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ABSTRACT
Multivariate image analysis applied to quantitative structure–activity relationships (MIA-QSAR) has proved
to be a high-performance 2D tool for drug design purposes. Nonetheless, MIA-QSAR strategy does not
efficiently incorporate conformational information. Therefore, understanding the implications of
including this type of data into the MIA-QSAR model, in terms of predictability and interpretability,
seems a crucial task. Conformational information was included considering the optimised geometries
and the docked structures of a series of disulfide compounds potentially useful as SARS-CoV protease
inhibitors. The traditional analysis (based on flat-shape molecules) proved itself as the most effective
technique, which means that, despite the undeniable importance of conformation for biomolecular
behaviour, this type of information did not bring relevant contributions for MIA-QSAR modelling.
Consequently, promising drug candidates were proposed on the basis of MIA-plot analyses, which
account for PLS regression coefficients and variable importance in projection scores of the MIA-QSAR
model.
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1. Introduction

Quantitative Structure–Property Relationship (QSPR) is a
broad subarea from molecular modelling dedicated to correlate
chemical structural features of compounds to a property of
interest (e.g. biological activity), which is performed through
the generation of a predictive mathematical model (regression
equation) [1]. In other words, a consistent QSPR model can
predict a specific property for compounds that have not been
previously studied, based on structurally similar molecules
that have already been investigated. This predictive ability has
great contribution in identifying novel drugs, once it accelerates
the screening step of this long process.

Although QSPR is a recent molecular modelling tool, its
roots go back to 1868–1869, when Crum Brown and Fraser
established that, indeed, there was a correlation between the
physiological action of a substance and its chemical compo-
sition and constitution [2]. Since then, QSAR has gained a lot
of attention among researchers, which is also related to the
improvements on the computational area, once this technologi-
cal device facilitates and accelerates the extraction of descrip-
tors and generation of prediction models. Furthermore, allied
with molecular docking, QSAR avoids the experimental tests
of lots of unpromising compounds, which results in a large sav-
ing of costs and time. Due to these relevant contributions,
QSAR has become the target of many studies.

There is a variety of methods to generate QSAR models and,
basically, the remarkable difference among them resides in
what types of descriptors are employed in the analysis and in
what way these parameters are obtained from the data set.
Commonly, the different approaches are classified from 1D to

7D [3]; each of them has its own advantages and drawbacks
[4]. MIA-QSAR (Multivariate Image Analysis applied to
QSAR) is a relevant 2D approach that has been employed in
many occasions in the last decade, yielding satisfactory out-
comes, comparable to 3D results [5–8].

Essentially, MIA-QSAR is a method based on the treatment
of 2D molecular images and, from these symbolic molecular
representations, the required descriptors are obtained. The
molecules are built in a way that their atoms have sizes pro-
portional to van der Waals radii and their colours are numeri-
cally described to be proportional to the respective
electronegativities. The colour system is the RGB (Red,
Green, and Blue). Furthermore, in the current version of this
technique, the user counts on the aid of the MIA-plots tool,
which comprises two-coloured graphics that help in the
interpretation of the generated model [9,10]. These plots are
based on PLS regression coefficients (b-plot) and Variable
Importance in Projection (VIP) scores, and are often employed
to evaluate how and how much each substituent in the mol-
ecule data set contributes to the biological activity.

Despite the MIA-QSAR modelling power, traditionally, it
does not codify conformational information in an effective
way. Thus, an attempt has been made in order to include spatial
fingerprints into MIA-QSAR descriptors [11]. Although the
authors have succeeded in including conformational infor-
mation into the MIA-QSAR descriptors, the chosen procedure
did not result in any improvements in terms of model predict-
ability, when compared to the common analysis [11]. There-
fore, this work aims to investigate the inclusion of a more
significant type of tridimensional information into the
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descriptors, which involves the obtaining of most-likely bio-
active poses for the selected ligand set.

For evaluating the influence of tridimensional features on
the modelling performance of MIA-QSAR models, a series of
SARS-CoV Mpro (severe acute respiratory syndrome corona-
virus main protease) inhibitors, synthesised by Wang and
coworkers, was chosen [12]. SARS is an infective disease that
affects the respiratory system, caused by an RNA type of
virus known as coronavirus (CoV) [13]. This large family of
viruses affects not only humans, but also a variety of other ani-
mals. Currently, six human coronaviruses (HCoVs) have been
identified, and, although they have been known for decades,
only in 2002 they gained clinical importance as a result of an
outbreak of SARS and MERS (Middle East respiratory syn-
drome – another disease caused by a coronavirus agent) [13].
Since these severe epidemies, which are now under control,
many targets have been studied; among them, the 3CLpro,
also known as Mpro (main protease), has been considered a per-
tinent approach for inhibition [14]. Therefore, different inhibi-
tors for SARS-CoV-Mpro have been proposed; Wang et al. [12]
synthesised unsymmetrical aromatic disulfide compounds,
which exhibited an encouraging biological potency. The
SARS-CoV shares most of its genome with COVID-19, that
originated in Wuhan, China in early 2020 [15]. Thus, our
findings can also be helpful to lead the design of molecules
for the treatment of other diseases, such as MERS-CoV and
COVID-19 infections.

2. Material and methods

The anti-SARS molecules, obtained from the literature [13], are
shown in Table S1 (Supplemental Material) and their IC50

values are given in μM. The data set of 40 compounds were
split into training (ca. 75% of compounds) and test (ca. 25%
of compounds) sets through Kennard-Stone sampling, which
were used for model calibration (using partial least squares –
PLS – regression) and internal validation through leave-one-
out cross-validation (the training set), and for external vali-
dation (test set). This study was divided into three main
parts, which are presented in the next sections.

2.1. Traditional MIA-QSAR modelling

Initially, a traditional MIA-QSAR modelling was performed.
The detailed procedure for building MIA-QSAR models has
been described elsewhere [5–10]; thus, herein, only the main
steps are explained. First, the compounds were drawn in Gauss-
View program [16], maintaining the congeneric centre (the dis-
ulfide bond) at the same exactly position in all molecules.
Subsequently, the 2D images (.bmp files) were loaded and
superposed (Figure 1(a)), yielding a three-way array, which
was further unfolded in a new matrix with dimensions 40 ×
108,340. The Chemoface software was employed for accom-
plishing the superposing and unfolding tasks (available at
http://ufla.br/chemoface/) [17].

Next, the invariant columns (corresponding to the blank
spaces and the congeneric centre) were deleted, and a new
matrix, with dimensions 40 × 12,215, was generated. This
new matrix had its default pixel values (generated automatically

by the GaussView software [16]) replaced by numbers pro-
portional to (i) the respective values of r/ε ratio (van de
Waals radius/Pauling’s electronegativity), (ii) the van der
Waals radius values, and (iii) the respective electronegativity
values. It is worth mentioning that the default values attributed
to each colour follow an RGB (red, green, and blue) system pat-
tern, i.e. the values vary from 0 (corresponding to the colour
‘black’) to 765 (‘white’).

To perform the QSAR model and for reasons of comparison
with the study performed by Wang et al. [12], compounds 8,
23, and 40 were deleted, once they were considered outliers
by those authors. In that study, external validation was not per-
formed, thus, we decided to build two models for each data set
(r/ε, r and ε): one not considering a test set, in this way the
model would have the same dimensional space; and, one con-
sidering a group for external validation, because it is well-

Figure 1. (Colour online) Superposition of the images for disulfide molecules used
in the (1a) traditional MIA-QSAR procedure, (1b) MIA-QSAR with optimised geo-
metries, and (1c) MIA-QSAR with docked structures.
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known that this type of validation is extremely informative in
terms of model efficiency and reliability. Therefore, six predic-
tion models were built in total, through traditional analysis.
The validation parameters for the two best models, one without
the test set (A) and one with the test set (B), are shown in
Table 1.

The test sets were selected through the Kennard-Stone
algorithm and contained 9 elements each (marked with the
symbol ‘a’ in Table S1 – Supplemental Material). For all models,
partial least squares (PLS) regression was employed, and the
optimum number of latent variables (LV) was chosen by ana-
lysing the decay of the root mean square error (RMSE) in the
leave-one-out cross-validation (LOOCV).

For models without a test set, the following parameters were
employed to analyse the quality of the model: determination
coefficients in calibration (r2) and cross-validation (q2), and
their respective RMSE’s. The quality for the r2 parameter was
assessed considering the criteria established by Alexander
et al. [18] and Kiralj and Ferreira [19]. The risk of chance cor-
relation in calibration was analysed using the cR2

p parameter
[cR2

p = r (r2 – r2rand)
1/2, where r2rand corresponds to the mean

determination coefficient value obtained after randomising
the y block ten times] [20]. All these parameters were retrieved
from the Chemoface software [17].

For models containing test set, in addition to r2 and q2, r2test
and its corresponding RMSE were also considered. The proxi-
mity between the experimental and predicted IC50 values for
the test set was statistically evaluated using r2m parameter
[21]. The risk of chance correlation was studied using the
same parameter mentioned above.

2.2. MIA-QSAR modelling using optimised molecular
geometry projections

The second part of this study consisted in inserting confor-
mational information into the MIA-QSAR descriptors through
the process of structural optimisation. This step followed the
same rationalisation established by Daré et al. [11] and it was
performed with the goal of showing the similarities and differ-
ences between the different types of tridimensional information

codified into the descriptors. In summary, a conformational
screening was performed using the Spartan’16 program [22]
for all 40 compounds at the semi-empirical AM1 (Austin
Model 1) level of theory [23]. The lowest energy conformation
was selected for each case and, then, they were fully optimised,
using the Density Functional Theory (DFT) method at the
ωB97X-D/6-31G(d,p) level of theory [24,25], in the Gaussian
09 program [26].

Next, the optimised structures were loaded on Discovery
Studio Visualizer [27] and the alignment of the best poses
was performed. The congeneric centre (i.e. the disulfide moiety
bonded to a phenyl group on the right side) was used as refer-
ence during the superposition step and the resulting three-way
array can be observed in Figure 1(b). Then, the superposed
molecules were loaded on GaussView program [16] and
saved as bitmap files, as in a usual routine MIA-QSAR analysis.
Finally, the MIA-QSAR models were generated following the
same steps of the traditional technique, i.e. six more models
were obtained; the validation parameters for the two best
models are shown in Table 1 [model C (without a test) and
model D (with a test)].

2.3. MIA-QSAR modelling using bioactive-like
conformation projections

For the main part of this work, a different and more significant
type of tridimensional information was employed: bioactive-
like conformations. These poses were obtained after docking
the disulfide compounds into the active site of SARS-CoV
Mpro. In order to perform molecular docking, the crystal struc-
ture of SARS-CoV Mpro, with 1.85 Å of resolution, was
retrieved from the protein data bank (PDB code: 2AMD).
This raw structure was subsequently prepared for docking
using the ‘Protein Preparation Tool’ available in the Glide pro-
gram [28,29]. Some initial tests were performed to select the
best features for further docking analysis. The test results
were analysed comparing these outcomes with those obtained
by Wang and coworkers [12] and also with those obtained by
Yang et al. [13] (authors responsible for the isolation and crys-
tallisation process of the referred receptor). Finally, the most
adequate preparation process consisted in removing all water
molecules and using only the chain A during the docking
analysis; these adjustments are discussed in more details in
the next section. The protein charges were automatically calcu-
lated during protein preparation.

The ligands were prepared in two steps. First, their geome-
tries were optimised using the Gaussian 09 program [26],
through the Density Functional Theory (DFT) method at the
ωB97x-D/6-31G(d,p) level of theory [23,24]. Secondly, ligand
charge calculations were performed using the CHelpG function
at the same theoretical level of the optimisation. A final step,
before docking, was establishing the Grid Box (10 × 10 ×
10 Å) and the active site of the receptor. Then, the molecular
docking technique was performed using the Glide program
[28,29] with standard precision (SP) protocol. No constrains
were established and a hundred conformations were obtained
for each compound.

Compound 31 was used as reference, once it was the most
efficient inhibitor determined by Wang et al. [12]. Therefore,

Table 1. Statistical parameters obtained through traditional MIA-QSAR technique
(Models A and B), MIA-QSAR applied to optimised molecular geometries (Models C
and D), and the same technique employed to bioconformation-like images
(Models E and F).

Traditional Optimised Docked

Parameters
Model A
(r/ε)

Model B
(r/ε)

Model C
(r/ε)

Model D
(r)

Model E
(ε)

Model F
(ε)

LV 3 3 3 2 3 3
RMSEcal 0.527 0.465 0.445 0.484 0.400 0.311
r2cal 0.870 0.897 0.907 0.905 0.925 0.952
RMSEy-

rand

1.183 1.036 0.738 0.557 0.602 0.388

r2y-rand 0.345 0.488 0.742 0.871 0.830 0.925
cR2p 0.676 0.606 0.388 0.176 0.297 0.161
RMSEcv 0.780 0.794 1.022 1.234 1.119 1.213
q2 0.715 0.701 0.524 0.392 0.420 0.284
RMSEtest – 0.715 – 0.593 – 0.946
r2test – 0.781 – 0.823 – 0.601
r2m – 0.653 – 0.812 – 0.268
aCoMFA results from Wang et al. [12]: 6 LV´s, r2 = 0.916, Standard Error = 0.088,
and q2 = 0.681.
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similar bioactive conformations (Figure S1 – Supplemental
Material) were searched among the docking results obtained
herein. The most similar conformation for each molecule was
identified and stored.

The 40 identified conformations were loaded into Discovery
Studio Visualizer [27] and superposed in a similar way of the
optimised molecules, i.e. maintaining the congeneric centre at
the same region (Figure 1(c)). This hypermolecule was, then,
loaded on GaussView program [16] and saved as bitmap
images, which generated 2D projections of the bioactive struc-
tures. Employing this strategy, (bio)conformational infor-
mation was incorporated into the MIA-QSAR descriptors.
Finally, MIA-QSAR models were generated, which was per-
formed following the same steps as earlier analysis. Therefore,
six more models were obtained; the validation parameters for
the two best models are shown in Table 1 [model E (without
a test) and model F (with a test)] along with all the other pre-
vious best models (A-D).

3. Results and discussion

3.1. QSAR analysis

Regarding the traditional analysis, the resulting superposed
molecules are shown in Figure 1(a).

The quality parameters for the best model (A), i.e. the model
without a test set, are shown in Table 1. In the same table, the
validation parameters for all the other models (the best one in
each case) are also displayed. Therefore, a general comparison
can be performed.

From Table 1, it can be observed that the best models were
obtained from the traditional analysis. Model A, employing
descriptor values proportional to r/ε, generated good results
for internal validation and calibration, but the RMSEs associ-
ated with r2 and q2 are slightly high. However, the cR2

P par-
ameter eliminated the risk of chance correlation, which
ensures that the model was not a result of randomness. There-
fore, comparing to the results obtained by Wang and collabor-
ators [12], which were determined through a CoMFA analysis
(see Table S1 footnote), model A was as good as their outcomes
(see e.g. r2 = 0.916 and q2 = 0.681 from CoMFA, and r2 = 0.870

and q2 = 0.715 from model A). Model B (r/ε) reinsures the
quality and predictive ability of models obtained through tra-
ditional technique, once the external parameters were all accep-
table. This last observation shows that model B is not overfitted.
Models C (r/ε) and D (r), obtained from the optimised anti-
SARS structures, were not as good as those obtained from the
traditional procedure. The values of r2 and q2 for model C
were acceptable, but the risk of chance correlation could not
be eliminated by the cR2

p parameter. For model D, another
issue was the q2 value, because it was not within an acceptable
range (≥ 0.5). An interesting observation in this case, is that, for
model D, the external parameters presented reliable results; this
observation confirms what Tropsha [30] made very clear in his
work ‘Best practices for QSAR model development, validation,
and exploitation’, i.e. both internal and external validations are
required in order to consider a QSAR model as a reliable pre-
diction equation. The resulting superposed molecules
employed on the generation of models C and D are shown in
Figure 1(b).

Lastly, models obtained from molecules docked inside the
SARS-CoV Mpro [E (ε) and F (ε)] did not present acceptable
validation parameters either. The risk of chance correlation
could not be eliminated from neither model, while even the
external validation for model F presented a bad result for r2m.
The resulting superposed molecules employed on the gener-
ation of models E and F are shown in Figure 1(c).

Therefore, it can be concluded that, although confor-
mational information is responsible for a great part of biomo-
lecular behaviour, this type of information does not contribute
positively for MIA-QSAR methodology. Similar conclusion can
be found elsewhere [31]. This finding can be related with the
loss of reference that happens with the projections of the opti-
mised and docked molecular structures. In other words, in a
traditional analysis the model can be built assuming that a
chemical group is always in a specific position and, based on
that position, the effect (increasing/decreasing) on the response
variable can be determined and, then, predicted later for a
different structure containing the same group at the same pos-
ition. On another hand, for the optimised and docked molecu-
lar structures, due to the position variability in the projections,
the identification of a pattern for the effect of the different
groups on the response variable is jeopardised and, conse-
quently, the prediction is imprecise.

Furthermore, once the focus of this discussion involves bit-
map images, one can rationalise the whole issue in terms of pix-
els. In the traditional analysis, the samples (rows) containing
the same chemical group will, for sure, have the same values
attributed to the columns (descriptors) corresponding to that
specific portion; on another hand, in a 3D analysis, although
two (or more) molecules may have the same chemical group
in the same spatial position, they will not, necessarily, be at
the same pixel position (columns) because their images include
variation in angles and direction. Therefore, there is a lack of
pattern, which brings a considerable amount of variability to
the descriptors and interferes in the quality of the prediction
models.

After determining the best models (A and B), a chemical
interpretation can be performed employing the MIA-plots
tool. Model B was chosen for the interpretation process, once

Figure 2. (Colour online) Plot for predicted vs. experimental IC50 values using the
MIA-QSAR model B.
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it is a more complete QSAR analysis when compared to model
A. The calculated IC50 values for calibration, internal and exter-
nal validation are shown on Table S1, whereas the predicted vs.
measured IC50 plot is shown in Figure 2. Figure 3, in turn,
shows the MIA-plots obtained for model B. These plots are
based on the analysis of the structural moieties most affecting
(either enhancing or attenuating) the biological data in terms
of PLS regression coefficients (b) and variable importance in
projection (VIP) [10]. The applicability domain (William´s
plot) for the chosen model was also checked and is shown in
Figure S2 (Supplemental Material).

William’s plot shows that samples 9 and 10 are outliers,
which correspond to compounds 10 and 11, once compound
8 was previously deleted. However, in order to obtain the
same space domain for means of comparison with Wang’s
work [12], both samples were kept in the data set for further
analysis; furthermore, both outliers are close to the established
limits.

The best MIA-QSAR model was the one with descriptor
values proportional to radii/Pauling’s electronegativity; from
this observation, it can be inferred that both steric and electro-
static effects are relevant for the inhibition activity of the dis-
ulfide compounds. In addition, because r/ε-based descriptors
best explained the data variance in models A and B, it follows

that atomic size and electronegativity together plays a more sig-
nificant role in this case than these parameters alone.

From Figure 3, specifically the b-plot, it is possible to visual-
ise specific moieties (herein called R1, R2, and R3) responsible
for increasing/decreasing IC50. Figure 1(a) can collaborate in a
more detailed understanding. Focusing on the VIP plot and its
general aspects, it is possible to recognise a specific pattern on
how strong the three groups affect the response variable. The
R1 substituents comprise the most significant variation in col-
ours, which include dark shades of red, yellow, and orange;
accordingly, this region can be considered the most meaningful
moiety in explaining the observed response pattern. The R2
group also presents some significant variety in shades, but
much less than R1, which means that it has less influence in
explaining the IC50 than the former. Lastly, R3, in a general
view, is the one with the smallest contribution for clarifying
the IC50 behaviour. In summary, R1 > R2 > R3 is the impor-
tance scale proposed.

Based on the previous generalisation, it is reasonable to start
the b-plot interpretation with the R1 substituents. Furthermore,
compounds 31 and 15 can be taken as references for this analy-
sis, once the former corresponds to the smallest value of IC50

(most active) and the latter to the largest value (less active) of
this series of molecules.

In order to analyse the R1 influence, it seems reasonable to
select a subset of compounds containing the same R2 and R3
substituents in all cases. The chosen group comprises the fol-
lowing molecules: 1, 3, 12, 17, 31, 33, and 38; their structures
are shown in Table S1.

Compound 1 has a five-membered ring with endocyclic
nitrogen and sulfur atoms at positions 2 and 5; this ring pre-
sents a light green colour in the b-plot, which indicates a slight
increase in the IC50 value. Taking into account that the IC50

parameter varies from 0.516 to 5.954 μM, this interpretation
agrees with the actual value measured for this compound –
1.871. Actually, one can see that, except for compound 31, all
further molecules presenting a five-membered ring (3, 12,
and 17) have values of IC50 larger than those with a six-mem-
bered ring; furthermore, these compounds – 3, 12, and 17 –
contain carboxyl/carbonyl groups (red colour in the b-plot)
attached to the five-membered ring, which also contributes, sig-
nificantly, for the observed increase in the IC50 value. Further
analysis of the b-plot shows that a blue tone is attributed to
the six-membered ring substituent; therefore, the previous con-
clusion agrees with the MIA-plot interpretation. Moreover, the
unsubstituted six-membered ring seems to decrease the IC50

even more significantly than the one with two methyl groups
attached.

Regarding compound 31, not only it has a smaller value of
IC50 than those with a six-membered ring, but also it is the
most active compound of the series. Focusing on its groups
on the regression coefficient plot, one can see that the moiety
that seems to strongly decrease the response variable is the
chlorine atom at the R3 position, which is an exception to
the previous importance scale established. This fact might be
related to a synergistic effect of the three substituents or its
specific behaviour inside the active site of the Mpro enzyme,
which is not explained by MIA-QSPR plots. It is also necessary
to understand that the MIA-plot tool shows the generalFigure 3. (Colour online) b-plot and VIP plot for model B.
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behaviour of a data set and, once compound 31 is an exception,
it might not be well explained.

Following the same thought, in order to analyse the influ-
ence on IC50 due to a change in the R2 substituent, a subset
with invariable R1 and R3 groups was selected, which com-
prises compounds 14, 15, and 16. Focusing on the b-plot, it
is possible to observe that the ester moieties present strong
red/orange colours, which characterises an increasing contri-
bution for IC50. On the other side, the nitro group presents a
cyan colour, which shows a decreasing contribution for IC50.

Lastly, for analysing R3 and following the same rationalis-
ation, two subsets were selected: one with compounds 1, 33,
and 38; and one with compounds 23, 34, and 39. It is reason-
able to conclude from these subsets that a pattern cannot be
identified for the R3 contribution in explaining the response
variable. This observation agrees with the general assertation
that the R3 group did not have a significant influence in
explaining the observed IC50 pattern.

Lastly, from this analysis, it can be proposed that a disulfide
compound containing a six-membered ring with 2 endocyclic
nitrogen atoms (positions 2 and 6) at the R1 position, a nitro
group at R2 and a chlorine at R3 (Figure 4) seems to be an
interesting approach on designing a new SARS-CoV Mpro

inhibitor. The IC50 of the proposed molecule was obtained
applying the best MIA-QSPR model and the result was
0.440 μM, which is even better than the corresponding value
of compound 31 (most active compound of the series).

3.2. Molecular docking analysis

The pose used as reference (obtained from compound 31) is
shown in Figure S1 (Supplemental Material), as well as some
hydrogen bonds established with the amino acid residues con-
sidered critical for the inhibition of SARS-CoV Mpro.

Such conformation was chosen because of its similarity with
that selected by Wang et al. [12], including the interactions
established with Cys145 and Gly143 amino acid residues
(also found by Wang et al. [12]). Cys 145, according to Wang
et al. [12], plays a main role in the activity against SARS-CoV
Mpro. Apparently, this residue binds to the disulfide compound
covalently, which prevents the protein biological action. There-
fore, it is critical that the interaction with this residue has been
identified herein. Furthermore, the superposition of compound
31 with N9 was also evaluated and it presented a good
alignment.

Finally, it is worth discussing the use of only protomer A
instead of both units. According to Yang et al. [13], N1 (a simi-
lar inhibitor crystallised inside SARS-CoV Mpro) binds to pro-
tomers A and B of SARS-CoV Mpro in an identical and normal
manner. Therefore, it was assumed a similar binding mode for
the disulfide data set [12]. A test for compound 31 including
both protomers was also performed and no meaningful differ-
ences were found between including both units and only the
chain A. Then, looking for less time-consuming analysis, only
protomer A was used, while the correct selection of the most-
likely conformation of compound 31 validated our 3D MIA-
QSAR modelling.

4. Conclusion

MIA-QSAR, as currently performed, is a powerful tool for
building prediction models of biological properties and confor-
mation does not play a significant role in such technique. The
most probable reason for the failure in the conformation-based
approach is that 2D snapshot from a 3D object leads to a num-
ber of lost information, since some parts of the image hide
under upper parts. The remaining 3D information lacks from
optimal superposition of the congeneric substructure as a result
of different (bio)conformational behaviours. Subsequently,
connectivity features encoding atomic properties in a well-
defined space and comprising the congeneric centre perfectly
aligned, such as in the traditional MIA-QSAR approach,
seem to be more instructive than 3D information. Although
the traditional approach provided a better modelling perform-
ance, some 3D-MIA-QSAR results were promising, thus allow-
ing for perspectives for the treatment of three-way data arrays.
Therefore, from the extensive validation tests applied, the most
reliable QSAR model was that obtained in a traditional way
and, from it, a meaningful chemical interpretation was possible.
Lastly, the docking procedure helped to bring meaning to the
entire analysis, once an acceptable binding mode for the dis-
ulfide compounds with their receptor could be proposed.
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