
In the last few years, the so-called ‘oxygen-conserving reflexes
(OCR)’ [1] have been gaining increasing interest, especially among
neurosurgeons and other neuroscientists [2–8]. This term was
coined by the research work of Wolf et al. [1] and Andersson et al.
[9], who studied oxygen consumption in resting human beings.
They found that apneic situations with bradycardia were associ-
ated with a slightly smaller reduction in arterial O2 saturation than
apneic situations without bradycardia.

A typical example of these OCRs in natural life is the ‘dive
reflex’ observed in diving mammals. It is a protective OCR aimed
to keep the body alive during submergence in cold water, prepar-
ing itself to sustain life [1, 3, 10, 11]. It is elicited by contact of 
the face with cold water and involves breath-holding, intense
peripheral vasoconstriction, bradycardia, decreased ventilation
and increased mean arterial pressure, maintaining the heart and
the brain adequately oxygenated at the expense of less hypoxia-
sensitive organs [10, 12].

Human beings are not able to hold their breath for as long as
diving mammals. This might be due to a less-developed diving
response [1]. However, the dive reflex is considered playing 
a major role in the etiopathogenesis of sudden infant death 
syndrome (SIDS) or crib death, whose underlying pathological
substrates are considered to be mostly congenital in nature and
involving the brainstem [13, 14]. Another example of OCRs in
human beings represents the trigemino-cardiac reflex (TCR)
which was first reported by Schaller et al. [14] during surgery in
the cerebellopontine angle. It was observed that electrical,
mechanical or chemical manipulation of the trigeminal nerve on its
intra- or extracranial course may provoke drop in mean arterial
blood pressure and bradycardia [8, 14, 15].

Very little is known of these two principal clinical examples of
reflexogenic aberrance, and the international literature seems far
away to provide the exact pathophysiology of TCR and dive-
reflex. It appears, however, that the dive reflex may rather be a
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sub-phenomenon and that the TCR is the superordinate principle
[2–5]. Understanding both these OCRs would be of enormous
clinical importance to resolve major problems, especially during
surgery or invasive procedures, but also the dreaded SIDS.

The importance and frequency of the TCR and its sub-phenom-
enon, the diving reflex, prompted us to evaluate in more details the
current knowledge of their molecular bases, as well as of their
clinical implications.

It is generally accepted that the diving reflex and ischemic tol-
erance involve, at least in part, similar physiological mechanisms
[8, 12, 15]. As regards TCR, this seems to be the higher principle,
with the diving reflex being one specific clinical manifestation
among others when stimulating the trigeminal nerve. The discov-
ery of those endogenous neuroprotective strategies underlines the
clinical importance of TCR. Even though no convincing experi-
mental data exist, TCR may be a specific example of a group of
related responses generally defined by Wolf as ‘OCRs’ [2]. Within
seconds of the initiation of such a reflex, there is a powerful and
differentiated activation of the sympathetic system [2]. The subse-
quent elevation in cerebral blood flow (CBF) is neither associated
with changes in the cerebral metabolic rate of oxygen (CMRO2)
nor with the cerebral metabolic rate of glucose (CMRglc). Hence,
it represents a primary cerebral vasodilatation [2]; a state in which
the arterial blood pressure seems not to have any influence.
However, a temporary reduction in peripheral consumption of O2

resulting in a slower O2 uptake from the alveolar space to the
blood, would temporarily conserve O2 for the benefit of the central
nervous system and the heart, which cannot sustain their metab-
olism without O2.

It has been largely shown that various noxious stimuli may,
when applied below the threshold of brain damage, induce 
tolerance in the brain against a subsequent deleterious stimulus
of the same or even another modality; these phenomena are
called ‘ischemic pre-conditioning’ and ‘cross-tolerance’,
respectively [14, 16]. They probably involve separate systems
of neurons of the central nervous system [8]. One of these two
systems which mediate reflexive neurogenic protection
emanates from oxygen-sensitive sympatho-excitatory reticu-
lospinal neurons of the rostral ventrolateral medulla oblongata.
These cells, excited within seconds by a reduction in CBF or
CMRO2, initiate the systemic vascular components [17]. They
profoundly increase regional CBF without changing CMRO2 or
CMRglc and hence rapidly and efficiently provide the brain with
oxygen [17]. The exact projections are currently undefined.
They are thought to project from the rostral ventrolateral
medulla oblongata to the upper brainstem and/or thalamus and
finally project to the small population of cortical neurons. These
appear to be dedicated to reflexively transduce a neuronal 
signal into cerebral vasodilatation and synchronization of elec-
trocortical activity [17]. Reticulo-spinal neurons of the rostral
ventrolateral medulla oblongata are ‘premotor’ neurons and, as
such, are critical for detecting and initiating the vascular, cardiac
and respiratory responses of the brainstem to hypoxia and
ischemia [18]. The systemic response to excitation of rostral
ventrolateral medulla oblongata neurons, however, results from

activation of a network of effector neurons distributed else-
where in the central nervous system [18]. Thus, sympathetic
excitation is mediated by projections to spinal pre-ganglionic
sympathetic neurons whereas bradycardia is mediated by pro-
jections to cardiovagal motor medullary neurons [8, 17]. The
integrated response serves to redistribute blood from viscera to
brain in response to a challenge to cerebral metabolism [18].

The second mechanism that protects the brain itself from
ischemia is represented by the intrinsic neurons of the cerebellar
fastigial nucleus and mediates a conditioned central neurogenic
neuroprotection. This mechanism is activated by excitation of the
intrinsic neurons of the fastigial nucleus and is independent of the
first mechanism. These two mechanisms initiate the systemic
components of the oxygen-conserving TCR within seconds of
excitation [18]. The CBF is significantly increased without chang-
ing CMRO2 and thus, the brain is rapidly provided with oxygen.

These mechanisms described above need a pre-exposure that
can be seen clinically by a repetitive stimulation of the TCR, for
example during operation [14]. That the brain may have neuronal
systems dedicated to protecting itself from ischemic damage at
first appears to be a new concept. However, upon reflection, this
is not surprising given that there exist naturalistic behaviours
characterized by very low levels of regional CBF, such as diving or
hibernation [12]. The exact mechanisms of neurogenic neuropro-
tection are unknown, but such neuroprotective adaptation may be
part of preconditioning strategies [19]. Probably, these reflexes,
like the TCR, may prevent other brain insults as well – which
therefore remain unrecognized.

Accordingly, it can be suggested that the TCR represents a
‘physiological’ entity rather than a pathological one. Better and
more detailed knowledge of the cascades, transmitters and mole-
cules engaged in such endogenous protection may provide new
insights into novel therapeutic options for a range of disorders
characterized by neuronal death and into cortical organization 
of the brain. Hypoxic or anoxic tolerance is found ubiquitously 
in nature, especially in diving species and hibernating species 
[20, 21]. A common feature in most anoxic-tolerant species or
during hibernation is a pronounced metabolic depression [22]. For
example, it is now well accepted that during diving, turtle brains
undergo metabolic depression, which is characterized by a
depression in electrical activity [23, 24].

One question that arises in the field of ischemic precondition-
ing (IPC) is whether it induces metabolic depression in a similar
manner as that observed in diving vertebrate species or during
hibernation. Up to now, there are no studies that have directly
demonstrated that electrical activity in mammalian brain is partic-
ularly depressed after IPC. But the evidence points towards that
fact. It is well established that inhibitory pathways are enhanced
after IPC. For example, several groups have demonstrated that
glutamate release during ischemia was ameliorated by several
forms of preconditioning [25–27], and down-regulation of the
excitatory receptors alpha-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) [28] and N-methyl-D-aspartic acid 
(NMDA) [29] also occurred. In contrast to glutamate, increases in 
gamma-aminobutyric acid (GABA) release were observed after IPC
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[26, 27]. These results also suggest that IPC, like in diving species,
promotes a metabolic rate down-regulation in brain, thus reducing
energy consuming pathways.

In the diving reflex, however, adapted species must be meta-
bolically prepared to respond to a potential hypoxic insult. It is
possible that activation of the diving reflex by shifting blood flow
to the brain, provides additional time that allows the brain prepare
for the eventuality that anoxia ensues, by activating signalling
pathways similar to those observed as triggers of IPC.

Two good candidates to trigger a neuroprotective cascade dur-
ing the diving reflex and IPC are adenosine and the activation of the
ATP-sensitive potassium channel. Several studies have demon-
strated the role of the adenosine A1 receptor in both anoxia toler-
ance in diving species and in IPC [29–37]. Activation of the K�

ATP

channel, likely plays a role in at least some of the mechanisms of
IPC [29, 38]. However, the precise K�

ATP channel involved remains
undefined. Recently, two ATP-sensitive potassium channels have
been described. One of these channels resides in the plasma mem-
brane; the other resides in the mitochondrial inner membrane. 

The mtK�
ATP has been suggested to be the key channel involved in

IPC [39, 40]. It has been suggested that opening of the mtK�
ATP

channel may depolarize mitochondrial membrane potential promot-
ing an increase in the electron transport chain rate, and thus increas-
ing ATP production [41]. These two triggers are the logical result of
the oxygen-sensing mechanism, because they are both linked to
ATP levels. Once they are activated, a number of signalling pathways
ensue that orchestrates the anoxic-/ischemic-tolerant phenotype.
For a more in-depth description of some of these signalling path-
ways and genes expressed after IPC see Gidday et al. [16].

Further improvement in knowledge may be assigned by state-of-
the-art imaging methods in the next few years: first in animal mod-
els, then in human beings and finally during operations. Recent clin-
ical studies suggest the existence of such an endogenous neuronal
protective effect in the human brain [42, 43] and represent a rational
basis for the development of neuroprotective drugs. Given the
potential hazard of inducing ischemic tolerance by the TCR in
human beings, a trial may not be advisable, and proof of testing of
agents that safely mimic the effects of the TCR may be required.
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