradation in the glomeruli and tubulointerstitium, leading
to renal fibrosis [22]. Excessive ROS can activate a signal transduction cascade involving
the mitogen-activated protein kinase and the Janus kinase/signal transducers and activa-
tors of transcription. There is then subsequent upregulation of the pro-fibrotic cytokine
transforming growth factor-beta1, along with other pro-fibrotic factors, such as angiotensin
II, that cause further fibrosis and ECM synthesis [23].

Glutaminase catalyzes the first step in the metabolism of glutamine by converting
glutamine to glutamate. Soomro I et al. [24] analyzed the hypothesis that glutamine
metabolism also plays a critical role in cyst formation and found a positive link between
cyst formation and glutaminase activity.



Biomolecules 2021, 11, 261 3 of 32

ASK1 is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK)
family that activates c-Jun N-terminal kinase (JNK) and MAPK p38 in reaction to a variety
of stress disorders, such as oxidative stress, endoplasmic reticulum stress, and calcium
inflow. Activation of JNK signaling is a prevalent characteristic in most types of human
kidney injury, both in glomerular and tubular cells, as well as in leukocyte infiltration [25].
MAPKs regulate a broad range of cellular functions. Defective activation or activity of
ASK1 will lead to the development of CKD. In experimental models of acute and chronic
renal disease, activation of ASK1 and subsequent activation of downstream APKs induce
inflammation, fibrosis, and apoptosis and are associated with human kidney disease [26].
Downstream P38 and JNK elevated activities lead to apoptosis, necrosis, inflammation, and
fibrosis in renal vasculature, glomerulus, and tubulointerstitium kidneys in diabetic and
non-diabetic individuals, leading to CKD [27]. Fibrosis is a classic observation in CKDu
kidneys [9].

AChE is an extracellular glycoprotein, which can significantly alter renal function
changing neural, humoral, and metabolic activities. Organophosphate pesticides inhibit
AChE, and AChE activity in red blood cells was shown to be significantly lower in AChE
inhibitor pesticide exposed-CKD patients as compared to unexposed-CKDu patients [28].
Yeato G et al. [29] conducted a study on the level of AChE activity on Chronic Renal Failure
(CRF) patients before and after dialysis. They considered the effect of aging on the AChE
levels. Yeato G et al. states that AChE activity of CRF patients was significantly higher
than that of the control [29].

Depending on the xenobiotic compound, in this case, pesticides, wide variety of
metabolites can be formed. These formed metabolites can be seen in blood, as well as in
urea, of pesticide exposed individuals [30,31], and they can be more toxic than the original
pesticide itself. During the metabolism activation of the pesticide happens, this may causes
the increase in toxicity this is called bio activation [32]. A prime example of bioactivation is
the biotransformation of dichlorodiphenyltrichloroethane (DDT—which is not highly toxic
to birds), into dichlorodiphenyldichloroethylene (DDE), which causes thinning of eggshells
because it disrupts calcium metabolism [33]. Costa LG [34] reported that the metabolites
formed during the metabolisms of organophosphate (OP) are more toxic. For example,
oxons are produced during the metabolisms of OP and it can bind to cholinesterase or
undergo hydrolysis to a dialkyl phosphate and a hydrolyzed organic moiety specific to
the pesticide [35]. Cloyd [36] reported that the metabolites of chlorfenapyr, indoxacarb,
malathion, and imidacloprid are active, and these metabolites may have a different mode of
action when compared with the original pesticide. Sandrini et al. [37] found that metabolites
of glyphosate inhibiting activity. In the case of chlorpyrifos metabolite, oxon is more toxic
chlorpyrifos itself. Ethylenethiourea is the metabolite formed form dithiocarbamates, and
it has been proven that ethylenethiourea can induce thyroid cancer and modify thyroid
hormones [38]. Amorós et al. [39] reported that the metabolites of Fenitrothion are more
toxic than the original compound. Quinalphos metabolite 2-hydroxyquinoline (HQ) has
been shown to photo catalytically destroy antioxidant vitamins and biogenic amines
in vitro. Riediger et al. [40] investigated the toxicity, cellular stress, and mutagenicity of
HQ and found it causes oxidative damage and mutations. DDT and its metabolites has an
endocrine disrupting effect, and this is more extreme in metabolites [41].

There is a lack of insight regarding the toxicity of pesticide metabolites. It is very
important to take metabolites into account when investigating the relationship between
CKDu and pesticides. A hypothesis can be made stating that pesticide metabolites can
also affect oxidative stress and important renal enzymes. In order to study this hypothesis,
metabolites of acephate (AC), chlorpyrifos (CP), diazinon (DZ), dimethoate (DM), fenthion
(FN), fenamiphos (FM), phenthoate (PH), profenofos (PF), quinalphos (QP), imidacloprid
(IM), and Glyphosate (GP), Figure 1 shows the metabolites of each pesticide, which are
considered in this paper. Table S1 indicates the names of the pesticides and metabolites
considered in the present study. Since mostly marketed and used pesticides are racemic
mixtures, chirality of pesticide structures were not considered.
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Figure 1. Structures of pesticides and metabolites evaluated in this work. Acephate (AC), chlorpyrifos (CP), diazinon (DZ),
dimethoate (DM), fenthion (FN), fenamiphos (FM), phenthoate (PH), profenofos (PF), quinalphos (QP), imidacloprid (IM),
and Glyphosate (GP) pesticides and their metabolites, which were experimentally found in urine and and blood samples of
poisoned individuals are shown in the figure. The full names for the pesticides and metabolites are mentioned in Table S1.
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Even though there is a lot of research conducted on CKDu, a molecular level explana-
tion on CKDu has not been put forward. In the present study, a computational approach
was used in order to study the interaction of a selected pesticide and their metabolites
with the above-mentioned target proteins that are involved in human renal function. Fur-
ther, this study investigates the effects of pesticide metabolites on CKDu, which is an
uncovered area.

2. Materials and Methods
2.1. Ligand Preparation

The structures of pesticides and their metabolites were prepared using Avogadro
software [42], and all the electronic structure calculations were performed using Gaussian
09 software [43]. The structures were optimized using density functional theory (DFT)
method with B3LYP functional [44,45] and 6-311G++(d, p) basic set. The vibrational
frequencies of each molecule were observed after optimization to identify any imaginary
frequencies, and imaginary frequencies were not observed for the considered structures,
indicating that the geometries are at energy minima.

2.2. Protein Structure Preparation

AMPK, PKC, GLS, ASK1, AChE, CP450, and GST proteins were used in the present
study. The starting coordinates for each protein were taken from X-ray crystallographic
structures: PDB IDs 6C9G [46] for AMPK, 2I0E [47] for PKC, 3VP1 [48] for GLC, 3VW6 [49]
for ASK1, 6NEA [50] for AChE, 3NXU [51] for CP450, and 1AQW [52] for GST. If there
were missing amino acids, the following steps were followed to add the missing amino
acids and build a new model. First, the RCSB protein data bank was searched for proteins
with ≥80% similar sequence to the protein of interest using the BLAST server [53]. Next,
the Modeler 9.22 software package [54] was used to add the missing AA and build a new
model. The model with least Discrete Optimized Protein Energy (DOPE) score was selected
for verification of the models. Protein structures were subjected to testing. Verify3D [55],
ERRAT [56], and PROCHECK [57], under the SAVES v5.0 server, together with ProSA [58],
were used to evaluate the validity of the protein structures. The results of these tests are
tabulated in Table S2. Finding the protein active sites and substrate-binding sites was done
using the GASS-WEB server (Table S4) [59]. All of the above-found amino acid sequences
were subjected to NCBI-VAST database search [60] in order to confirm results.

2.3. Molecular Docking Details

Protein and ligand pdbqt files were loaded to AutoDock Tool 1.5.6 AutoDock 4.2 [61]
(.dpf), and Autogrid 4.2 (.gpf) files were generated. Autogrid 4.2 was used to generate
the grid parameter files and map files. The genetic algorithm parameters were set as
follows; the number of genetic algorithms (GA) runs: 100, population size: 300, the
maximum number of evaluations: 25,000,000, and the other setting were set to default
values. AutoDock 4.2 was used for docking, and docking log files (.dlg) were generated.
Table S3 shows AutoDock 4 grid parameters.

2.4. Molecular Dynamics Simulation Details

Protein-pesticide metabolite complexes with the best negative binding energies from
docking studies were selected to perform molecular dynamics (MD) simulations in order
to get further details about the pesticide metabolite binding with the proteins. Further, in
order to perform a comparison, MD simulations were carried out for the protein–parent
pesticide molecule complexes of the pesticide metabolites which were considered for MD
simulations and also for the apo-enzymes. Table 1 shows the proteins, and corresponding
pesticide and metabolite molecules considered for the MD simulations. In the case of
PKC, M4 had the most negative binding energy. However, according to Casida et al. [62],
Imidacloprid has higher potential to cause dysfunction of PKC. Therefore, PKC-6CIPHD
and PKC-IM complex were used for the MD simulations.
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Table 1. Protein-pesticide and protein-pesticide metabolite complexes which were considered for the
molecular dynamics (MD) simulations.

Protein Pesticide Metabolite of the Pesticide

AChE FM FMS

AMPK FN FNS

ASK1 FM FMS

GST IM 6-CIPHD

PKC IM 6-CIPHD

MD simulations for all the protein-ligand complexes and apo-enzymes were per-
formed using GROMACS (version 2016.3) [63] software package, using CHARMM36 force
field [64] and TIP3P water model [65]. The protein-ligand complex was centered in a
periodic box with a minimum distance of 1.0 nm between protein and any side of the box.
The system was solvated with water, and Na+ and Cl-ions were added, replacing solvent
molecules, in order to neutralize the systems at a 0.15 M salt concentration. The box sizes
and number of water molecules for each system are mentioned in Table S5.

The LINCS bond length constraint algorithm [66] was used to constraint bond lengths.
Particle Mesh Ewald summation [67] was used for electrostatic interactions, and grid
spacing of 0.12 nm combined with an interpolation order of 4 was used for long-range
interactions. For van der Waals interactions, a cut-off of 1.4 nm was used. Energy minimiza-
tion was performed using steepest descent algorithm [68]. The systems were gradually
heated from 50 K to 300 K throughout a 200 ps time. Finally, the production runs were done
in NPT ensembles at 300 K using V-rescale thermostat [69] and at 1 bar using Berendsen
barostat [70]. Results of the all the simulations were obtained after 50 ns production runs
with 2 fs time steps, and three multiple trajectories were generated for the each system
using different randomly assigned initial velocities.

2.5. Validation of the Theoretical Approach

Inhibitors and activators are commonly found in protein structures are deposited in
the RCSB protein data bank. The structures of the inhibitors or the activators were taken
from the PubChem database, and they were optimized using the same level of theory,
which was used for the optimization of pesticides and their metabolites. These optimized
structures were used as ligands for docking analysis. The activators and inhibitors were
docked to their corresponding proteins using the same docking protocol which was used
for the docking of protein and pesticides or their metabolites. The binding energies of the
docked conformation were analyzed using AutoDock Tools 1.5.6. The binding residues
of the docked conformations were compared to the binding residues stated in literature
as a validation method for the docking protocol used in the present study. Further, as
mentioned before, multiple trajectories were generated for each protein and pesticides or
their metabolites systems during MD simulations, in order to confirm the possibility of
obtaining consistent results and also for the statistical analysis.

2.6. Analysis

The docking results were analyzed using AutoDock Tool 1.5.6 to examine the binding
energies. The binding pocket of the ligand was analyzed using Ligpot+ V.2.2 [71]. The
protein-ligand interaction profiler [72], an online web-based service, was also used to
validate the binding residues found by Ligpot+ V.2.2.

The resulting 50 ns MD trajectories of systems were analyzed by plotting radius
of gyration (Rg) and root mean square deviation (RMSD) using GROMACS software
package, to evaluate the stability of the protein-ligand complexes throughout the simulation
time. In order to explain the better binding energies between protein and considered
pesticide metabolites, with the help of atomistic details, hydrogen bond analysis, root mean
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square fluctuations (RMSF), and solvent accessible surface area (SASA) calculations were
performed using GROMACS software package. In order to quantify the strength of the
interaction between protein–ligand complexes, the non-bonded interaction energies were
calculated between protein and ligands, using GROMACS software package. The binding
free energy summation of the polar, non-polar energies, and non-bonded interaction
energies (Vander Waals and electrostatic interaction) was calculated using the MM-PBSA
method [73]. Further, interaction entropies were calculated for the protein-ligand complexes
following the interaction entropy paradigm by Duan et al. [74].

In order to investigate the eigenvectors which play an important role in protein
motions during ligand binding, principal component analysis (PCA) was performed using
Bio3D package [75].

Rg, RMSD, RMSF, SASA, and hydrogen bond analysis plots were obtained for the
individual trajectories, and they were averaged over multiple trajectories. Hydrogen bond
lifetimes and radius of gyration values were averaged over multiple trajectories, and
standard deviations were calculated and reported. Since the consistency was observed
over multiple trajectories, PCA results were presented for a single trajectory in the present
study.

3. Results
3.1. PDB Structure Refinement and Model Validation

PDB structure refinement was done for the AMPK, PKC, ASK1, AChE, and CP450
proteins by adding missing amino acids. These amino acids have to be added as these
flexible regions may be involved in the active site of enzymes. Modeler model building
software is used to build new models. Modeler needs template structures for its function.
These templates have to have ≥ 80% similarity to the protein of interest. The BLAST
server was used to find the homology sequences, and the results of the BLAST search are
mentioned in Table S6. The model with the least DOPE score was selected and used for
the model validation. The three-dimensional models of the studied eight proteins were
validated by VERIFY3D score [55]. VERIFY3D analyzed the compatibility of an atomic
model (3-D) with its own amino acid sequence. Seven out of eight models passed the
VERIFY3D test. The passed residues have a score of greater than 0.2 and this dictated
the quality of the model (Table S6). The ERRAT server [56] is used for analyzing the
statistics of non-bonded interactions between different atom types, and scores greater than
50 are normally acceptable. For all eight models, ERRAT score varies from 85.62 to 99.00.
(Table S6), which fall within the normal range for high quality model. ProSA [58] is widely
used to check for potential errors in 3-D protein structure models. The Z-score shows the
cumulative reliability of the model and analyses the variance of the cumulative structural
energy from the distribution of energy from spontaneous conformations. The ProSA score
was negative for the modeled protein, indicating its validity. ProSA score varies from
−3.8 to −9.93 (Table S6). Further, the geometries of 3-D structures were evaluated using
Ramachandran plot calculations with PROCHECK [57]. Stereochemical evaluation of
backbone Psi (Ψ) and Phi (Φ) dihedral angles of five human proteins were revealed in
different percentages, i.e., 87.7–94.4%, 5.1–11.2%, and 0.5–1.1%. Residues were diminished
within the most favored regions, additionally allowed regions, and generously allowed
regions, respectively. The dihedral angles revealed that some residues like 0.0–0.3% are
on disallowed regions of Ramachandran plot. The models have a normal distribution of
residue types over the inside and the outside of the protein structures. Therefore, it can
be stated that the overall results from VERIFY3D score, ERRAT score, ProSA score, and
PROCHECK validated the selected protein models.

3.2. Protein Active Site Prediction Analysis

Finding the protein active sites and substrate-binding sites was done using the GASS-
WEB server [59]. The GASS-WEB server consists of active-site models and their respective
Protein Data Bank structures. GASS-WEB uses the Catalytic Site Atlas (CSA) models of
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1691 catalytic site. The database is also composed of 1819 binding site templates from CSA
and 23,318 enzymes from the NCBI-VAST non-redundant database. This indicates the
reliability of the result when it is proven to be correct by the NCBI-VAST database search.
Table S5 shows the verified results of active site analysis. Three possible catalytic and
binding site options with the least fitness score were recorded to increase the possibility of
getting the true binding site.

Tuck and coworkers conducted an analysis of the active site of CP450 [76]. They
found the residues PHE87, TYR96, ILE395, VAL295, VAL396, THR252, VAL247, LEU244,
and THR185 to be in the active site of CP450. Out of these 9 amino acids, 5 of them were
predicted by GASS-WEB server. The active site of GLS has been, analyzed by Thangavelu.
K and coworkers [77]. SER286, TYR249, ASN335, GLU381, ASN388, TYR414, TYR466,
and VAL484 are the residues found to be in the active site [77]. These residues werealso
predicted correctly according to GASS-WEB server results. The active site residues of GST
were reported as SER65A, ASP98B, GLN64A, LEU52A, TRP38A, LYS44A, and GLN51A [52].
Residues TRP279, TYR334, ASP72, TRP84, SER200, PHE331, and TYR121 are found to
be in the active site of AChE [78]. The correct prediction of the binding residues dictates
the accuracy of the GASS-WEB server. Therefore, it can be used to predict the active
site of enzymes whose active site data are not found in literature. The compatibility of
theoretical predictions with the real world further dictates the high quality of protein
models. ATP binding sites of ASK1 are GLN756, LEU686, GLY687, MET754, PHE823,
VAL810, and ASN808 [79]. The Autophosphorylation sites of ASK1 are THR813, THR838,
and THR842 [79]. These three sites are important in the regulation of ASK1 [79]. GLU725,
LYS709, SER826, ASP822, PHE823, and GLU837 are parts of the activation site of ASK1 [79].
GO 6983 is an inhibitor that binds to the active site of PKC. GLU421, THR404, VAL356,
LEU348, ASP484, ALA483, and PHE353A are residues involved in the binding of G0
6983 [80]. The other important residues of the catalytic domain of PKC are THR500,
THR641, and SER600, which are autophosphorylation sites of PKC and PHE629, which is
an ATP binding residue [80]. Though diacylglycerol and phosphatidylserine binds residues
are important, they are found in the C2 domain of PKC and not the catalytic domain [81].
AMPK has may important regions. It has three AMP binding regions, autophosphorylation
sites at THR12 and 148, regulatory spin at LEU68, LEU79, HIS137, and PHE158 [82]. The
active site residues of AMPK are LYS47, LEU29, VAL26, ALA45, GLU96, TYR97, VAL98,
SER99, LEU148, ALA158, ASP159, GLU145, ASN146, and GLU145 [83]. PKD 2 has an ATP
binding site, which controls the phosphorylation process [84]. Pyrazolo[3,4-d]pyrimidine
derivative binds to the ATP binding site of PKD 2. The active site location is very important
when analyzing docking results. When the docked location of a particular ligand is
close or at the active site, the effect of that particular ligand on the protein function is
more pronounced.

3.3. Molecular Docking

When considering all the proteins, the average binding energies of the eleven pesti-
cides and metabolites range from −4.34 kcal/mol to −6.69 kcal/mol. The highest average
binding energy was shown by FM and its metabolites. The lowest average binding energy
was shown by AC and its metabolites. This variation of binding energies can be clearly
seen in Figure 2. Table S7 shows the residues responsible for ligand-protein interactions
and the types of dominating interactions by each residue. The most stable interaction
was observed between FMS metabolite and AChE (−8.22 kcal/mol). The second most
stable interaction was observed between M4 metabolite and AChE (−8.17 kcal/mol), and
the third most stable docking was observed between IM pesticide molecule and CP450
with the binding energy of −7.88 kcal/mol. The fourth strongest interaction was observed
between FMS and PKC with the binding energy of −7.83 kcal/mol, and the fifth strongest
was observed between GLS and FMS metabolite (−7.75 kcal/mol). It is interesting to see
that, out of the above discussed five cases, the metabolites were observed in four of them.
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The docked positions for the above mentioned five cases with the highest binding energies
can be seen in Figure 2.

Figure 2. The binding pocket and the non-covalent interactions formed between (A) Acetylcholinesterase (AChE) and FMS,
(B) AChE and M4, (C) CP450 and IM, (D) Glutaminase (GLS) and FMS, and (E) Protein Kinase C (PKC) and FMS.

MED, DEP, DETP, MMP, DMP, and DMTP, which are of monoalkyl and dialkyl phos-
phates or monoalkyl and dialkyl thiophosphate metabolites of AC, CP, DZ, DM, PH, and
QP show the average binding energies of−3.80 kcal/mol,−4.66 kcal/mol,−4.18 kcal/mol,
−4.31 kcal/mol, 4.37 kcal/mol, and −4.05 kcal/mol, respectively. This variation of binding
energies can clearly be seen in Figure 3. ARG, ASN, GLN, GLU, TRP, and LYS are major
interacting amino acids found in the binding pocket. The major type of interactions with
the binding pocket are salt bridges and H-bonding. It can be seen in Figure 3, when the
binding energies of pesticide GP pesticide and its metabolite AMPA are compared, there
is an average of 0.84 kcal/mol difference between binding energies of AMPA and GP. GP
forms H-bonding, and salt bridges, as the dominant interactions with amino acid residues
of the binding pocket, whereas AMPA form H-bonding as the dominant interaction. A
detailed description of the binding pockets can be seen in Table S7.
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Figure 3. Graphical representation of variation of binding energies kcal/mole (BE) of eight different proteins, i.e., (A)
AChE, (B) Adenosine monophosphate (AMP) Activated Protein Kinase (AMPK), (C) Apoptosis Signaling Kinase 1 (ASK1),
(D) Glutathione S Transferase (GST), (E) PKC, (F) GLS, and (G) CP450 with eleven pesticides and their metabolites.

According to Figure 3, when the binding energy of AC pesticide (average bind-
ing energy = −4.05 kcal/mol) compared with its metabolite MED (average binding
energy = −3.86 kcal/mol), AC has a higher binding affinity with all the proteins con-
sidered. The number of residues involved in AC binding is higher when compared with
MED. It can be seen in Figure 3, when binding energies of CP pesticide compared with its
metabolites (TCP, DEP, and DETP), CP has the highest binding affinity, except in one case.
TCP manages to outbound with respect to enzyme PKC. As discussed above, DEP and
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DETP, which are dialkyl phosphates and thiophosphates, have the least bind affinities. CP
has an average binding energy of −5.91 kcal/mol, whereas TCP has an average binding
energy of −5.2 kcal/mol. CP forms H-bonding, halogen bonding, and п-пstacking as
the major types of interactions. TCP metabolite forms H-bonding and halogen bonding.
Further, hydrophobic interactions can be seen between aromatic amino acids and TCP
aromatic rings.

As can be seen in Figure 3, binding energy variation trend of DZ pesticide and its
metabolites is somewhat similar to that of CP. In this case, DETP and DEP metabolites
have the least binding energies. On average, DZ pesticide molecule has the highest
binding energy, which is equal to −6.02 kcal/mol, whereas IMP metabolite has an average
binding energy of −5.68 kcal/mol. When considering enzyme PKC, IMP metabolite has
−0.88 kcal/mol higher binding energy than DZ pesticide molecule. DZ forms H-bond,
π-π stacking, π-cation interactions, and hydrophobic interactions. On the other hand, IMP
metabolite forms H-bonding, π-π staking, salt bridges, and hydrophobic interaction as the
major type of interactions. According to Figure 3, when analyzing the variation of binding
energies of DM and its metabolites MMP and DMP, an interesting change of the trend
can be seen. In all of the above-discussed cases, di and mono alkyl phosphates have low
binding energies compared to parent pesticide. But, in this case, DMP and MMP also have
high binding energies compared to DM pesticide. The average binding energies of DM,
MMP, and DMP are −4.47 kcal/mol, −4.37 kcal/mol, and −4.31 kcal/mol.

FN pesticide forms 4 different metabolites. According to Figure 3, all the 4 metabo-
lites of FN (FX, FXS, FNS, and FXSX) have higher binding affinity than the parent pesti-
cide. The average binding energies of FN, FX, FNS, FXS, and FXSX are −5.78 kcal/mol,
−6.02 kcal/mol, −6.80 kcal/mol, −6.86 kcal/mol, and −6.47 kcal/mol, respectively. The
order of increasing binding affinity of proteins to FN and its metabolites are
PDK 2 < AMPK < CP450 < GST < ASK1 < PKC < GLS < AChE. When FN change to FXS,
the binding energy increased by −1.1 kcal/mol. When comparing FNS and FNSX, the
binding energy decreased by 0.39 kcal/mol. The same pattern can be observed with re-
spect to FX and FXS. When comparing FN with FXSX, an increment of −0.69 kcal/mol
can be seen. FN and metabolites make H bonds, salt bridges, and π-π staking. Due to
the presence of aromatic ring, all the metabolites make hydrophobic interactions with
hydrophobic residues of the binding pocket. FM also has 4 metabolites (FMS, FMSX, DFS,
and DFSX), and it can be seen in Figure 3 that all the metabolites outbound the parent
pesticide molecule. The average binding energies of FM, FMS, FMSX, DFS, and DFSX are
−6.34 kcal/mol, −7.15 kcal/mol, −6.74 kcal/mol, −6.66 kcal/mol, and −6.50 kcal/mol,
respectively. The order of increasing binding affinity of proteins to FN and its metabolites
are GLS < PKC < ASK1 < GST < CP450 < AMPK < AChE. When comparing FM with FMS,
the binding energy increased by 0.81 kcal/mol. When we compare FMSX with FMS, the
binding energy decreased by −0.40 kcal/mol. When FMS compared with DFS the binding
energy decreased by 0.6 kcal/mol. The same trend can be seen when FMSX compared to
DFSX. FM makes H-bonds and π-cation interactions. FMS and FMSX make H-bonds and
π–π stacking. DFS and DMSX have H-bonding and DFSX has salt bridges and π-cation in-
teraction. As FM and all the metabolites have an aromatic ring, it has formed hydrophobic
interactions with hydrophobic patches of the binding pocket.

When analyzing PH pesticide and one of its metabolites, PC, neglecting DMTP,
which is another metabolite, there is very little variation of binding energies between
them (Figure 3). The average binding energies of PH, PC, DEMPA, DEMP, DEMPOA,
DEMPO, and DMTP are−5.88 kcal/mol,−6.13 kcal/mol,−6.04 kcal/mol,−6.05 kcal/mol,
−6.27 kcal/mol,−6.00 kcal/mol, and−4.05 kcal/mol, respectively. The pesticide molecule
PC has −0.25 kcal/mol higher binding energy than its metabolite PH. When comparing
PH with its metabolite DEMP, this metabolite has higher binding energy than PH. When
DEMPOA is compared with DEMPA, binding energy increased by 0.23 kcal/mol. On the
other hand, when DEMPO is compared to DEMP the binding energy decreased. PH and all
its metabolites expect DMTP makes H-bonding and salt bridges with the binding pocket.
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Amino acid ARG makes π-cation interaction with the aromatic ring of PC. π-π staking
can also be seen to be formed with the aromatic ring of the ligand and amino acids, such
as TRP, HIS, and PHE. As can be seen in Figure 3, the average binding energy of PF, M1,
M3, and M4 are −6.26 kcal/mol, −6.44 kcal/mol, −6.01 kcal/mol, and −6.54 kcal/mol.
Therefore, it can be stated that M1 metabolite has higher average binding energy compared
to the PF parent pesticide. M1 is the only molecule out of PF category to make salt bridges.
H-bonding and π-π staking residues of M1 and M3 binding are similar to that of PF. In M4,
in addition to H-bonding and halogen bonding, Л-cations interactions can also be observed
with HIS. The nonpolar regions of the four molecules can make hydrophobic interactions.

The only metabolite of QP pesticide forms other than DEPT is HQ. According to Figure 3,
the average binding energies of QP and HQ are−6.44 kcal/mol and−5.69 kcal/mol. Metabo-
lites of IM (IG, 6-CIPHD, and 6-CINA) have lower binding affinities compared to the
parent pesticide molecule. Average binding energies of IM, IG, 6-CIPHD, and 6-CINA are
−6.67 kcal/mol, −6.31 kcal/mol, −6.39 kcal/mol, and −5.96 kcal/mol, respectively. IM
makes H-bond, salt bridges, and halogen bonding. In addition to the above-mentioned
interactions, π-π staking and π-cation interactions can be seen in IG. Binding residues
involved in 6-CIPHD and 6-CINA are similar to that of IM and IG.

3.4. Validation of the Docking Approach

Inhibitors and activators are commonly found in protein structures are deposited in the
RCSB protein data bank. The activators and inhibitors were docked to their corresponding
proteins using the same docking protocol which was used for the docking of protein
and pesticides or their metabolites. The theoretical model is validated by comparing the
theoretical binding residues with the binding residues from literature. Table 2 contains
the comparison data. As shown in the data, there is very little deviation between the two
locations. This confirms the validity of the theoretical model.

3.5. Analysis of the Docked Location

To have a clear idea about the effect of particular ligand on a protein, the docked
location of the ligand has to compare with the important sites of the protein. These
important sites can be the active site, reactivator site, and inhibition site. When the ligand
binds to the active site of the enzyme it can acts as competitive inhibitors. Figure 4A
shows the active site and reactivator site of AChE protein, and it can be seen that, in AChE,
the active site and the reactivator sites are situated somewhat closer to one another. In
fact, TYR341 and PHE338 are both in the active site and reactivator site. As can be seen
in Table S7, AC, MED, CP, DEP, DETP, DZ, DM, FN, FX, FNS, FXS, FXSX, DFD, DFEX,
FM, FMS, FMSX, PH, DEMP, DEMPO, PF, M3, M4, 6-CIPHD, QP, and HQ were bound
to the active site of the enzyme. FM, FN, and their metabolites were bound right inside
the binding pocket more perfectly than other ligands. The binding patterns indicates that
TYR341 and PHE338 are very important for binding. TCP, IMP, MMP, DMP, DEMPA, PC,
DEMPOA, M1, IG, IM, 6-CINA, GP, and AMPA are bound to other sites away from the
active site and reactivation side. Even though AMPA was bound away from the active site,
the bound location was closer to the active side than in the case of GP. According to Table S5,
another interesting observation is that 6-CIPH, which is a metabolite of organochlorine,
can also bind to the active site of AChE as organophosphates with roughly similar binding
affinity (Figure 3).
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Table 2. The comparison between the binding site residues found in literature and theoretical binding residues found
by docking.

Protein Chemical Identity Action Binding Residues
From Literature

Binding Energy
(kcal/mol)

Theoretical Binding
Residues

AMPK

5-{[6-chloro-5-(2′-
hydroxy[1,1′-

biphenyl]-4-yl)-1H-
benzimidazol-2-

yl]oxy}-N-hydroxy-2-
methylbenzamide

Activator

ARG83B, ASN50A,
VAL113B, ASP108B,

GLY30A, LY33A,
ILE48A, VAL13A,

LEU20A, VAL81B [46]

−9.52

ARG83B, ASN50A,
VAL113B, ASP108B,

GLY30A, LY33A,
ILE48A, VAL13A,

LEU20A,

PKC

3-{1-[3-
(dimethylamino)propyl]-

2-methyl-1h-indol-3-
yl}-4-(2-methyl-1h-

indol-3-yl)-1h-pyrrole-
2,5-dione

Inhibitor

GLU421A, THR404A,
VAL356A, LEU348A,
ASP484A, ALA483A,

PHE353A [47]

−8.42

GLU421A, THR404A,
VAL356A, LEU348A,
ASP484A, ALA483A,

PHE353A

GLS

5,5′-
(sulfanediyldiethane-

2,1-diyl)bis(1,3,4-
thiadiazol-2-amine)

Inhibitor LEU323A, TYR394A
[48] −9.37 LEU323A, TYR394A

ASK1

4-tert-butyl-N-[6-(1H-
imidazol-1-

yl)imidazo[1,2-
a]pyridin-2-

yl]benzamide

Inhibitor

LYS709A, PRO758A,
VAL649A, LEU810A,
ALA707A, VAL757A

[49]

−8.25
LYS709A, PRO758A,
VAL649A, ALA707A,

VAL757A

AChE

1-[({2,4-bis[(e)-
(hydroxyimino)methyl]

pyridinium-1-
yl}methoxy)methyl]-4-
carbamoylpyridinium

Reactivator

TYR337A, PHE338A,
TYR341A, TRP286A,
VAL282A, ASP74A,
SER125A, ASN87A,
TYR72A, TYR124A

[50]

−7.98

TYR337A, PHE338A,
TRP286A, VAL282A,
SER125A, ASN87A,
TYR72A, TYR124A

When analyzing the results of CP450 protein interaction with pesticide, the binding
pocket of Ritanovir and active sites can be taken as reference points. As can be seen in
Figure 4B, these two sites are situated somewhat close to each other. The two pockets do
not have any common residues. None of the ligands bound to the active site. But CP binds
to a site, which has high proximity to the active site. TCP, DZ, PF, PC, M4, and QP manages
to bind in the vicinity of the inhibitory site. But none of them were able to fully occupy the
inhibitory pocket. Ligands other than the ones mentioned above binds to CP450 at very
distal locations to the active site and inhibitory site. When considering the binding location
of ligands to GLS protein, for pesticides and metabolites, binding site was different than
the active site (Figure 4C). However, FN, FM, PH, CP and their metabolites and QP bind to
a site proximal to the active site. On the other hand, DM, MMP, DMP, GP, AMPA, 6 CINA,
6-CIPHD, HQ, DZ, and DMP bound to distal locations from the active and inhibitory sites.
Another interesting observation is that AC manages to bind to the inhibitory site perfectly,
and IG manages to bind near the inhibitory site.
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Figure 4. The surface topological view of enzymes where the binding location of ligands are shown relative to important
site of enzymes. (A) AChE, blue—activity site residues, red—reactivator sit residues, purple—residues that are part of both
active and reactivator site. (B) CP450, blue—activity site residues, and red—reactivator site residues. (C) GLS, blue—activity
site residues, red—inhibitor site residues. (D) PKC, blue—autophosphorylation site residues, purple—active/inhibitory
site residues and yellow—ATP binding site residues. (E) GST, blue—activity site residues, red—inhibitor site residues.
(F) ASK1, yellow—activity site residues, green—ATP binding site, red—inhibition site, and blue—autophosphorylation site.
(G) AMPK, blue—activity site residues, green—AMP binding site, and orange—activator site.

GST protein is inhibited by Ethacrynic Acid (EA) [85]. The binding residues of GST
which participated in the binding of EA are GLN39, ILE103, and PHE8. Figure 4E shows
the inhibitory site and active site of GST protein, along with the pesticide and ligand
binding. Ligands TCP, DETP, DFSX, PH, IG, 6-CIPHD, QP, and HQ bind to the active site
or a site which is very proximal to the active site. MED, DM, FNS, FN, DEMP, DEMPO,
DEMPOA, and AMPA bound to sites which are distal when compared with the above
instance. However, the binding site may be close enough to cause problems in the active
site. IM and AC binds to the inhibition site. DEP, CP, MMP, DMP, FX, FXS, FXSX, FM, FM,
FMS, FMSX, DFS, DMTP, PC, PF, M1, M3, M4, 6-CINA, and QP binds to sites which are far
away from the active site and inhibition site. ASK1 has 4 important sites: the active site,
ATP binding site, autophosphorylation site, and inhibition site [79]. These sites are shown
in Figure 4F. The active site, ATP binding site and autophosphorylation site are located in
the same pocket. A ligand bound to this pocket can effectively block the active site and
ATP binding site or may act as an inhibitor [79]. FN and FM pesticides and their all the
metabolites bind perfectly to the above mentioned pocket. Further PH pesticide and its
metabolite DEMP, PF pesticide and its metabolite M3, and few other metabolites, namely
TCP, IMP, and HQ bind perfectly to the same pocket. DM, QP, PC, DEMPA, DEMPO, and
DEMPOA bind proximal to the opening of the above mentioned pocket. AC, MED, DZ,
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MMP, DMP, DMTP, CP, DEP, DETP, and all the metabolites and parent molecule of IM and
GP bind to sites which are far away from the active site, and their effect is minimal.

When analyzing docked locations of PKC protein, it can be observed that, out of all
the ligands, only FN, FM, and 6-CIPHD are bound to the active site of PKC (Figure 4D).
AMPA bind to a location that is proximal to the active site. All the ligands except the
ones which are mentioned above bound to locations other than the active site, the three
autophosphorylation sites, and the ATP binding site. As mentioned earlier, there are many
functionally important sites in AMPK. The active site, binding site, activator site of AMPK
protein, and pesticide bindings are shown in Figure 4G. Out of all the ligands, only TCP
and QP bind to the active site of AMPK. AC, DETP, CP, DZ, TMP, DM, IM, 6-CINA, and all
the metabolites and parent pesticide molecules of FN, PH, PF, and FM, except DFSX, bind
to sites which are in very close vicinity to the AMP binding sites. MED, DEP, MMP, DMP,
DFSX, IG, 6-CIPHD, HQ, GP, and AMPA did not bind in the vicinity of any important sites.

3.6. Molecular Dynamics Simulations

Protein-pesticide metabolite complexes with the best negative binding energies were
subjected to molecular dynamics (MD) simulations in order to get further details about the
pesticide metabolite binding with the proteins. Further, in order to perform a comparison,
MD simulations were carried out for the protein-parent pesticide molecule complexes of the
pesticide metabolites, which were considered for MD simulations. Simulation details are
explained in the Methodology section, and the three multiple trajectories were generated
for protein-metabolite systems using different randomly assigned initial velocities, in order
to confirm the possibility of obtaining consistent results and also for the statistical analysis.
All the graphs and the values available below are results which have been averaged
over multiple trajectories. All the studied protein-ligand systems showed good stability
throughout the 50 ns simulation time. All the calculations were performed using 50 ns
simulation trajectories.

3.6.1. Root Mean Square Deviation (RMSD)

The stability of the protein-ligand complex systems with highest binding energies
according to docking, was analyzed based on the root mean square deviation (RMSD).
Figure 5 shows the RMSD plots for protein-pesticide metabolite complexes with the best
negative binding energies (red), along with the relevant protein-parent pesticide complex
(black) and apo-enzyme (blue). RMSD plots for protein-metabolite complexes are the
average of three trajectories with different initial velocities. According to RMSD, all
the protein-ligand complexes show stability in 50 ns simulation. In the case of AChE-
FMS protein-metabolite complex, average RMSD is 0.21 (±0.02) nm, whereas the relevant
protein-parent pesticide complex (AChE-FM complex) shows average RMSD of 0.21 (±0.02)
nm, which are similar to RMSD for apo-enzyme 1.91 (±0.02) nm. AMPK-FNS protein-
metabolite complex has average RMSD 0.47 (±0.08) nm, and the relevant protein-parent
pesticide complex (AMPK-FN complex) has a better average RMSD of 0.45 (±0.08) nm.
Even though RMSD for protein-ligand complexes are fairly high, they are in the same range
as RMSD of apo-enzyme AMPK (0.41 ± 0.06 nm). In the case of GST–6-CIPHD protein-
metabolite complex, average RMSD is 0.20 (±0.02) nm, whereas the relevant protein-parent
pesticide complex (GST-IM complex) shows average RMSD of 0.22 (±0.03) nm, and apo-
enzyme GST shows similar RMSD of 0.18 (±0.02 nm). For ASK1-FMS protein metabolite
complex, average RMSD is 0.24 (±0.02) nm, which is similar to the ASK1-FM relevant
protein–parent pesticide complex (0.21 ± 0.02 nm) and apo-enzyme ASK1 (0.29 ± 0.02 nm).
PKC–6-CIPHD protein-metabolite complex has a better average RMSD of 0.24 (±0.02) nm
when compared with the relevant protein-parent pesticide complex (PKC-IM complex)
average RMSD of 0.29 (±0.07) nm and apo-enzyme PKC RMSD of 0.28 (±0.02 nm).



Biomolecules 2021, 11, 261 16 of 32

Figure 5. Plot root mean square deviation (RMSD) (nm) versus simulation time (pS), where black, red, and blue color plots
represent the parent pesticide, metabolite, and apo-enzyme, respectively. (A–E) indicate AChE-FM/FMS, AMPK-FN/FNS,
ASK1-FM/FMS, GST-IM/6-CIPHD, and PKC-IM/6-CIPHD complexes, respectively.

The RMSD results of protein-ligand complexes considered in MD simulations reveal
the stability of both the protein-pesticide complexes and protein-metabolite complexes.
However, GST-IM, GST-6-CIPHD, and PKC-IM complexes shows significant drifts in
RMSD. Therefore, per-frame backbone RMSD matrix calculation was performed for these
three complexes and AMPK-FN/FNS complexes which show high RMSD. Backbone RMSD
matrix calculation results can be seen in Figure S2. RMSD matrix with the smallest pairwise
RMSD are in blue, while the largest RMSD is in dark red. It is visible according to per-
frame RMSD matrix that, in the case of GST-IM, GST-6-CIPHD, and PKC-IM complexes,
where the significant RMSD shifts can be seen, structures shift to a state which is a drifted
structure relative to the reference structure. Therefore, an argument can be made that these
states can be alternative stable states.

3.6.2. Radius of Gyration (Rg)

Since radius of gyration is an indicator of protein compactness, which can assess
the protein-ligand complex stability/ instability [86], the plots of Rg as a function of time
for all the protein-metabolite complexes (red), protein-pesticide complexes (black), and
apo-enzymes (blue) which were studied by MD simulation are shown in Figure S3. The
average Rg values of protein-ligand complexes and native protein are shown in Table 3,
and a similarity of Rg values was observed for both the protein-pesticide complexes and
protein-metabolite complexes compared to the native protein. This indicates the stability
of both the protein-pesticide complexes and protein-metabolite complexes.
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Table 3. Radius of gyration of the crystal, protein-ligand complex, and protein during the MD simulation.

Protein
Rg of Crystal

Structure of Protein
(nm)Metabolite

Average Rg and Standard Deviation of Protein
Ligand Complex During MD Simulation

Average Rg and Standard Deviation of
Protein during MD Simulation

Metabolite Parent Pesticide Metabolite Parent Pesticide

AChE 2.266 2.308 (±0.041) 2.308 (±0.083) 2.312 (±0.001) 2.312 (±0.001)

ASK1 1.901 1.957 (±0.013) 1.918 (±0.008) 1.939 (±0.001) 1.924 (±0.001)

PKC 2.0541 2.075 (±0.006) 2.081 (±0.001) 2.079 (±0.019) 2.082 (±0.013)

GST 2.104 2.127 (±0.005) 2.113 (±0.007) 2.132 (±0.017) 2.117 (±0.067)

AMPK 3.427 3.452 (±0.016) 3.478 (±0.020) 3.452 (±0.022) 3.475 (±0.022)

3.6.3. Root Mean Square Fluctuation (RMSF)

Protein dynamics by residue were examined by calculating RMSF. The RMSF per
residue values are presented in Figure 6 for the proteins in protein-metabolite complexes
(red) and in protein-pesticide complexes (black). Figure 6A shows RMSF for AChE-FMS
protein-metabolite complex and its protein-parent pesticide complex AChE-FM. It can be
seen that residues GLU3, ASP4, ARG164, PRO258–ASN164, PRO289–GLU291, ASP383–
GLU388, and ARG492–LYS495 of the protein AChE are highly flexible in the presence of
both the FM pesticide molecule and FMS metabolite and also in apo-enzyme. Figure 6B
shows RMSF for AMPK-FNS protein-metabolite complex, its protein-parent pesticide
complex AMPK-FN, and apo-enzyme AMPK, respectively. It can be seen that residues
ALA369A–LYS393A, GLN79B–GLY81B, TYR126B–ARG135B, SER24C, and ASN25C of
the protein AMPK show large fluctuations with both the FN pesticide molecule and
FNS metabolite and also in apo-enzyme. Figure 6C shows RMSF for ASK1-FMS protein-
metabolite complex and its protein-parent pesticide complex ASK1-FM, respectively. It
can be observed that ASK1 protein shows similar dynamics in the presence of both the
FM pesticide molecule and FMS metabolite, where residues ASP8–ASN10, GLU43–TYR48,
ILE162–PRO164, GLY189, GLU213, LEU214, and LYS269 of the protein ASK1 are highly
flexible. According to the Figure 6C, which shows RMSF for GST–6-CIPHD protein-
metabolite complex and GST-IM protein-parent pesticide complex, respectively, protein
residues GLU36–LYS44, LYS81–GLN83, TYR108–ASN117, GLN135–GLY140, and ASN206-
GLN209 of GST protein are highly dynamical, with both the pesticide molecule and
metabolite and also in apo-enzyme. Figure 6E shows RMSF for PKC–6-CIPHD protein-
metabolite complex and its protein-parent pesticide complex PKC-IM. It can be seen
that residues LEU19–ASN23, GLY31–PHE33, ARG41–GLU46, MET93, GLU224–GLU228,
GLY270, and LYS300–PRO317 of the protein PKC are highly flexible in the presence of both
the IM pesticide molecule and 6-CIPHD metabolite and also in apo-enzyme.

However, none of the above-mentioned protein residues for any of the proteins are
involved in ligand interactions according to Figures S1A–E, which shows binding pocket
protein residues within 7 nm cut-off from ligands. Further, from RMSF results, it is
observable that all the proteins considered in MD simulations show similar flexibilities to
the apo-enzyme in the presence of metabolites and their relevant pesticide molecules.

3.6.4. Solvent Accessible Surface Area (SASA)

Since SASA parameter measures the proportion of the protein surface which can be
accessed by the water solvent, it can be used to predict the extent of the conformational
changes that occurred during protein-ligand interactions. Figure 7 shows the plots of
SASA values versus time for proteins in protein-metabolite complexes (red) and in protein-
pesticide complexes (black). In the case of AChE-FMS protein-metabolite complex, average
SASA is 40.79 (±0.82) nm2, whereas the relevant protein-parent pesticide complex (AChE-
FM complex) shows a similar average SASA value of 39.07 (±0.84) nm2; AMPK-FNS
protein-metabolite complex has average SASA value of 40.73 (±0.82) nm2, and the relevant
protein-parent pesticide complex (AMPK-FN complex) has a similar average SASA value
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of 39.07 (±0.84) nm2. For ASK1-FMS protein metabolite complex, average SASA is 32.92
(±0.52) nm2, which is similar to the ASK1-FM relevant protein–parent pesticide complex
(32.18 ±0.59 nm2). In the case of GST–6-CIPHD protein-metabolite complex, average SASA
value is 39.81 (±0.47) nm2, whereas the relevant protein-parent pesticide complex (GST-IM
complex) shows a similar average SASA value of 38.81 (±0.67) nm2. PKC– 6-CIPHD
protein-metabolite complex has a similar average SASA value of 28.95 (±0.42) nm2 when
compared with the relevant protein-parent pesticide complex (PKC-IM complex) average
SASA value of 28.47 (±0.66) nm2. Therefore, it can be stated that all the protein-metabolite
complexes considered in MD simulations show similar dynamics as relevant protein-parent
pesticide complexes.

Figure 6. Plot root mean square fluctuation (RMSF) (nm) versus simulation time (pS). Plot A, C, E indicate AChE-FM/FMS,
ASK1-FM/FMS, PKC-IM/6-CIPHD complexes, respectively, where black color plots represent parent pesticides, red color
plots represent metabolites, and blue color represents apo-enzymes. (B) The RMSF of three subunits of AMPK-FN complex
are indicated in black, blue, and cyan. Similarly, the RMSF of three subunits of AMPK-FNS complex are indicated in red,
magenta, and maroon. Sub-units for apo-AMPK are indicated in dark green, light green, and orange (D) The RMSF of
two subunits of GST-IM complex are indicated in black and brown. Likewise, the RMSF of two subunits of GST-6CIPHD
complex are indicated in red and magenta, while apo-GST subunits are indicated in blue and cyan.
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Figure 7. Plot solvent accessible surface area (SASA) (nm2) versus simulation time (pS), where black and red color plots
represent the parent pesticide and metabolite, respectively. A, B, C, D, and E indicate AChE-FM/FMS, AMPK-FN/FNS,
ASK1-FM/FMS, GST-IM/6-CIPHD, and PKC-IM/6-CIPHD complexes, respectively.

3.6.5. Hydrogen Bond Analysis

Hydrogen bonds play a significant role in the protein ligand binding. Figure 8 displays
the number of hydrogen bonds between studied protein and ligand during 50 ns simulation
time. It is clearly visible that metabolites (red) have higher number of hydrogen bonds with
the protein (specifically AChE-FMS, AMPK-FN, ASK1-FMS, and PKC–6-CIPHD protein-
metabolite complexes), compared to corresponding protein-parent pesticide complexes
(black). In the case of GST–6-CIPHD protein-metabolite complex, it has similar number of
hydrogen bonds as GST-IM protein-parent pesticide complex.

These number of hydrogen bonds results analysis is helpful in explaining the higher
binding energies of protein-metabolite complexes compared to protein-parent pesticide
complexes: AChE-FMS (−8.22 kcal/mol) compared to AChE-FM (−7.32 kcal/mol), AMPK-
FNS (−6.82 kcal/mol) compared to AMPK-FN (−5.34), and ASK1-FMS (−7.24 kcal/mol)
compared to ASK1-FM (−6.23 kcal/mol). In the case of PKC– 6-CIPHD protein-metabolite
complex, where it shows similar binding energy (−7.18 kcal/mol) to its protein-parent
pesticide complex, PKC-IM (−7.28 kcal/mol), both the metabolite complex and pesticide
complex, show similar number of hydrogen bonds up to around 25 ns of simulation
time, and, after that, IM pesticide molecule does not show hydrogen bonds with PKC
protein, where PKC-6-CIPHD protein-metabolite complex manages to show hydrogen
bonds throughout the 50 ns simulation time. This breaking of hydrogen bonds between
PKC protein and IM pesticide molecules explains the RMSD variation of PKC-IM complex
(Figure 8D). In the case of GST–6-CIPHD protein-metabolite complex, even though it shows
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higher binding energy (−7.54 kcal/mol) compared to GST-IM protein-parent pesticide
complex (−6.22 kcal/mol), number of hydrogen bonds are similar for both complexes
throughout the simulation time. Overall, comparison of these observed hydrogen bonding
parameters, along with the binding energies, indicate that above-mentioned metabolites
can be bound to the corresponding proteins, which are linked to the CKDu more effectively
and tightly, compared to relevant parent pesticide molecules.

Figure 8. Number of hydrogen bonds versus simulation time (pS), where black and red color plots represent the parent
pesticide and metabolite, respectively. (A–E) indicate AChE-FM/FMS, AMPK-FN/FNS, ASK1-FM/FMS, GST-IM/6-CIPHD,
and PKC-IM/6-CIPHD complexes, respectively.

3.6.6. Principal Component Analysis (PCA)

The PCA analysis (Figure 9) was carried out to investigate the collective motion of
the protein-ligand complexes. For AChE protein, the first 20 vectors account for 71.4% and
68.6% with FMS metabolite and FM pesticide, respectively, and, for AChE apo-enzyme,
the first 20 vectors capture 67.2% collective motion. This indicates that the ligand binding,
especially the FMS metabolite binding, increased the AChE protein collective motions.
In the case of AMPK protein, the first 20 vectors represent similar percentages with FNS
metabolite (91.2%) and FN pesticide (93.2%) to the apo-enzyme AMPK (92.5%). For ASK1
protein, the first 20 vectors are responsible for 82.5% and 72.0% of collective motions
with FMS metabolite and FM pesticide, respectively, and, for ASK1 apo-enzyme, the first
20 vectors capture 84.4% collective motion, indicating FM pesticide binding has restricted
ASK1 collective motions. In the case of GST protein, it can be seen that the first 20 vectors
represent 76.3% with 6-CIPHD metabolite and 72.4% with IM pesticide. For the GST
apo-enzyme, the first 20 eigenvectors capture 67.9% collective motions. This indicates that
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the ligand binding, especially the 6-CIPHD metabolite binding increased the GST protein
collective motions. When we consider PKC protein, the first 20 vectors accounts 68.8% and
79.5% with 6-CIPHD metabolite and IM pesticide, respectively, and, for PKC apo-enzyme,
the first 20 vectors capture 80.4% collective motion. This indicates 6-CIPHD metabolite
binding restricted PKC collective motions.

Figure 9. Plot of percentage of variance versus eigenvalue of (A) (a) AChE-FM, (b) AChE-FMS, (c) AChE; (B) (a) AMPK-FN,
(b) AMPK-FNS, (c) AMPK; (C) (a) ASK1-FM, (b) ASK1-FMS, (c) ASK1; (D) (a) GST-IM, (b) GST-6-CIPHD, (c) GST; and (E)
(a)PKC-IM, (b) PKC-6-CIPHD, (c) PKC. The color of the principal component analysis (PCA) plot change from blue to red
as the complex evolves with time.
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Further, 2-D projection plot of principal component 1 (PC1) versus principal compo-
nent 2 (PC2) are shown in Figure 10. It should be noted that AMPK and ASK1 protein
complexes with metabolites occupies less phase than with parent pesticide molecules,
revealing the presence of comparatively stable clusters in the case of AMPK-FNS and
ASK1-FMS protein-metabolite complexes. Other protein-metabolite complexes considered
in MD simulations do not show higher occupancies in phase, compared to protein-parent
pesticide complexes and apo-enzymes. In the case of AChE-FMS complex along the PC2
plane, a clear change in conformational motions with two distinct clusters can be iden-
tified compared to the apo-enzyme AChE. A similar situation can be observed for the
GST-6-CIPHD complex along the PC1 plane, compared to the apo-enzyme GST. These two
situations explain the enhancement of collective motions among the first 20 eigenvectors
for AChE-FMS and GST-6-CIPHD protein-metabolite complexes, compared to the corre-
sponding apo-enzymes. In the case of PKC enzyme, clear changes in conformations can be
seen for apo-enzyme and PKC-IM protein-pesticide complex. However, in PKC-6-CIPHD
protein-metabolite complex, distinct clusters are not observable, explaining the observed
collective motion restrictions among the first 20 eigenvectors.

Further, Figure S4 indicates the variations in contributions from first three principal
components (PC1, PC2, and PC3) to the RMSF of above-mentioned protein-metabolite
complexes and protein-pesticide complexes. However, as mentioned earlier highly flexible
protein residues (according to RMSF) of the protein-ligand complexes considered in MD
simulations are not involved in the binding pocket (Figure S1).

3.6.7. Interaction Energy

In order to validate the binding energies generated using molecular docking stud-
ies, a detailed analysis was performed regarding the calculation of the free energies of
interaction responsible for the protein-ligand binding using Parrinello-Rahman parame-
ter of GROMACS. Figure 11 shows the average short-range Lennard-Jones energy plot
of protein-ligand complexes. It can be seen that for AChE-FMS protein-metabolite com-
plex with comparatively higher docking binding energies has better interaction energies
(−199.43 ± 10.30 kJ/mol) compared to the AChE-FM protein-parent pesticide complex
(−180.81 ± 12.58 kJ/mol). AMPK-FNS protein-metabolite complex, which also shows com-
paratively higher binding energies, has better interaction energies (−180.26 ± 15.29 kJ/mol)
compared to the AMPK-FN protein-parent pesticide complex (−109.18 ± 12.36 kJ/mol).
A similar situation was observed between PKC-6-CIPHD protein-metabolite complex
(−176.26± 21.63 kJ/mol) and PKC-IM protein-parent pesticide complex (−120.33± 17.33 kJ/mol).
The ASK1-FMS complex showed lower interaction energy of than ASK1-FM complex; how-
ever, their interaction energies were virtually in the same range. A similar trend was shown
by GST-6-CIPHD protein-metabolite complex, and it manages to show the interaction
energy in the same range as GST-IM protein-pesticide complex. The interaction energy
values validated the molecular docking results, showing that these pesticide metabolites
bind to the corresponding proteins which are linked to the CKDu.

Further, the binding free energy summation of the polar, non-polar energies, and non-
bonded interaction energies (Vander Waals and electrostatic interaction) was calculated
using the MM-PBSA method, and interaction entropies were calculated for the protein-
ligand complexes following the interaction entropy paradigm by Duan et al. [74]. Binding
free energy and interaction entropy results are shown in Table 4. It can be seen from Table 4
that binding free energies for protein-metabolite complexes in the cases of AChE, ASK1,
and AMPK are in a similar range as protein-pesticide complexes. Further, eASK1-FMS
complex shows lower interaction energy than ASK1-FM protein-pesticide complex and
ASK1-FMS protein-metabolite complex shows less binding energy than protein-parent
pesticide complex. In the case of GST, GST-6-CIPHD protein metabolite complex has
significantly more favorable binding free energy compared to GST-IM protein pesticide
complex. The binding energy values, together with the interaction energies, indicates that
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pesticide metabolites bind to the corresponding proteins which are linked to the CKDu,
revealing the toxicity of these pesticide metabolites.

Figure 10. Plot of PC1 versus PC2 of (A) (a) AChE-FM, (b) AChE-FMS, (c) AChE; (B) (a) AMPK-FN, (b) AMPK-FNS, (c)
AMPK; (C) (a) ASK1-FM, (b) ASK1-FMS, (c) ASK1; (D) (a) GST-IM, (b) GST-6-CIPHD, (c) GST; and (E) (a) PKC-IM, (b)
PKC-6-CIPHD, (c) PKC. The color of the PCA plot change from blue to red as the complex evolves with time.
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Figure 11. Interaction energy (kJ/mol) versus Simulation time (pS), where black and red color plots represent the parent
pesticide and metabolite, respectively. (A–E) indicate AChE-FM/FMS, AMPK-FN/FNS, ASK1-FM/FMS, GST-IM/6-CIPHD,
and PKC-IM/6-CIPHD complexes, respectively.

Table 4. The binding free energy summation of the polar, non-polar energies, and non-bonded interaction energies (Vander
Waals and electrostatic interaction) and interaction entropy for protein-ligand complexes.

Complex VdE Energy
(kJ/mol)

Elec. Energy
(kJ/mol)

Polar
Solvation

Energy
(kJ/mol)

SASA Energy
(kJ/mol)

Binding Energy
(kJ/mol)

Entropy
of Binding

T∆S
(kJ/mol)

AChE-FM −180.89 ± 8.92 −16.43 ± 6.58 115.53 ± 10.37 −18.77 ± 0.65 −100.56 ± 12.50 −14.36

AChE-FMS −175.27 ± 9.22 −13.34 ± 6.56 94.07 ± 18.03 −18.81 ± 1.04 −113.34 ± 15.42 −15.84

ASK1-FM −116.32 ± 9.10 −35.00 ± 6.67 92.26 ± 7.07 −14.44 ± 0.74 −73.49 ± 9.24 −11.44

ASK1-FMS −116.61 ± 20.747 −8.22 ± 1.265 78.60 ± 17.334 −14.00 ± 2.015 −60.23 ± 14.03 −31.2

AMPK-FN −95.75 ± 14.32 −13.72 ± 9.25 58.96 ± 13.21 10.70 ± 0.64 −61.20 ± 13.31 −15.59

AMPK-FNS −118.99 ± 6.80 −21.62 ± 1.56 83.24 ± 20.22 −13.35 ± 0.73 −70.72 ± 14.7 −25.30

PKC-IM −77.04 ± 12.46 −29.36 ± 3.61 75.44 ± 13.32 −8.679 ± 1.0 −39.64 ± 15.40 −42.809

PKC-6CIPHD −109.58 ± 12.92 −21.77 ± 9.54 91.09 ± 26.82 −12.78 ± 1.15 −53.03 ± 24.60 −14.22

GST-IM −108.88 ± 9.38 −113.57 ± 12.44 254.65 ± 17.67 −13.27 ± 0.51 18.92 ± 7.71 −17.449

GST-6CIPHD −137.52 ± 6.45 −137.52 ± 6.45 231.87 ± 23.23 −13.83 ± 0.73 −21.40 ± 10.36 −17.443

4. Discussion

It has previously been proven that all pesticides have toxic effects on mammals, birds,
fish, reptiles, and insects. To the best of our knowledge, so far, there are no much studies
covering the interaction of pesticide and their metabolites with target proteins that are
involved in human renal function. In the present study, a computational approach was used
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in order to study the effects of pesticide metabolites on CKDu, and, further, interactions of
selected pesticides and their metabolites were studied using molecular docking studies
and molecular dynamics simulations.

By analyzing and comparing the binding energies, an idea about the binding affinities
of ligand relative to each other can be obtained. According to molecular docking studies, it
is interesting to see that, out of five cases with the highest binding energies, the metabolites
were observed in four cases: M4 with AChE protein and FMS with AChE, PKC, and
GLS proteins. This gives the idea that metabolites can be more toxic than their parent
compounds. Further, binding energy comparison between pesticides and their metabolites
indicated the possibility of high toxicity of some metabolites compared to the parent
pesticides. When the binding energies of pesticide GP and its metabolite AMPA are
compared, a clear difference can be observed, indicating that AMPA as a more potent
candidate for causing protein dysfunction when compared with GP, just as indicated in the
literature [87]. However, it is hard to come to a direct conclusion as the binding pocket of
GP and AMPA are different.

All four metabolites of FN (FX, FXS, FNS, and FNSX) have higher binding affinity than
the parent pesticide. When considering the structure of FN and FX, ester O has changed
to P=O and the mercaptan group has replaced with ester bond. This structural change
as caused in increment of binding energy. This suggests that the P=O may be important
for binding. When FN changes to FXS that S connected to the aromatic ring has oxidized
to have two S=O groups, and the binding affinity is higher. When comparing FNS and
FNSX, the S connected to an aromatic ring is reduced to have one OH, one H, and one
Methyl group. In this case, the binding affinity decreased for FNSX. The same pattern can
be observed with respect to FX and FXS. All this evidence suggests that P=O and S=O
groups are key ingredients of binding. When comparing FN with FXSX, an increment of
binding affinity can be seen due to oxidation of the above-mentioned S group.

Further, all four metabolites of FM pesticide (FMS, FMSX, DFS, and DFSX) outbound
the parent pesticide molecule. When comparing FM with FMS, the binding affinity is
higher with FMS due to oxidation of S. When S of FMS reduces to form FMSX, the binding
affinity decreased. Even though FMSX has S-OH group which can make H-bond, the
binding affinity decreased. This indicates that S=O group may be more important for
binding than S-OH group. When FMS compared with DFS the binding affinity is lower
with DFS. The same trend can be seen when FMSX compared to DFSX. This indicates the
isopropyl group on Nitrogen as an important factor which results in variation of binding
energies between metabolites of FM. The isopropyl group may be involved in hydrophobic
interaction with the binding pocket.

When PH pesticide molecule is converted to its metabolite PC, the ester bond is
hydrolyzed to make a carboxylic group, which can make strong H-bonding. As a result,
the PC shows higher binding affinity than PH. When comparing metabolite DEMP and
PH parent pesticide molecule, ester bond (O connected to P) is hydrolyzed to OH. This
also increases the H-bonding ability. This can be seen in results as DEMP has higher
binding affinity than PH. DEMPA has a higher H-bonding ability than DEMP due to
hydrolyzed ester group. But increment of binding energy was not observed in this case.
When DEMPOA is compared with DEMPA, the SH group is substituted with P=O. This
transformation increased binding affinity. However, when DEMPO is compared to DEMP,
the binding affinity decreased. Therefore, a clear reason for the variation of binding energy
between PH and its metabolites is hard to deduce.

When comparing the structure of PF pesticide molecule and its metabolite M1, the P=O
oxygen is converted to OH group. This increases the H-bonding ability of M1 compared to
PF. This predicted increment of binding energy can be observed in results. O has higher
electronegativity than S. Therefore, O-H is more polarized when compared to S-H bond.
Therefore, OH group has better H-bonding ability that SH group. Due to this reason,
the binding energy of M3 must be lesser than that of M1. This decrement is reflected in
results as M3 has less binding affinity than M1. M4 has higher binding affinity than M3. A
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longer aliphatic chain connected to P via S in M4. This may have increased hydrophobic
interaction, resulting in an increase of binding energies. PF and its metabolites have Cl and
Br. These groups can make halogen bonding. Cl shows higher halogen bonding as it has
the higher electronegativity.

Some forms of monoalkyl and dialkyl phosphates or monoalkyl and dialkyl thio-
phosphate are metabolites produced in the case of pesticide CP, DM, PH, and CP. When
compared with other metabolites and parent pesticide molecules have relatively low bind-
ing energies. Only in the case of DM, di and monoalkyl phosphates have high binding
energies compared to parent pesticide. This reversal of trend can be due to two reasons.
In DM, being a simple molecule compared to other pesticides, the non-phosphate region
has very limited ability to make interaction with proteins. The other reason is that DMP
and MMP manages to form salt bridges with LYS and ARG. DMP and MMP also make H
bonds with ASN, GLU, TRP, and SER.

As mentioned earlier, QP pesticide forms two metabolites: DEPT and HQ. The average
binding energy for QP is higher than the HQ metabolite. QP Phosphate derived a part
connect to organic ring. This P-SH group can make H-bonds and alkyl groups increase the
nonpolar surface for hydrophobic interaction to happen. It is interesting to analyze IM
pesticide molecule because most of the above-discussed pesticides are organophosphates,
whereas IM is not. When comparing IM with IG metabolite, a decrement of binding affinity
can be seen for IM. This may be due to the removal of one H-bonding OH groups.

Overall, binding energy comparison of pesticides and metabolites reveal that, in many
cases, metabolites can be more causative towards CKDu compared to their parent pesticides.
However, the binding energy cannot dictate the effect of ligand-protein interaction of
the biological function of the target proteins. Types of amino acids involved, types of
non-covalent interactions, and the location of the binding pocket have to be considered.
When discussing about AChE protein, AC, MED, CP, DEP, DETP, DZ, DM, FN, FX, FNS,
FXS, FXSX, DFD, DFEX, FM, FMS, FMSX, PH, DEMP, DEMPO, PF, M3, M4, 6-CIPHD,
QP, and HQ were bound to the active site of the enzyme, whereas FM, FN, and their
metabolites were bound right inside the binding pocket more perfectly than other ligands.
These observations reinforce the concept that metabolites can be more potent than the
parent pesticides themselves. The binding patterns indicates that TYR341, PHE338, and
TRP386 are very important for binding. Further, it is indicated in the literature that
organophosphates can inhibit AChE [88]. However, 6-CIPH, which is a metabolite of
organochlorine, can in fact bind to the active site as organophosphates do, with roughly
similar binding affinity.

When analyzing the results of CP450 interaction with pesticide, a clear inhibition of
CP450 cannot be deduced from these results. CP450 can have many allosteric inhibitory
sites other than the one discussed above [89]. If any of the locations where ligands bound
was such a site, then CP450 can be inhibited. When considering the binding location of
ligands to GLS, for pesticides and metabolites, binding site was different than the active
site. However, FN, FM, PH, CP and their metabolites and QP bind to a site proximal to the
active site. Further, AC manages to bind to the inhibitory site perfectly and IG manages
to bind near the inhibitory site. Based on the results, it can be stated that AC has a better
chance of hindering the proper function of GLS. FN, FM, PH, CP and their metabolites
and also QP can interfere with the binding of substrate to the active site due to the close
proximity. It is interesting to see that, even though most of the organophosphates bind to
the same place, the secondary interactions formed with amino acid residues are different.
This is because the only structural similarity between them is the phosphate group. This
emphasizes the importance of phosphate groups for binding.

When considering the GST protein, QP pesticide and its metabolites (HQ and DETP)
and also PH pesticide can interfere with the binding of substrate to the active site because
of the close proximity. TCP, DFSX, IG, and 6-CIPHD metabolites can also interfere with
the binding of substrate to the active site due to the close proximity. These ligands may
interfere with the movement of the substrate to the active site. GST protein is inhibited
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by Ethacrynic Acid (EA) [85]. As IM and AC pesticides manage to bind to the inhibitory
site, these pesticides have a chance of hindering the function of GST protein. In the case of
ASK1 protein, the active site, ATP binding site, and autophosphorylation site are located in
the same pocket. A ligand bound to this pocket can effectively block the active site and
ATP binding site or may can as an inhibitor [79]. FN and FM pesticides and their all the
metabolites, PH pesticide and its metabolite DEMP, PF pesticide and its metabolite M3,
and few other metabolites TCP, IMP, and HQ bind perfectly to this pocket; therefore, these
ligands may hinder the proper function of ASK1 by blocking the active site. According to
these docking results for the PKC protein, FN and FM pesticides and 6-CIPHD metabolite
(metabolite of IM) can block the active site of PKC and can affect the function of PKC
catalytic domain.

To obtain a deeper insight into the structural changes, of ligand-protein complexes
MD simulations were carried out. Stability of the protein-ligand complexes was con-
firmed by evaluating RMSD over time, which indicates an equilibrated folded structure
in protein-pesticide complexes, as well as protein-metabolite complexes compared to the
apo-enzymes. AChE-FMS, AMPK-FNS, ASK1-FMS, and GST–6-CIPHD protein-metabolite
complexes have shown a stability similar to their protein-parent pesticide complexes and
apo-enzymes. In the case of GST–6-CIPHD protein-metabolite complex, it shows a better
stability compared to its protein-parent pesticide complex. Further, the stability of both
the protein-pesticide complexes and protein-metabolite complexes was observed through
radius of gyration.

Protein residual dynamics was examined by calculating RMSF, and the results indi-
cated that all the proteins considered in MD simulations show similar flexibilities to the
apo-enzyme in the presence of metabolites and their relevant pesticide molecules. Further,
the RMSF results, together with the analysis of the binding site, revealed that the highly
dynamical protein residues for any of the proteins are not involved in ligand interactions.
In addition to RMSF, the PCA analysis was carried out to investigate the collective motion
of the protein-ligand complexes. According to PCA analysis, AChE and GST protein
complexes with metabolites clear changes in conformational motions were observed. Fur-
ther, PCA analysis for AMPK and ASK1 protein complexes with metabolites showed
the presence of comparatively stable clusters in the case of AMPK-FNS and ASK1-FMS
protein-metabolite complexes confirming the binding energy results from docking studies
and RMSD results from MD studies. Other protein-metabolite complexes considered in
MD simulations also showed a similar stability to protein-pesticide complexes. SASA
parameter was examined to predict the extent of the conformational changes that occurred
during protein-ligand interactions, and according to SASA results, it was observable that
all the protein-metabolite complexes considered in MD simulations show similar dynamics
as relevant protein-parent pesticide complexes.

Interactions of protein-ligand complexes were further studied using MD simulations
in the terms of hydrogen bond analysis, interaction energy calculations, and free energy of
binding. The metabolite-protein complexes with more favorable docking binding energies
compared to the pesticide-protein complexes showed comparatively higher number of
hydrogen bonds, confirming the binding energy results from docking studies and the
formation of more stable metabolite-protein complexes according to RMSD results. Further,
the interaction energy results and free energy of binding validated the molecular docking
results, revealing that pesticide metabolites with higher binding energies according docking
studies, effectively bind to the corresponding proteins which are linked to the CKDu,
indicating the toxicity of these pesticide metabolites. Therefore, hydrogen bonding analysis,
interaction energy results, and free energy of binding, along with the RMSD results,
indicated that the metabolites with more favorable binding energies according to docking
studies can bind to the corresponding proteins, which are linked to the CKDu effectively
and stably, compared to relevant parent pesticide molecules. Thus, in the present study,
overall, MD simulation analysis, together with molecular docking studies, reveals that
pesticide metabolites, especially M4, FMS, FNS, and 6-CIPHD, have more potential to be
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toxic towards CKDu compared to parent pesticides. Experimental procedures, such as
NMR ligand-detected techniques and X-ray crystallography, to interpret binding modes can
further validate the findings of the present study by detecting the pesticide and metabolite
binding to renal enzymes.

5. Conclusions

According to the molecular docking investigations, it was evident that some pesticides
and metabolites could have affinity to bind at the active site or at regulatory sites of studied
renal enzymes. In the case of AChE enzyme, AC, CP, DP, DZ, DM, FN, FM, PH, PF, and
QP pesticides exhibited much efficient binding at the active site. Metabolites of FM, FN,
PF, and IM were predicted to have higher binding energies than that of parent pesticide
compounds. When analyzing the docking results of CP450 enzyme, it was found that DZ,
PF, and QP bind at the active site. In this case, some metabolites of CP and PF were found
to be bound at active sites with considerable binding energies. In the case of GLS enzyme,
PH and QP pesticides bound at the active site together with some of their metabolites. PH
and QP pesticides, together with metabolites of CP, PH, and IM, bound at the active site of
GST. When considering ASK1 enzyme, PH and PF pesticides and metabolites of QP, CP,
and PH were found to be bound at the active site. It was evident that, while pesticides
FN and FM bind at the active site of PKC, the metabolites of IM also found to be bound
at the same site. With regard to AMPK enzyme, only QP pesticide and metabolites of
CP were able to bind to the active site. AC pesticide may have some potential to inhibit
GLS as it binds with inhibitory site residues. IM and AC might have inhibitory action of
GST as it binds at an inhibitory site of GST. These observations positively supported the
hypothesis that pesticides can be a possible risk factor towards CKDu as these pesticides
and their metabolites bind mainly to active site or regulatory site of considered renal
enzymes. This hypothesis was further confirmed through molecular dynamics studies of
protein-metabolite and protein-pesticide complexes with higher binding energies. Stability
of the protein-ligand complexes was confirmed by evaluating RMSD and over time, and
the stable protein-pesticide and protein-metabolite complexes were observed throughout
the simulation time. Protein residual dynamics was examined by calculating RMSF, and
SASA parameter was examined to predict the extent of the conformational changes that
occurred during protein-ligand interactions. According RMSF and SASA results, all the
protein-metabolite complexes considered in MD simulations show similar dynamics as
relevant protein-parent pesticide complexes. Interactions of protein-ligand complexes
were further studied using MD simulations in the terms of hydrogen bond analysis and
interaction energy calculations. The protein-metabolite complexes with more favorable
binding energies compared to the protein-pesticide complexes showed comparatively
higher number of hydrogen bonds and higher interaction energies, confirming the docking
results. Therefore, MD simulation analysis, together with molecular docking studies, reveal
two important facts: pesticides can be a possible high risk factor towards CKDu; and
pesticide metabolites, especially M4, FMS, FNS, and 6-CIPHD, have more potential to be
toxic in terms of CKDu compared to parent pesticides.
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Autodock 4 grid parameters; Table S4: Predicted amino acid residues of the active sites found by
GASS-WEB server. Table S5: The water box size and number of water molecules in each solvent box
of protein ligand complexes; Table S6: Templates found by BLAST search that have ≥80% similarity
to the query sequence; Table S7: Amino acids responsible for ligand protein interactions and the
types of dominate interactions by each amino acid; Figure S1: Ligand -protein interactions between
AChE-FM, AChE-FMS, ASK1-FM, ASK1-FMS, AMPK-FN, AMPK-FNS, GST-IM, GST-6CIPHD, PKC-
IM, and PKC-6CIPHD complexes; Figure S2: Backbone RMSD matrix map of A) AMPK-FN, B)
AMPK-FNS, C) GST-IM, D) GST-6CIPHD, and PKC-IM complexes; Figure S3: Plot of Radius of
Gyration (nm) versus Simulation time (pS) where black, red, and blue color plots represent the
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parent pesticide-protein complex, metabolite-protein complex, and apo-protein, respectively. A,
B, C, D, and E indicate AChE-FM/FMS AMPK-FN/FNS, ASK1-FM/FMS, GST-IM/6-CIPHD, and
PKC-IM/6-CIPHD complexes, respectively. Figure S4: Variation of first three principal components
(PC1, PC2 and PC3) with residues in AChE-FM, AChE-FMS, AMPK-FN, AMPK-FNS, ASK1-FM,
ASK1-FMS, GST-IM, GST-6CIPHD, PKC-IM, and PKC-6CIPHD complexes; Figure S4: Variation
of first three principal components (PC1, PC2 and PC3) with residues in AChE-FM (A,a), AChE-
FMS (A,b), AMPK-FN (B,a), AMPK-FNS (B,b), ASK1-FM (C,a), ASK1-FMS (C,b), GST-IM (D,a),
GST-6CIPHD (D,b), PKC-IM (E,a), and PKC-6CIPHD (E,b) complexes.
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