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Screening of disease-related biomarkers
related to neuropathic pain (NP) after
spinal cord injury (SCI)
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Abstract

Background: Based on the molecular expression level, this paper compares lncRNA and mRNA expressions
respectively in peripheral blood samples of the patients after SCI with NP and without NP, and screens disease-
related biomarkers related to NP after SCI in peripheral blood samples of patients.

Method: The expression spectrum of 25 human peripheral blood samples (12 samples of refractory NP patients
after SCI) was downloaded and data were normalized. Screening of GO annotations significantly associated with
significant differentially expressed mRNAs and significant involvement of the KEGG pathway. The WGCNA algorithm
was used to screen for modules and RNAs that were significantly associated with disease characterization. A co-
expression network was constructed to extract the genes involved in the disease pathway from the co-expression
network, construct a network of SCI pain-related pathways, and screen important disease-related biomarkers.
Quantitative real-time PCR was used to detect the mRNA expression of hub genes.

Results: Data were normalized and re-annotated by detection of platform information, resulting in a total of 289 lncRNA
and 18197 mRNAs. Screening resulted in 338 significant differentially expressed RNAs that met the threshold
requirements. Differentially expressed RNAs were significantly enriched with the brown and magenta modules. Six KEGG
signaling pathways were screened in the co-expression network, and three KEGG pathways with direct neuropathic pain
were identified. The expression levels of E2F1, MAX, MITF, CTNNA1, and ADORA2B in the disease group were all
significantly upregulated (p < 0.01). Compared with the normal group, the expression of OXTR was upregulated.

Conclusion: We speculate that there are 7 genes and 2 lncRNAs directly involved in the pain pathway: E2F1, MAX,
MITF, CTNNA1, ADORA2B, GRIK3, OXTR, LINC01119, and LINC02447. These molecules may be important for NP after SCI.

Keywords: Spinal cord injury (SCI), Neuropathic pain (NP), Disease-related biomarkers

Introduction
Spinal cord injury (SCI) refers to the damage of the
spinal cord due to various pathogenic factors and is a
common clinical disease in orthopedics [1]. SCI is a
multi-stage, multi-pathway, and multi-factorial patho-
logical process that often leads to severe neurological

dysfunction [2]. This includes primary injuries in the
early stages of spinal cord injury and consequent sec-
ondary ischemia, edema, and secondary damage caused
by reperfusion after ischemia. Due to the non-renewable
characteristics of nerves, especially the central nervous
system, and high disability rate, it has been plaguing the
majority of patients, bringing psychological and eco-
nomic burden [3]. Studies have shown that primary
damage caused by the early stage of spinal cord injury
leads to the loss of a large number of nerve cells, and
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the subsequent secondary damage causes neuronal
apoptosis, loss of nerve cells, and non-renewable, and
keratinocyte regeneration. The formation of nerve
scars also hinders the growth of nerve fibers, and ex-
ogenous factors hinder regeneration after spinal cord
injury [4]. However, in recent years, a large number
of studies have shown that endogenous factors may
have a greater effect on nerve repair after spinal cord
injury [5].
SCI often causes neuropathic pain (NP). Patients with

NP are not only unbearable, but long-term pain affects
their sleep, work, and life [6]. Research on this field is
currently based on animal models, but research reports
on human whole blood are rare.
Previous studies have shown that changes in differ-

ent levels of gene expression will eventually lead to
dysregulation of gene expression. Among these regu-
latory factors, non-coding RNA is getting more and
more attention from scholars. Non-coding RNAs are
a class of genomic transcription products that have
no protein-coding function. More and more studies
have confirmed that non-coding RNAs, although not
translated into proteins, are involved in all levels of
gene expression [7].
Recent studies have shown that long noncoding RNAs

are a class of ncRNAs that are greater than 200 nt in
length and lack the ability to encode proteins. Compared
to RNA encoding proteins, lncRNAs are shorter in
length, fewer exons, less coding, and are tissue or cell
specific [8].
Spinal cord injury is a complex pathological process

involving a large number of cellular and molecular

changes. In recent years, many studies have found
that lncRNA is enriched in the central nervous sys-
tem of mice and affects the development of nerves,
and is closely related to many nervous system dis-
eases. LncRNA can regulate the expression of coding
genes at different levels, and the mechanism is com-
plex [9]. Therefore, studying the differential expres-
sion of lncRNA in spinal cord injury will help us
further clarify the pathological process of spinal cord
injury. At present, more and more studies on the
function of lncRNA have found that its function is
complex, and it can participate in the regulation of
various stages of gene expression, and exert its effects
by affecting the molecular level. Numerous evidences
suggest that differential expression of lncRNA is
closely related to many human diseases [10]. How-
ever, there has not been a study on lncRNA expres-
sion spectrum in the pathological process of spinal
cord injury. By analyzing the signaling pathways of
differential genes, it is helpful to study genes and ex-
pressions as a whole network. The greater the enrich-
ment value, the closer the differential gene is involved
in the signal pathway [11].
Based on the molecular expression level, this paper

compares lncRNA and mRNA expressions respectively
in peripheral blood samples of the patients after SCI
with NP and without NP, and screens disease-related
biomarkers related to NP after SCI in peripheral blood
samples of patients.

Materials and methods
Grouping and preprocessing of experimental data
We downloaded the data numbered E-GEOD-69901
from the European Bioinformatics Institute (EBI)
ArrayExpress database (https : //www.ebi .ac .uk/
arrayexpress/) [12]. The detection platform is GPL15207
(PrimeView) Affymetrix Human Gene Expression Array.
The data included 25 human peripheral blood samples,
12 of which were samples of refractory NP after SCI,
and 13 were control samples without NP after SCI (Sup-
plementary Table 1). The original format provided by
the database we downloaded is the expression spectrum
of CEL. The data in the original CEL format is converted
us ing o l i go Ver s ion 1 .41 . 1 [13 ] (h t tp : / /www.
bioconductor.org/packages/release/bioc/html/oligo.html)
in the R3.4.1 language. The median method was used to
complement the missing values, the background correc-
tion (MAS method), and the quantile method were used
to normalize the data.

Screening of significant differentially expressed RNA
Download the detailed comment information of the de-
tection platform GPL15207 corresponding to the E-
GEOD-69901 data set (https://www.ncbi.nlm.nih.gov/

Table 1 List of the primers

Primers Primer sequence (5′-3′)

GAPDH-hF TGACAACTTTGGTATCGTGGAAGG

GAPDH-hR AGGCAGGGATGATGTTCTGGAGAG

E2F1-hF CATCAGTACCTGGCCGAGAG

E2F1-hR CCCGGGGATTTCACACCTTT

MITF-hF TGAGCTTGCCATGTCCAAAC

MITF-hR ACGCTCGTGAATGTGTGTTC

CTNNA1-hF CCATGCAGGCAACATAAACTTC

CTNNA1-hR AGGGTTGTAACCTGTGTAACAAG

ADORA2B-hF TGCACTGACTTCTACGGCTG

ADORA2B-hR GGTCCCCGTGACCAAACTT

MAX-hF GAGAGCGACGAAGAGCAACC

MAX-hR GCACTTGACCTCGCCTTCT

GRIK3-hF TTCGAGGCGACCAAAAAGG

GRIK3-hR GGTTCACGTAGAAGGTGTCCT

OXTR-hF CTGCTACGGCCTTATCAGCTT

OXTR-hR CGCTCCACATCTGCACGAA
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geo/query/acc.cgi?acc=GPL15207). Based on the infor-
mation provided by the platform, such as Transcript ID,
RefSeq ID, and location, the mRNA and lncRNA in the
expression spectrum were re-annotated using 4328
lncRNAs and 19,029 protein-coding genes contained in
the HUGO Gene Nomenclature Committee (HGNC)
[14] (http://www.genenames.org/) database.
According to the sample information, the sample

was divided into 12 SCI-pain and 13 SCI-no_pain
CTRL control sample groups. Then, using the
Limma Version 3.34.0 [15] (https://bioconductor.org/
packages/release/bioc/html/limma.html) in the R3.4.1
language, the differential expression FDR values and
the expression fold change values of the genes be-
tween the comparison groups were calculated. FDR
values < 0.05 and |logFC| > 0.5 were selected as
thresholds for screening for significant differentially
expressed RNA. Based on the expression level of
RNAs obtained by screening, using the pheatmap
Version 1.0.8 in R3.4.1 language [16] (https://cran.r-
project.org/package=pheatmap), the expression values
were hierarchically clustered [17, 18] based on Eu-
clidean bidirectional and displayed by heat map.
Subsequently, the mRNA in the significant differen-
tially expressed RNA obtained by screening was sub-
jected to a DAVID 6.8-based [19, 20] (https://david.

ncifcrf.gov/) GO node analysis and a significant en-
richment analysis of the KEGG signaling pathway.
Screening for GO annotations that are significantly
associated with significant differentially expressed
mRNAs, as well as significant involvement of the
KEGG pathway.

Screening for significantly related modules and RNAs for
disease characterization using the WGCNA algorithm
Weighed gene co-expression network analysis (WGCN
A) is a typical system biology algorithm for constructing
co-expression networks. The algorithm is based on high
throughput expression data. Firstly, it is assumed that
the constructed network obeys the scale-free network,
and defines the co-expressing correlation matrix, the ad-
jacency function formed by the network, and then calcu-
lates the different coefficients of different nodes to
identify the set modules associated with the disease [21,
22]. Here, we use the WGCNA package in R3.4.1 [23]
(https://cran.r-project.org/web/packages/WGCNA/) to
analyze all RNAs detected in the data set and to screen
the modules and the RNA contained therein that are sig-
nificantly associated with the disease state. The setup
RNA module contains a minimum of 100 RNA ele-
ments, cutHeight = 0.99.

Fig. 1 a Significant differentially expressed RNA-log2FC-log10 (FDR) volcano map. Green dots indicate significant differentially expressed RNAs, red
horizontal dashed lines indicate FDR < 0.05, and two red vertical lines indicate |Log2FC| > 0.5. b Bidirectional hierarchical clustering heat map
based on expression levels of the significant differentially expressed RNAs
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The significant differentially expressed RNA screened
in 2.2 was then mapped into each of the WGCNA color
modules obtained in 2.3. By means of f(k,N,M,n) = C(k,
M) × C(n−k,N−M)/C(n,N) () hypergeometric algorithm
[24], the significant enrichment parameter fold enrich-
ment and enrichment significance p value of differential
RNA in the module are calculated (where N represents
all RNA involved in the analysis of the WGCNA algo-
rithm, M represents the number of RNAs in each mod-
ule obtained by the WGCNA algorithm, n represents the
number of significant differences in the number of RNAs
screened in 2.2, and k represents the number of signifi-
cant differentially methylated genes mapped into the
corresponding modules). The module screening thresh-
old was chosen to be p < 0.05, fold enrichment > 1.

Construction of co-expression network
The lncRNA and mRNA contained in the target mod-
ule of the significantly enriched distribution screened

in 2.3 were calculated by the cor function (http://
77.66.12.57/R-help/cor.test.html) in the R3.4.1 lan-
guage to calculate their expression level Pearson cor-
relation coefficient (PCC). A co-expression network
between the significant differentially expressed RNAs
was constructed by expression association. The net-
work is visualized by Cytoscape 3.6.1 [25] (http://
www.cytoscape.org/). Thereafter, using DAVID, a sig-
nificant correlation analysis of the KEGG pathway
was performed on genes in the co-expression
network.

Construction of the pathway network related to SCI pain
In the Comparative Toxicogenomics Database 2019 up-
date database (http://ctd.mdibl.org/) [26], the “neuro-
pathic pain” was used as a keyword to search for the
KEGG pathway directly related to NP after SCI, and the
corresponding pathways in the co-expression network
were significantly compared, and the overlapping

Table 2 Annotations of GO biological process nodes and KEGG signaling pathways that are significantly associated with mRNA in
significant differentially expressed RNAs

Category Term Count P value

Biology process GO:0030072 ~ peptide hormone secretion 5 3.301E−03

GO:0002790 ~ peptide secretion 5 3.965E−03

GO:0051252 ~ regulation of RNA metabolic process 44 4.240E−03

GO:0006355 ~ regulation of transcription, DNA-dependent 43 4.838E−03

GO:0046879 ~ hormone secretion 5 5.553E−03

GO:0009914 ~ hormone transport 5 7.518E−03

GO:0015833 ~ peptide transport 5 1.055E−02

GO:0033081 ~ regulation of T cell differentiation in the thymus 3 1.258E−02

GO:0045449 ~ regulation of transcription 56 1.279E−02

GO:0006350 ~ transcription 46 2.036E−02

GO:0002684 ~ positive regulation of immune system process 9 3.657E−02

GO:0006959 ~ humoral immune response 5 3.700E−02

GO:0003001 ~ generation of a signal involved in cell-cell signaling 5 4.639E−02

GO:0045580 ~ regulation of T cell differentiation 4 4.723E−02

GO:0045859 ~ regulation of protein kinase activity 11 4.908E−02

KEGG pathway hsa00600:Sphingolipid metabolism 3 1.048E−02

hsa05200:Pathways in cancer 8 1.803E−02

hsa04530:Tight junction 4 2.949E−02

hsa04520:Adherens junction 3 2.978E−02

hsa04512:ECM-receptor interaction 3 3.345E−02

hsa04350:TGF-beta signaling pathway 3 3.501E−02

hsa04540:Gap junction 3 3.604E−02

hsa04310:Wnt signaling pathway 4 3.614E−02

hsa00640:Propanoate metabolism 2 3.673E−02

hsa00561:Glycerolipid metabolism 2 4.751E−02

hsa04080:Neuroactive ligand-receptor interaction 5 4.943E−02
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pathways were obtained. The genes involved in the dis-
ease pathway were separately extracted from the co-
expression network, a network of SCI pain-related path-
way was constructed, and important disease-related bio-
markers were screened.

Quantitative real-time PCR clinical trial verification
A total of 6 whole blood samples including 3 healthy
samples and 3 samples of refractory NP patients after
SCI were collected from China-Japan Union Hospital of
Jilin University (Changchun, Jilin, China). Total RNA
was isolated from whole blood samples using RNAiso
Plus (Trizol) (TAKARA, 9109) reagent according to the
manufacturer’s protocols. Follow the kit instructions for
mRNA reverse transcription and fluorescence quantita-
tive PCR amplification (PrimeScript™RT Master Mix
(Perfect Real Time), TAKARA, RR036A; PrimeScript™ II
1st Strand cDNA Synthesis Kit, TAKARA, 6210A; Power
SYBR Green PCR Master Mix, Thermo, 4367659). The
primers were listed in Table 1. For statistical analysis,
the graphing software was Graphpad prism 5 (Graphpad

Software, San Diego, CA), p < 0.05 and p < 0.01 were the
screening criteria for significant and extremely signifi-
cant differences.

Results
Preprocessing of data and screening of significant
differential expression
First of all, the downloaded expression spectrum data set
is normalized. The normalized expression values are
shown in Supplementary Table 2. The box diagrams be-
fore and after normalization are shown in Supplementary
Figure 1. After re-annotation by detecting platform infor-
mation, a total of 289 lncRNAs and 18197 mRNAs were
obtained (the annotation information is also shown in the
“type” column in Supplementary Table 2). The distribu-
tion density curves of lncRNAs and mRNAs after
normalization are shown in Supplementary Figure 2. Ac-
cording to the sample disease information, the sample was
divided into 12 SCI-pain and 13 SCI-no-pain CTRL con-
trol sample groups, and then 338 significant differentially
expressed RNAs satisfying the threshold requirement were

Fig. 2 GO biological process nodes and KEGG signal point distribution maps. The horizontal axis represents the number of genes, and the
vertical axis represents the name of the item. The color and size of the dots represent significance. The larger the dots, the closer the color is to
red, the higher the significance
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obtained by Limma co-screening, of which 187 were sig-
nificantly downregulated (SCI-pain) and 151 significantly
upregulated (SCI-no-pain) expression. The significant dif-
ferentially expressed RNA-log2FC-log10 (FDR) volcano
map is shown in Fig. 1a. Green dots indicate signifi-
cant differentially expressed RNAs, red horizontal
dashed lines indicate FDR < 0.05, and two red verti-
cal lines indicate |Log2FC| > 0.5. A list of significant
differentially expressed RNAs is shown in Supple-
mentary Table 3. A bidirectional hierarchical cluster-
ing heat map based on the significant differentially
expressed of RNA expression levels obtained by
screening is shown in Fig. 1b. It can be seen from
the figure that the RNA expression values obtained
by screening can separate different types of samples
and have clear colors, indicating that the RNAs
screened in the pain and no-pain control groups are
characteristic of the samples. Then, the screened
mRNAs in significant differentially expressed RNAs
were then subjected to DAVID-based GO biological
processes and KEGG signaling pathway enrichment
analysis annotations. Fifteen significantly related GO
biological processes and 11 KEGG signaling path-
ways were obtained, as shown in Table 2, and the
visualization is shown in Fig. 2. GO biological
process nodes and KEGG signal point distribution

maps that are significantly associated with mRNA in
significant differentially expressed RNAs. The hori-
zontal axis represents the number of genes, and the
vertical axis represents the name of the item. The
color and size of the dots represent significance. The
larger the dots, the closer the color is to red, the
higher the significance. The results showed that sig-
nificant differentially expressed mRNAs were signifi-
cantly associated with biological processes such as
hormone secretion and transport, and were signifi-
cantly involved in KEGG signaling pathways such as
ECM-receptor interaction and TGF-beta signaling.

WGCNA algorithm screens for modules and RNAs that are
significantly associated with disease characterization
All RNAs detected by E-GEOD-69901 were subjected
to analysis and screening based on WGCNA algo-
rithm. In order to satisfy the preconditions of scale-
free network distribution as much as possible, we
need to explore the value of power of the adjacency
matrix weight parameter: set the network construc-
tion parameter selection range and calculate the
scale-free topology matrix. As shown in Fig. 3, we se-
lect the value of power when the squared value of the
correlation coefficient reaches 0.9 for the first time,
that is, power = 30. The average node connectivity of

Fig. 3 Left: Adjacency matrix weight parameter power selection graph. The horizontal axis represents the weight parameter power, and the
vertical axis represents the square of the log(k) and log(p(k)) correlation coefficients in the corresponding network. The red line indicates the
normalized line where the square of the correlation coefficient reaches 0.9. Right: Schematic diagram of average connectivity of RNA under
different power parameters. The red line indicates the value of the average connectivity of the network node (1) under the value of the power
parameter of the adjacency matrix weight parameter on the left
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the co-expression network constructed at this time is
1, which is completely consistent with the nature of
small-world networks. Then calculate the coefficient
of dissimilarity between gene points, and obtain a sys-
tematic clustering tree. The minimum number of
genes for each RNA module is 100, and the pruning
height is cutHeight = 0.99. Through Fig. 3, we get
the module division tree diagram of Fig. 4a. Each
color represents a different module. A total of 10
modules other than gray were obtained by screening;
then the correlation between the modules obtained by
each division and the disease characterization was cal-
culated. Figure 4b shows that the heat map of the re-
lationship between different color modules and
disease characterization. The color from blue to or-
ange indicates a negative to positive change in the re-
lationship with the disease. The results show that a
total of 3 modules exhibit a very significant positive
correlation with disease characterization: brown, ma-
genta, and pink.
After the calculation according to the hypergeometric

enrichment algorithm described in the method, the sig-
nificant differentially expressed RNAs screened in the
previous step are mapped into each module. Figure 5

shows the significant differentially expressed RNAs in
the module distribution ratio pie chart (except the gray
module). A total of 333 significant differentially
expressed RNAs were distributed in each module (ex-
cept the gray module), and the number distribution was
as shown in Fig. 5. Stabilization modules with signifi-
cantly enriched distribution of differentially expressed
RNAs were selected and the results are shown in Table
3. The results showed that the differentially expressed
RNAs were significantly enriched in the brown and ma-
genta modules, and combined with the correlation be-
tween the previous modules and disease
characterization; we used the differentially expressed
RNAs in the two modules of brown and magenta as sub-
jects for further analysis. The brown module contains 44
RNAs (2 lncRNA and 42 mRNA), and the magenta
module contains 22 RNAs (22 are mRNA). The distribu-
tion of significant differentially expressed RNAs in each
module is shown in Supplementary Table 4.

Co-expression network construction
The expression-related PCC between lncRNA and
mRNA in the two target modules screened in 3.2 was
calculated. A co-expression network of lncRNA-

Fig. 4 a Module partitioning tree diagram. Each color represents a different module. b Heat map of the relationship between different color
modules and disease characterization. The color from blue to orange indicates a negative to positive change in the relationship with the disease
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mRNA was constructed by retaining a ligation pair
with a PCC above 0.4 (Supplementary Table 5), as
shown in Fig. 6. The network contains 117 edges and
63 nodes, of which 2 lncRNA and 61 mRNA, both of
which express significantly upregulated expression of
RNAs in pain tissue. An enriched annotation analysis
of the KEGG signaling pathway is then performed on
the mRNAs that make up the co-expression network.
Six KEGG signaling pathways were screened, as
shown in Table 4. The results show that genes in the
co-expression network are significantly involved in

biological processes such as injury response, defense
response, immune response, and inflammatory re-
sponse. At the same time, these genes are signifi-
cantly involved in the KEGG signaling pathways of
complement and coagulation cascades, cell adhesion
molecules, and ECM-receptor interactions.

Construction of SCI pain-related pathway network
In the CTD database, “neuropathic pain” was used as a
keyword to search for the KEGG pathway directly re-
lated to neuropathic pain. A total of 84 KEGG pathways

Fig. 5 Significant differentially expressed RNAs in the module distribution ratio pie chart (except the gray module).

Table 3 Module information statistics

Color #RNA Correlation Pcorr #DE RNAs Enrichment fold [95% CI] Phyper

Black 166 −0.176 1.15E−38

Blue 747 0.0802 3.66E−09 8 0.174 [0.0740-0.348] 1.78E−10

Brown 588 0.764 0 44 1.213 [0.855-1.686] 2.48E−01

Green 265 −0.631 0 7 0.428 [0.169-0.904] 2.16E−02

Gray 1704 0.00259 0.849 201 1.912 [1.583-2.304] 1.59E−11

Magenta 149 0.836 0 22 2.393 [1.436-3.820] 7.90E−04

Pink 155 0.201 1.66E−50 7 0.732 [0.287-1.562] 6.06E−01

Purple 135 −0.382 6.92E−187 3 0.360 [0.073-1.084] 9.10E−02

Red 242 −0.451 3.31E−268 10 0.669 [0.314-1.269] 2.67E−01

Turquoise 796 −0.489 4.35E−322 10 0.204 [0.096-0.381] 3.74E−10

Yellow 450 −0.771 0 21 0.756 [0.457-1.190] 2.56E−01
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as listed in Supplementary Table 6 was obtained.
After comparing with the KEGG signaling pathway
involved in the significant expression of mRNA in the
co-expression network in the previous step, 3 overlap-
ping pathways were obtained: hsa04020: calcium sig-
naling pathway, hsa04080: neuroactive ligand-receptor
interaction, and hsa05200: pathways in cancer. Based
on the genes participating in the overlapping pathway,
the part involved in the pathway gene is extracted
from the co-expression network. Combining lncRNA-
gene-pathway linkages, a pain-related network of col-
laterals was constructed, as shown in Fig. 7. There-
fore, we speculate that the 7 genes directly involved
in the pain pathway: E2F1, MAX, MITF, CTNNA1,
ADORA2B, GRIK3, and OXTR are closely related to
NP after SCI. In addition, LINC01119 and LINC02447
have a positive correlation with these genes at the

expression level and are co-located in a module that
is significantly positively correlated with disease
characterization in the WGCNA algorithm results.
Therefore, LINC01119 and LINC02447 may be bio-
molecules that are closely related to NP after SCI.

Real-time PCR experiment results
Real-time PCR results showed that, compared with the
normal group, the expression levels of E2F1, MAX,
MITF, CTNNA1, and ADORA2B in the disease group
were all significantly upregulated (p < 0.01). Compared
with the normal group, the expression of OXTR was up-
regulated. There are many samples in the GRIK3 test
that failed to detect the CT value. It may be that the ex-
pression abundance is too low, which makes it impos-
sible to detect (Fig. 8).

Fig. 6 LncRNA-mRNA co-expressing genes. Square and circle represent lncRNA and mRNA. The change in node color from light to dark red
indicates the change from low to high of logFC

Table 4 KEGG signaling pathways that are significantly associated with mRNAs in the co-expression network

Term Count P value Genes

hsa00020:Citrate cycle (TCA cycle) 2 1.15E−02 SUCLG2, IDH1

hsa05200:Pathways in cancer 4 1.35E−02 E2F1, MAX, MITF, CTNNA1

hsa04080:Neuroactive ligand-receptor interaction 3 2.67E−02 ADORA2B, GRIK3, OXTR

hsa04270:Vascular smooth muscle contraction 2 3.60E−02 ADORA2B, ARHGEF12

hsa04530:Tight junction 2 4.14E−02 PARD6G, CTNNA1

hsa04020:Calcium signaling pathway 2 4.51E−02 ADORA2B, OXTR
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Discussion
The spinal cord is a vulnerable part of the central
nervous system. At present, it is difficult to have ef-
fective treatment methods. The patients with spinal
cord injury lose their labor and self-care ability, and
cause many serious complications. Pathological neuro-
pathic pain is more common after spinal cord injury,
and there is currently no effective and effective treat-
ment [2]. At present, the research on neuropathic
pain related to spinal cord injury is mostly concen-
trated in mice, and research reports on human whole
blood are rare [27, 28].
Based on the molecular expression level, this paper

compares lncRNA and mRNA expression spectrum in
peripheral blood tissue samples of NP patients after SCI,
six KEGG signaling pathways were screened in the co-
expression network, and three KEGG pathways with dir-
ect neuropathic pain were identified. We found that
there are seven genes directly involved in the pain
pathway.
Tumor-related studies have shown that the upregu-

lation of factor E2F1 can cause pathological pain.
The paracrine factors interacting with their receptors
could cause the activation of downstream transcrip-
tion factors such as E2F1 to upregulated expression
of genes associated with pain [29]. Studies have

shown that factor MITF can promote and survive
osteoclast precursors, greatly enhancing the inci-
dence of bone metastasis pain [30]. It was found in
key genes related to diabetic nephropathy that
CTNNA1 factor can cause other arrhythmogenic
right ventricular cardiomyopathy [31]. When studied
the updated mechanisms underlying sickle cell
disease-associated pain, it was discovered that
ADORA2B factor can be used as a target gene to
cause pain. Studies have shown that mutations in
the oxytocin receptor gene (OXTR) are associated
with behavioral and neurological transference accur-
acy [32].
In summary, our results showed that the expression

levels of E2F1, MAX, MITF, CTNNA1, and ADORA2B
in the disease group were all significantly upregulated.
Compared with the normal group, the expression of
OXTR was upregulated. The data from the present study
suggested that these genes may play the important role
in NP (after SCI) and serve as the potential biomarkers
of severe NP (after SCI) clinical diagnosis.

Conclusion
In summary, based on the molecular expression
level, this paper compares lncRNA and mRNA ex-
pressions respectively in peripheral blood samples of

Fig. 7 Pain-related network. Squares, circles, and triangles represent lncRNA, mRNA, and pain-related pathways. Changes in node color from light
to dark red indicate a low-to-high change in logFC. The solid black line indicates the co-expression relationship between lncRNA and mRNA, and
the solid green line indicates that the gene is involved in pathway junction
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the patients after SCI with NP and without NP,
screens GO annotations and significantly involved
KEGG pathways that are significantly associated
with significantly different mRNAs, and screens
them with WGCNA algorithm. Significantly related
modules and RNAs were constructed and co-
expression networks were constructed to screen for
expression-specific disease-related biomarkers re-
lated to NP after SCI in peripheral blood samples
of patients. Through these disease-related mole-
cules, we can have a better prognosis for HP after
SCI. The screening of these molecules will provide
an important basis for future clinical targeted
research.
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pathway directly related to neuropathic pain. A total of 84 KEGG path-
ways as listed.
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