
ORIGINAL RESEARCH
published: 06 August 2019

doi: 10.3389/fnins.2019.00793

Frontiers in Neuroscience | www.frontiersin.org 1 August 2019 | Volume 13 | Article 793

Edited by:

Anton Civit,

University of Seville, Spain

Reviewed by:

Tayfun Gokmen,

IBM T. J. Watson Research Center,

United States

Paul Honeine,

EA4108 Laboratoire d’Informatique,

de Traitement de l’Information et des

Systèmes (LITIS), France

*Correspondence:

Brian D. Hoskins

brian.hoskins@nist.gov

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 04 April 2019

Accepted: 15 July 2019

Published: 06 August 2019

Citation:

Hoskins BD, Daniels MW, Huang S,

Madhavan A, Adam GC, Zhitenev N,

McClelland JJ and Stiles MD (2019)

Streaming Batch Eigenupdates for

Hardware Neural Networks.

Front. Neurosci. 13:793.

doi: 10.3389/fnins.2019.00793

Streaming Batch Eigenupdates for
Hardware Neural Networks
Brian D. Hoskins 1*, Matthew W. Daniels 1, Siyuan Huang 2, Advait Madhavan 1,3,

Gina C. Adam 2, Nikolai Zhitenev 1, Jabez J. McClelland 1 and Mark D. Stiles 1

1 Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States,
2 Electrical and Computer Engineering, George Washington University, Washington, DC, United States, 3 Institute for

Research in Electronics and Applied Physics, University of Maryland, College Park, MD, United States

Neural networks based on nanodevices, such as metal oxide memristors, phase change

memories, and flash memory cells, have generated considerable interest for their

increased energy efficiency and density in comparison to graphics processing units

(GPUs) and central processing units (CPUs). Though immense acceleration of the training

process can be achieved by leveraging the fact that the time complexity of training does

not scale with the network size, it is limited by the space complexity of stochastic gradient

descent, which grows quadratically. The main objective of this work is to reduce this

space complexity by using low-rank approximations of stochastic gradient descent. This

low spatial complexity combined with streamingmethods allows for significant reductions

in memory and compute overhead, opening the door for improvements in area, time and

energy efficiency of training. We refer to this algorithm and architecture to implement it

as the streaming batch eigenupdate (SBE) approach.

Keywords: neuromorphic, memristor, network training, stochastic gradient descent, back propagation, singular

value decomposition

INTRODUCTION

Deep neural networks (DNNs) have grown increasingly popular over the years in a wide
range of fields from image recognition to natural language processing. These systems have
enormous computational overhead, particularly on multiply and accumulate (MAC) operations,
and specialized hardware has been developed to accelerate these tasks. As the networks are
themselves tolerant to noise and low precision computing (4-bit and below), theoretical and
experimental investigations have shown that analog implementations of DNNs using Ohm’s and
Kirchoff’s laws to performMAC operations can vastly accelerate the training and reduce the energy
of inference by orders of magnitude.

Investigations regarding an appropriate nanodevice suitable for analog inference have focused
on different families of 2-terminal memory devices (memristors, resistive random-access memory
(ReRAM), phase changememories (PCM), etc.) as well as 3 terminal devices (flashmemory, lithium
insertion) (Haensch et al., 2019). These devices have the desirable properties of analog tunability,
high endurance, and long-term memory needed for use in embedded inference applications.
Applications based on these devices perform well when used for inference and have been well-
studied, with intermediate scale systems having been built by integrating devices into crossbar
arrays (Prezioso et al., 2015; Adam et al., 2017; Chakrabarti et al., 2017; Wang et al., 2018).

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00793
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00793&domain=pdf&date_stamp=2019-08-06
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:brian.hoskins@nist.gov
https://doi.org/10.3389/fnins.2019.00793
https://www.frontiersin.org/articles/10.3389/fnins.2019.00793/full
http://loop.frontiersin.org/people/716347/overview
http://loop.frontiersin.org/people/750759/overview

Hoskins et al. SBE Update

Though most of the effort has been focused on building
inference engines, more recent work has begun to address
difficulties in training such nanodevice arrays (Adam, 2018;
Ambrogio et al., 2018). In crossbar architectures, there are
two approaches to updating the weights. The first, which fits
well with weights computed in software, is to either column

wise or sequentially update each weight separately. The other,

called an outer product update, is to update all the weights

simultaneously with two vectors of voltages or voltage pulses.

This latter approach is limited in the type of updates that can be
applied, but its speed and energy advantage essentially preclude
the use of the former in network training applications. The goal of
the work presented here is to develop a technique based on outer
product updates that approaches the training fidelity available for
algorithms based on sequential weight updates, which are often
employed in software-based platforms.

We focus on backpropagation-based learning in a layer in a

deep neural network where the weights for that layer are stored in

a memristor crossbar array. In the forward pass, the layer receives

a series of input vectors xj, indexed by j, from the previous layer

and multiplies it by the weight matrix wj. The resulting vector
goes through a non-linear activation function and is passed
to the next layer. In the backward pass, a similar operation
occurs, except in the opposite direction, where the error from
each consequent layer (δj) is pushed back into the crossbar, to
compute the error for the previous layer with respect to each of
the weights (wj). In the weight update step, learning proceeds
by calculating the gradient of the loss function with respect
to the weights in the layer of interest, by using input values,
xj, and the error, δ

j, received from the forward and backward
passes respectively. This gradient of the loss function is given by

−δ
j[xj]

T
. For a suitably parallelized architecture, the number of

clock cycles needed for these operations is independent of the
size of the memory arrays in each layer (Gokmen and Vlasov,
2016). This scaling is maintained for the weight matrix updates
by using stochastic gradient descent (SGD), which uses outer

product updates alone. In this case 1ŵj = −ηδ
j[xj]

T
, with η

the learning rate, and the outer product update is implemented
by applying voltages representing xj to one side of the crossbar
and voltages representing δ

j to the other. Independently updating
each element would require a series of ab updates, where the
inputs have length a and the errors have length b.

Though SGD is a powerful method for training, other
methods, employed in software, such as momentum, Adagrad,
or, most simply, batch update can sometimes be superior.
However, these require additional memory overhead or explicit
look-a-head updates of the memory which at the present time
render them impracticable in the crossbar training setting
(Gokmen et al., 2018).

The advantage of SGD is that it uses only outer product

updates but it has the disadvantage that it requires an update

of the weights for each input. A modification of this approach,

minibatch gradient descent (MBGD), stores the n inputs xi,j and

the errors δ
i,j for batch i and then uses them to sequentially

update the weight matrix in the same way as done for SGD. On
advanced processors, like graphical processing units (GPUs and

TPUs), MBGD can take advantage of pipelining to significantly
speed up the processing (Jouppi et al., 2017). If the n inputs and
errors are stored separately, and then applied to a crossbar array
with n outer-product updates, a strategy we call MBGD1, there is
no apparent advantage to doingMBGD. However, a modification
ofMBGD1, we call MBGD2, in which the weight updates for each
input are summed before they are used to update the cross-bar
array, can reduce the number of times each device is written to,
during the training process, hence reducing the stress on each
device. Here, the weight matrix update matrix for batch

1ŵi = −
η

n

n
∑

j=1

δ
i,j[xi,j]

T
,

is summed over all members of the batch, indexed by j and
then each element of the cross-bar array is individually updated.
MBGD1 uses n outer product updates, where n is the number
of inputs in the minibatch, and each element of the cross-bar
array is accessed n times. MBGD2, only updates each device once
per batch, but requires min(a, b) operations if the updates are
performed column wise or ab operations for sequential.

This latter form of mini-batch gradient descent (MBGD2)
which is the focus of this work is of extreme interest for the case
of nanodevice arrays. It has been suggested that it can increase
tolerance with respect to device non-idealities, as well as be
employed to minimize the number of device updates, which can
be a problem in systems with low endurance or high energy to
program (Kataeva et al., 2015). In PCM arrays, minimizing the
number of updates is critical to preventing a hard reset when
the device reaches its natural conductance limit (Boybat et al.,
2017). Additionally, in cases where the energy of inference is
significantly less than the energy of update, reducing the number
of updates could result in a substantial decrease in the energy
required to train the network, even if it occurs at the expense
of training time. Given these advantages of mini-batch update,
a dual memory approach, with trench capacitor based short
term memory cells that linearly perform batch summation of
the calculated gradients, have also been proposed (Kim et al.,
2017; Ambrogio et al., 2018; Li et al., 2018). However, this update
matrix is no longer in a form that is readily amenable to outer
product updates so additional modifications are needed.

One straightforward way to convert the batch weight
update to outer product form is to compute its singular
value decomposition.

1ŵi =

k=min(a,b)
∑

j=1

σ juj[vj]
T
.

In addition to allowing for rank one updates of the weight
matrix, the update can be made to carry even more information
about the weight update, by performing the update with a low
rank approximation, that is, taking k < min(a, b). We show
in section Proposed methods for training and new algorithm
that for this approach, taking a small number ranks which
include the most important terms in this sum can provide a very
good approximationwith significant time savings. Unfortunately,

Frontiers in Neuroscience | www.frontiersin.org 2 August 2019 | Volume 13 | Article 793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hoskins et al. SBE Update

TABLE 1 | Comparison of asymptotic scaling for common methods of a× b crossbar training.

Training

method

Update method Updates per

device

Crossbar primitive

operations

Memory

requirements

External

computational

load per datum

SGD Outer product nm nm O (a+ b) 0

MBGD1 Outer Product nm nm O (na+ nb) 0

MBGD2 Sequential or

column-wise

m abm or ηm O (ab) O(ab)

Rank k SVD Outer Product km km O (ab) O (4ηµ2 + 22η3)

Rank k SBE Outer product km km O (ka+ kb) O (gka+ gkb)

We define m as the total number of minibatches, n as the amount of training data per minibatch, and k is the decomposition rank when appropriate. For the SVD method, we take

scaling laws for the R-SVD algorithm, choosing µ = max(a,b) and η = min(a,b) to get the best scaling (Golub and Van Loan, 2013). For the SBE approach, the complexity scales

linearly with dimension and rank (Hua et al., 1999). The exact choice of algorithm will determine the value of the constant g. For the PASTd algorithm, g = 4 (Yang, 1995).

computing the singular value decomposition requires storing the
entire update matrix and requires number of operations that

scales like
[

min(a, b)
]3
. This would require significant overhead,

most likely in the form of digital computation external to the
crossbar, though analog embodiments could be implemented. To
get the benefits of turning the batch into the smallest number of
updates, an efficient means of calculation is needed.

Here, we combine the batch-update approach with a
streaming method for computing low rank approximations to
the singular value decomposition due to Oja (1982). This novel
combination, which we refer to as streaming batch eigenupdate
(SBE) computes the contribution of each input and error vector
pair to the update as they arrive requires no further information
about them for subsequent processing. This approach minimizes
storage and computational requirements while preserving the
advantages of batch updates. Such an approach is enabled by
our finding that a low rank approximation works well for
training a network. Table 1 compares the necessary storage,
computational overhead, and number of crossbar updates
required for each of the approaches mentioned above. Section
Materials and Methods describes the procedure for streaming
batch eigenupdate. Section Results compares the performance
of each of these approaches through simulations of a four-layer
neural network and section Discussion discusses some of the
remaining issues with implementation of this approach.

MATERIALS AND METHODS

Proposed Methods for Training and New
Algorithm
The key idea behind our alternative approach is to estimate the
most representative single outer product update for the batch.
Not only is this approach fast, it also minimizes the amount of
information that needs to be stored to make each update. We
consider then, an arbitrary network layer being trained on batch
i with an a × b weight matrix wi. The layer receives j activations
xi,j of dimension b and backpropagated errors δ

i,j of dimension a
per batch. In the ideal case, we would like the network to update
according to

wi+1 = wi + 1ŵi,

where the batch average update 1ŵi is a sum of outer products,

1ŵi = −
η

n

n
∑

j=1

δ
i,j[xi,j]

T
.

Each term in this sum is the gradient of the loss function of that
input xi,j, which is a rank 1 matrix. The sum of the gradients,
1ŵi, is the gradient of the batch loss function and is in general
a rank min(n, a, b) matrix. Performing such an update with
conventional SGD will require n outer product operations. An
important observation here is that the outer product operation
itself is a rank 1 operation, and hence an efficient alternative
would entail using a low rank matrix approximation of 1ŵi to
reduce the total number of updates performed. More specifically,
we perform k < n outer product updates where k is the number
of significant singular values of the true gradient 1wi.

The singular value decomposition (SVD) of 1wi entails
significant memory overhead and computational cost. We base
our approach on streaming principal component analysis (PCA)
developed to compute the k most significant singular vectors
of a streaming covariance matrix (Balsubramani et al., 2013;
Mitliagkas et al., 2013; Li et al., 2016; Yang et al., 2018), which
is based on Oja’s original algorithm for PCA that was developed
to describe the evolution of neural network weights (Oja, 1982).
By applying his formalism here on the weight updates, we can
extract, on the fly, a set of k most representative vectors, of
the original rank n update. This allows us to perform memory
limited batch updates with k(a + b) additional memory units
instead of ab as used in previous studies. Oja’s rule is sometimes
considered a form of unsupervised learning, and employing it
amounts to using a separate unsupervised neural network to
train the network of interest. However, this network trains on the
batch gradient and only needs very short-term memory as the
gradient is constantly changing. Such short term memory arrays
are already entering into use (Kim et al., 2017; Ambrogio et al.,
2018).

If we consider the special case of k = 1, using only the single
most important singular value, we can define an approximation
for 1wi, 1Ŵi, in terms of left and right singular unit vectors Xi

and 1
i corresponding to that largest singular value, σ i. The rank

Frontiers in Neuroscience | www.frontiersin.org 3 August 2019 | Volume 13 | Article 793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hoskins et al. SBE Update

FIGURE 1 | (A) Example of the contribution of the normalized singular values

to the batch update for the middle layer of a 728 × 256 × 128 × 10 network

trained for MNIST with ReLU and sigmoidal activation. The batch size is

10,000. (B) Cumulative sum of the contribution of the first k singular values.

The sum of the first few vectors approaches the total sum, one, showing that

they contain most of the batch information.

1 approximation, which we call the principal eigenupdate of the
batch, is then:

1Ŵi ≈ −ησ i
1

i[Xi]T . (1)

This represents the single best rank 1 approximation of the batch
update, with η the traditional learning rate. These values can be

estimated over a streaming batch of size n such that Xi ≈ Xi,n

‖Xi,n‖
,

1
i ≈ 1

i,n
∥

∥1
i,n

∥

∥

, and σ i ≈ σ i,n using the following streaming update

rules where j runs from 1 to n:

Xi,j+1 =
j

j+ 1
X
i,j

+
1

j+ 1
xi,j

(δi,j · 1i,j)
∥

∥1
i,j
∥

∥

1
i,j+1 =

j

j+ 1
1

i,j

+
1

j+ 1
δ
i,j (x

i,j · Xi,j+1)
∥

∥Xi,j+1
∥

∥

σ i,j+1 =
j

j+ 1
σ i,j +

1

j+ 1

(xi,j · Xi,j+1)
∥

∥Xi,j+1
∥

∥

(δi,j · 1i,j+1)
∥

∥1
i,j+1

∥

∥

Afterwards the weight matrix is updated with an outer product
update using these rank 1 estimators of the singular values. The
next batch is calculated from the end condition of the previous
batch such that Xi+1,1 = Xi,n, 1

i+1,1 = 1
i,n, and σ i+1,1 =

σ i,n. The previous best estimate is presumed to approximate the
subsequent best estimate, which is true if the learning rate is
sufficiently small1.

This algorithm falls within a general family of noisy
power iterations (Hardt and Price, 2014), or power iterations
performed on stochastic matrices, which are known to extract
the eigenvectors of covariance matrixes. It is, additionally, a bi-
iterative method for calculating both left and right eigenvectors
(Clint and Jennings, 1971; Strobach, 1997).

Intuitively however, the algorithm can be interpreted as
updating the “weighted average” activation and error based on
the cross significance of its companion term. For example, the
estimated left eigenvector, the “estimated activation,” of the layer,
Xi,j, is modified significantly by xi,j whenever the associated error
is both large and directed along the estimated right eigenvector

as measured by the factor (δi,j·1i,j)
∥

∥1
i,j

∥

∥

. If the error of an input is

small or pointing in an uncommon direction, the estimated
activation does not change significantly. The same is true for the

dependence of the changes in1
i,j+1 on (xi,j·Xi,j+1)

‖Xi,j+1‖
. This algorithm,

in the context of using streaming data to estimate the important
singular values of the SVD of a batch update matrix, we call this
the streaming batch eigenupdate (SBE) algorithm.

This approach can be generalized to an arbitrary number
of ranks using different approaches. The simplest and most
pipelineable approach is deflation (Hyvärinen and Oja, 2000).
During deflation, the first principal component is subtracted
from the incoming data stream and the process for finding the
subsequent principal component is identical to the one that
came before. This would most easily allow for multiple ranks
to be calculated without additional delay by simultaneously
sending deflated data to lower ranks during the calculation
of the principal ranks. Alternative approaches, based on
QR factorization or Oja Subspace Networks, can involve
feedback between ranks, reducing the number of iterations to
achieve convergence but potentially increasing latency and the
computational overhead (Oja, 1992; Allen-Zhu and Li, 2017).

1Sporadically, one or the other singular vector becomes anti-parallel to the

calculated true vector, causing either the other vector to also become anti-parallel

or for the singular value, σ i,j, to become negative. These erroneous sign changes

always occur in pairs during the calculation of the approximate eigenupdate, so

that the net sign is always correct.

Frontiers in Neuroscience | www.frontiersin.org 4 August 2019 | Volume 13 | Article 793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hoskins et al. SBE Update

FIGURE 2 | Simplified comparison of the training algorithms for (A) stochastic gradient descent (SGD), (B) mini-batch gradient descent (MBGD), (C) the singular value

decomposition (SVD) approximation of the batch, and (D) streaming batch eigenupdates (SBE). Both SGD and SBE are rank 1 and calculated on the fly, achieving the

highest degree of acceleration.

FIGURE 3 | Difference between SBE values and the full SVD values for (A,C) singular vectors Xi and δ
i as calculated by ε =1− abs((X

i ·Xi,j)
∥

∥Xi,j
∥

∥

) and (B,D) singular values

as calculated by ε =1− abs(σ i

σ i,j
)1. Batch sizes are 32 (A,B) and 1024 (C,D). The larger batches show greater fidelity with more iterations. The sharp increases in the

difference correspond to the update of the weight matrix and subsequent change in the gradient.

An important feature of this approach is that it opens a
tradeoff space between the software and the hardware. On
one hand, it necessarily throws away a significant amount of
the information from the batch, which results in a low rank
approximation. Hence, for updates with higher rank, larger

eigenvalue matrixes would be less well-represented and therefore
take a longer time to converge. On the other hand, this
approximation, which is a form of compression, allows for a
much more compact representation of the error, which has the
potential to dramatically reduce hardware costs. One point to

Frontiers in Neuroscience | www.frontiersin.org 5 August 2019 | Volume 13 | Article 793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hoskins et al. SBE Update

FIGURE 4 | Test set error rate vs. (A) the epochs and (B) the matrix updates. Training set loss functions under different SGD and batch learning rules (batch size is 32)

vs. the number of (C) epochs and (D) matrix updates. The SVD and SBE algorithms required more epochs to train but fewer matrix updates.

note here is that the smaller the rank of the weight update,
the more representative a low rank approximation would be.
Consequently, wemight expect the eigenupdate to perform better
for activation functions that lead to sparse updates, such as for
rectifying activation functions like rectified linear units (ReLU).

Figure 1 shows an example of the potential effectiveness of
our approach prior to running network models. It shows the
relative significance of different singular values, subject to the
normalizing condition

∑r
p=1 σp = 1 for singular index value p up

to rank r. The plots show a representative matrix decomposition
for a particular batch update in the middle of a conventional
728 × 256 × 32 × 10 network trained on MNIST to 90%
accuracy for the test set. Based on the relativemagnitude of values
for our example batch, ReLU activations can have as much as
60% of the batch update information contained in the first pair
of singular vectors. From the cumulative contribution, we can
see for sigmoidal activation, which squashes the outputs of the
neurons, the first 10 pairs of singular vectors can capture as much
as 95% of the information contained within our example batch.
We attribute this fact ultimately to the observation that despite
the large sizes of matrices in these networks, the complexity of the
trajectories will ultimately be limited by the significantly smaller

number of classes which are used to train the networks. Others
have observed that the trajectories of networks during training
can be reduced to a smaller number of principal components
(Lorch, 2016; Antognini and Sohl-Dickstein, 2018).

Network Modeling and Experiments
For our experiments, we compare traditional approaches,
stochastic gradient descent (SGD) and mini-batch gradient
descent (MBGD), with our PCA based approaches, specifically
doing the singular value decomposition (SVD) and the streaming
batch eigenupdate (SBE) estimation of the batch between
matrix updates. While MBGD and SVD cannot be efficiently
implemented, SGD and SBE can. Figure 2 outlines the key
distinctions in the process execution of the algorithm.

To compare these approaches, we choose a very simple
network architecture of 728 × 100 × 10 neurons, using ReLU
activation functions between layers and a cross-entropy loss
function (LeCun et al., 1998). To control for the fact that using
batches reduces the overall number of updates per epoch, we
use a learning rate optimizer prior to network simulations,
which minimizes the loss for 5 epochs. There is a hard cutoff
terminating our simulations after 900 epochs. Batch sizes were

Frontiers in Neuroscience | www.frontiersin.org 6 August 2019 | Volume 13 | Article 793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hoskins et al. SBE Update

varied from 20 to 213. Networks are trained on the MNIST data
set using the typical test-training partition. The exemplary series
of networks trained below all began from the same randomly
drawn starting condition.

RESULTS

To illustrate the convergence of the SBE algorithm during
the batch training process, we calculate the error, ε, for the
converging the singular vectors, Xi,j, to the true singular vectors,

Xi, as ε = 1 − abs((X
i·Xi,j)

‖Xi,j‖
), and similarly for the singular value

as ε = 1 − abs(σ i

σ i,j)
1. Figure 3 shows convergence curves of

these errors during network training for batch sizes 32 and 1024.
While 1024 shows strong periodic behavior between updates and
convergence of the singular vectors down to an accuracy below
10−3, the smaller batch size of 32 shows periodic behavior but
no strong trends toward convergence of the approximate singular
vector. Despite this weak convergence of the singular vector, the
training of the network converges.

That fact that the convergence of the singular vectors is not
necessary to demonstrate convergence of the network makes
sense because convergence of vectors during power iterations
is often determined by the eigengap, or the gap between the
target eigenvalue and the next smallest eigenvalue of a matrix
(Musco and Musco, 2015). A small eigengap leads to significant
contamination of the target vector with other large eigenvalue
vectors. This contamination complicates finding the eigenvector
itself but still pushes a network to a lower value of the
loss function.

Figure 4 shows that all the training algorithms reduce the
training set loss function down to as low as 10−4. We find that
reducing the training set loss down to 10−2 is sufficient to achieve
100% accuracy on the training set and therefore about 97–98%
accuracy on the test set. In these simulations, the SGD function is
the fastest algorithm for training in terms of number of epochs,
with MBGD, due to its parallelism, having significantly faster
wall clock time. When re-plotting the data in terms of matrix
updates, it’s clear that the batch methods have an advantage in
terms ofminimizing the number of times thememory needs to be
changed. However, these measures do not take into account the
time that would be required to do thematrix updates in hardware.
Since the SVD and SBE methods use only rank 1 updates, it takes
less time for them to update the hardware by a factor of the
number of elements in the crossbar.

These general trends can be seen in Figure 5, which shows
the number of epochs and number of matrix updates needed to
train the network to a training set loss of both 10−1 and 10−2.
For this example, MBGD is clearly the highest performing on
all metrics, decreasing the number of updates needed to train
the network vs. SGD by more than two orders of magnitude
at a batch size of 4096. For the SBD and SBE algorithms, the
epochs to train grows much faster, and the number of matrix
updates needed to train only falls by a factor of 20 compared
to SGD and does so at a much smaller batch size of 128. For
very small batch sizes, the SBE algorithm performs worse than
the SVD algorithm, which we attribute to poor qualities of the

FIGURE 5 | Summary of impact of different training rules vs. batch size

including (A) the number of epochs to train the training set loss function down

to 0.1 (dashed lines) and 0.01 (solid lines), and (B) the number of matrix

updates to set the loss function to 0.1(dashed lines) and to 0.01 (solid lines).

The SVD and SBE training rules increase the update efficiency, but not as

much as full batch update.

update vector, but at higher batch sizes it outperforms the SVD
algorithm, which we attribute to a mixture of better update
quality but with added stochasticity lacking in the SVD approach
due to the random degree of convergence and sampling of lower
significance eigenupdates and singular vectors.

DISCUSSION

For the example below, the SBE approach is lower performing
than the MBGD approach in terms of number of epochs to train
and number of matrix updates. However, its use would vastly

Frontiers in Neuroscience | www.frontiersin.org 7 August 2019 | Volume 13 | Article 793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hoskins et al. SBE Update

accelerate the wall clock time of training in a hardware network
since the transfer of the weights has the same complexity as the
SGD approach, even in cases where the batches were stored in
a local and parallel short-term memory array. Moreover, in the
case of k = 1, calculating and storing the low rank versions
of activations and error (left and right eigenvalues) take up
significantly less area and compute (O(a+b)) as compared to the
full rank (O(a×b)) versions.

If a higher quality update were desired, the above algorithm
could be extended to the calculation of multiple eigenupdates
in parallel, similar to an Oja asymmetrical subspace network
(Oja, 1992). The application of k eigenupdates would still be
significantly faster than the time needed to transfer the point-wise
or column-wise transfer for a full ranked batch update. Based
on Figure 1, it is clear that a full rank transfer is unnecessary
and possibly even detrimental if excess information leads to
over fitting. Additionally, with high quality approximations of
the gradient now available, it may be possible to implement
as yet unknown algorithms which could accelerate training
or provide a more efficient closed-loop transfer of the weight
update to the devices. At a minimum, the SBE algorithm is
able to reduce the memory and compute overhead required
to do batch updates, which can reduce the writing and
programming stress and latency on the devices by an order
of magnitude.

The critical challenge is determining the most efficient
hardware implementation of the SBE algorithm. The major
operations required are the summation, multiplication and
division respectively. Among them the most computationally

intensive part is the normalization operation, Xi,n

‖Xi,n‖
. Since we

may only be working with low precision, such as 4-bit precision,
and only dealing with a linear number of computations vs.
problem size, the overhead of implementing these operations
is significantly smaller when compared to their full rank
counterparts. Digital implementations of such operations can be
constructed with systolic array approaches, and if further energy
efficiency is required, analog approaches can be used as well
(Vanpoucke et al., 1994).

An alternate analog approach which gets rid of the division
operation altogether is borrowed from the original Taylor series
formulation of the Oja equations, which replaces division with
a multiplication and subtraction (see Supplementary Material).
Such a calculation, though, may run into issues with numerical
stability. However, the physical constraints of the system along
with the parallel calculation of additional singular vectors could

stabilize the algorithm. Calculating multiple singular vectors

is known to accelerate convergence of the dominant vectors
(Balcan et al., 2016). Moreover, future hardware could likely use
short term memory cells, such as trench capacitors and FETs,
to perform resistive multiplication and dot product operations
in combination with Gilbert cells to scale the outputted values
properly (Li et al., 2018).

This is a rich tradeoff space which requires further exploration
and is going to be part of follow-upwork. Trading off the different
system attributes, digital vs. analog, single vs. multi-rank, and
batch size, can be used to build an optimal system for machine
learning by efficiently calculating streaming batch eigenupdates.

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

BH conceived of the streaming batch eigenupdate concept for
training networks. BH, MD, andMS developed the mathematical
framework and algorithms implemented. BH andMD performed
the network simulations. AM and BH analyzed implications of
implementing the algorithm in hardware. All authors analyzed
the results and wrote the manuscript.

FUNDING

AM acknowledges support from the Cooperative Research
Agreement between the University of Maryland and the National
Institute of Standards and Technology Center for Nanoscale
Science and Technology, Award 70NANB14H209, through the
University of Maryland.

ACKNOWLEDGMENTS

This manuscript has been released as a Pre-Print at arXiv.org
(Hoskins et al., 2019).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00793/full#supplementary-material

REFERENCES

Adam, G. C. (2018). Two artificial synapses are better than one. Nature 558:39.

doi: 10.1038/d41586-018-05297-5

Adam, G. C., Hoskins, B. D., Prezioso, M., Merrikh-Bayat, F., Chakrabarti,

B., and Strukov, D. B. (2017). 3-D memristor crossbars for analog and

neuromorphic computing applications. IEEE Transac. Electron Devices 64,

312–318. doi: 10.1109/TED.2016.2630925

Allen-Zhu, Z., and Li, Y. (2017). “First efficient convergence for streaming K-Pca: a

global, gap-free, and near-optimal rate,” in 2017 IEEE 58th Annual Symposium

on Foundations of Computer Science (FOCS), 487–92. Berkeley, CA: IEEE.

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo,

C., Sidler, S., et al. (2018). Equivalent-accuracy accelerated neural-network

training using analogue memory. Nature 558:60. doi: 10.1038/s41586-018-

0180-5

Antognini, J., and Sohl-Dickstein, J. (2018). “PCA of high dimensional random

walks with comparison to neural network training,” in Advances in Neural

Information Processing Systems 31, eds S. Bengio, H. Wallach, H. Larochelle,

K. Grauman N. Cesa-Bianchi, and R. Garnett (Curran Associates, Inc.),

10328–10337. Available online at: http://papers.nips.cc/paper/8232-pca-

of-high-dimensional-random-walks-with-comparison-to-neural-network-

training.pdf

Frontiers in Neuroscience | www.frontiersin.org 8 August 2019 | Volume 13 | Article 793

https://www.arXiv.org
https://www.frontiersin.org/articles/10.3389/fnins.2019.00793/full#supplementary-material
https://doi.org/10.1038/d41586-018-05297-5
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1038/s41586-018-0180-5
http://papers.nips.cc/paper/8232-pca-of-high-dimensional-random-walks-with-comparison-to-neural-network-training.pdf
http://papers.nips.cc/paper/8232-pca-of-high-dimensional-random-walks-with-comparison-to-neural-network-training.pdf
http://papers.nips.cc/paper/8232-pca-of-high-dimensional-random-walks-with-comparison-to-neural-network-training.pdf
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hoskins et al. SBE Update

Balcan, M. F., Du, S. S., Wang, Y., and Yu, A. W. (2016). “An improved

gap-dependency analysis of the noisy power method,” in Conference on

Learning Theory, 284–309. Available online at: http://proceedings.mlr.press/

v49/balcan16a.html

Balsubramani, A., Dasgupta, S., and Freund, Y. (2013). “The fast convergence of

incremental PCA,” inAdvances in Neural Information Processing Systems 26, eds

C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger

(Curran Associates, Inc.), 3174–3182. Available online at: http://papers.nips.cc/

paper/5132-the-fast-convergence-of-incremental-pca.pdf

Boybat, I., di Nolfo, C., Ambrogio, S., Bodini, M., Farinha, N. C. P., and Shelby,

R. M., Narayanan, P., et al. (2017). “Improved deep neural network hardware-

accelerators based on non-volatile-memory: the local gains technique,” in 2017

IEEE International Conference on Rebooting Computing (ICRC) (Washington,

DC), 1–8.

Chakrabarti, B., Lastras-Montaño, M. A., Adam, G., Prezioso, M., Hoskins,

B., Payvand, M., et al. (2017). A multiply-add engine with monolithically

integrated 3D memristor crossbar/CMOS hybrid circuit. Sci. Rep. 7:42429.

doi: 10.1038/srep42429

Clint, M., and Jennings, A. (1971). A simultaneous iteration method for

the unsymmetric eigenvalue problem. IMA J. Appl. Mathem. 8, 111–121.

doi: 10.1093/imamat/8.1.111

Gokmen, T., Rasch, M. J., and Haensch, W. (2018). Training LSTM

networks with resistive cross-point devices. Front. Neurosci. 12:00745.

doi: 10.3389/fnins.2018.00745

Gokmen, T., and Vlasov, Y. (2016). Acceleration of deep neural network training

with resistive cross-point devices: design considerations. Front. Neurosci.

10:00333. doi: 10.3389/fnins.2016.00333

Golub, G. H., and Van Loan, C. F. (2013). Matrix Computations. Johns Hopkins

University Press. Available online at: https://books.google.com/books?id=

X5YfsuCWpxMC

Haensch, W., Gokmen, T., and Puri, R. (2019). The next generation of

deep learning hardware: analog computing. Proc. IEEE 107, 108–122.

doi: 10.1109/JPROC.2018.2871057

Hardt, M., and Price, E. (2014). “The noisy power method: a meta algorithm with

applications,” in Advances in Neural Information Processing Systems 27, eds Z.

Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger

(Curran Associates, Inc.), 2861–2869. Available online at: http://papers.nips.cc/

paper/5326-the-noisy-power-method-a-meta-algorithm-with-applications.

pdf

Hoskins, B. D., Daniels, M. W., Huang, S., Madhavan, A., Adam, G. C., Zhitenev,

N., et al. (2019). Streaming batch eigenupdates for hardware neuromorphic

networks. arXiv:1903.01635.

Hua, Y., Xiang, Y., Chen, T., Abed-Meraim, K., and Miao, Y. (1999). A new look

at the power method for fast subspace tracking. Digital Signal Proc. 9, 297–314.

doi: 10.1006/dspr.1999.0348

Hyvärinen, A., and Oja, E. (2000). Independent component

analysis: algorithms and applications. Neural Netw. 13, 411–430.

doi: 10.1016/S0893-6080(00)00026-5

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R.,

et al. (2017). In-datacenter performance analysis of a tensor processing unit.

SIGARCH Comput. Archit. News 45, 1–12. doi: 10.1145/3140659.3080246

Kataeva, I., Merrikh-Bayat, F., Zamanidoost, E., and Strukov, D. (2015). “Efficient

training algorithms for neural networks based on memristive crossbar

circuits,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney), 1–8.

Kim, S., Gokmen, T., Lee, H., and Haensch, W. E. (2017). “Analog CMOS-

based resistive processing unit for deep neural network training,” in 2017 IEEE

60th International Midwest Symposium on Circuits and Systems (MWSCAS),

422–425. doi: 10.1109/MWSCAS.2017.8052950

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K. R. (1998). “Efficient BackProp,” in

Neural Networks: Tricks of the Trade, This Book Is an Outgrowth of a 1996 NIPS

Workshop (London: Springer-Verlag), 9–50. Available online at: http://dl.acm.

org/citation.cfm?id=645754.668382. doi: 10.1007/3-540-49430-8_2

Li, C.-L., Lin, H.-T., and Lu, C.-J. (2016). “Rivalry of two families of algorithms

for memory-restricted streaming PCA,” in Proceedings of the 19th International

Conference on Artificial Intelligence and Statistics, Vol. 51 (Cadiz: PMLR),

473–481.

Li, Y., Kim, S., Sun, X., Solomon, P., Gokmen, T., Tsai, H., Koswatta, S., et al.

(2018). “Capacitor-based cross-point array for analog neural network with

record symmetry and linearity,” in 2018 IEEE Symposium on VLSI Technology

(Honolulu, HI), 25–26.

Lorch, E. (2016). “Visualizing Deep Network Training Trajectories with PCA,” in

ICMLWorkship on Visualization for Deep Learning (New York, NY).

Mitliagkas, I., Caramanis, C., and Jain, P. (2013). “Memory limited, streaming

PCA,” in Advances in Neural Information Processing Systems 26, eds C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (Curran

Associates, Inc.), 2886–2894. Available online at: http://papers.nips.cc/paper/

5035-memory-limited-streaming-pca.pdf

Musco, C., andMusco, C. (2015). “Randomized block krylov methods for stronger

and faster approximate singular value decomposition,” in eds C. Cortes, N.

D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett (Curran Associates, Inc.),

1396–1404. Available online at: http://papers.nips.cc/paper/5735-randomized-

block-krylov-methods-for-stronger-and-faster-approximate-singular-value-

decomposition.pdf

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J.

Mathem. Biol. 15, 267–273. doi: 10.1007/BF00275687

Oja, E. (1992). Principal components, minor components, and linear neural

networks. Neural Netw. 5, 927–935. doi: 10.1016/S0893-6080(05)80089-9

Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K.

K., and Strukov, D. B. (2015). Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature 521, 61–64.

doi: 10.1038/nature14441

Strobach, P. (1997). Bi-Iteration SVD subspace tracking algorithms. IEEE Transac.

Signal Process. 45, 1222–1240. doi: 10.1109/78.575696

Vanpoucke, F. J., Moonen, M., and Deprettere, E. F. A. (1994). “Numerically stable

jacobi array for parallel Singular Value Decomposition (SVD) updating,” in

Proc. SPIE. Vol. 2296, (San Diego, CA).

Wang, Z., Joshi, S., Savel’ev, S., Song, W., Midya, R., Li, Y., Rao, M., et al. (2018).

Fully memristive neural networks for pattern classification with unsupervised

learning. Nat. Electron. 1:137. doi: 10.1038/s41928-018-0023-2

Yang, B. (1995). An Extension of the PASTd algorithm to both rank and

subspace tracking. IEEE Signal Process. Lett. 2, 179–182. doi: 10.1109/97.

410547

Yang, P., Hsieh, C.-J., and Wang, J.-L. (2018). History PCA: A New Algorithm for

Streaming PCA. arXiv[Preprint].arXiv:1802.05447 [Stat], February. Available

online at: http://arxiv.org/abs/1802.05447

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Hoskins, Daniels, Huang, Madhavan, Adam, Zhitenev,

McClelland and Stiles. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 9 August 2019 | Volume 13 | Article 793

http://proceedings.mlr.press/v49/balcan16a.html
http://proceedings.mlr.press/v49/balcan16a.html
http://papers.nips.cc/paper/5132-the-fast-convergence-of-incremental-pca.pdf
http://papers.nips.cc/paper/5132-the-fast-convergence-of-incremental-pca.pdf
https://doi.org/10.1038/srep42429
https://doi.org/10.1093/imamat/8.1.111
https://doi.org/10.3389/fnins.2018.00745
https://doi.org/10.3389/fnins.2016.00333
https://books.google.com/books?id=X5YfsuCWpxMC
https://books.google.com/books?id=X5YfsuCWpxMC
https://doi.org/10.1109/JPROC.2018.2871057
http://papers.nips.cc/paper/5326-the-noisy-power-method-a-meta-algorithm-with-applications.pdf
http://papers.nips.cc/paper/5326-the-noisy-power-method-a-meta-algorithm-with-applications.pdf
http://papers.nips.cc/paper/5326-the-noisy-power-method-a-meta-algorithm-with-applications.pdf
https://doi.org/10.1006/dspr.1999.0348
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1109/MWSCAS.2017.8052950
http://dl.acm.org/citation.cfm?id=645754.668382
http://dl.acm.org/citation.cfm?id=645754.668382
https://doi.org/10.1007/3-540-49430-8_2
http://papers.nips.cc/paper/5035-memory-limited-streaming-pca.pdf
http://papers.nips.cc/paper/5035-memory-limited-streaming-pca.pdf
http://papers.nips.cc/paper/5735-randomized-block-krylov-methods-for-stronger-and-faster-approximate-singular-value-decomposition.pdf
http://papers.nips.cc/paper/5735-randomized-block-krylov-methods-for-stronger-and-faster-approximate-singular-value-decomposition.pdf
http://papers.nips.cc/paper/5735-randomized-block-krylov-methods-for-stronger-and-faster-approximate-singular-value-decomposition.pdf
https://doi.org/10.1007/BF00275687
https://doi.org/10.1016/S0893-6080(05)80089-9
https://doi.org/10.1038/nature14441
https://doi.org/10.1109/78.575696
https://doi.org/10.1038/s41928-018-0023-2
https://doi.org/10.1109/97.410547
http://arxiv.org/abs/1802.05447
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Streaming Batch Eigenupdates for Hardware Neural Networks
	Introduction
	Materials and Methods
	Proposed Methods for Training and New Algorithm
	Network Modeling and Experiments

	Results
	Discussion
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

