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Abstract The topological organization underlying the human
brain was extensively investigated using resting-state func-
tional magnetic resonance imaging, focusing on a low fre-
quency of signal oscillation from 0.01 to 0.1 Hz. However,
the frequency specificities with regard to the topological prop-
erties of the brain networks have not been fully revealed. In
this study, a novel complementary ensemble empirical mode
decomposition (CEEMD) method was used to separate the
fMRI time series into five characteristic oscillations with dis-
tinct frequencies. Then, the small world properties of brain
networks were analyzed for each of these five oscillations in
patients (n = 67) with depressed Parkinson’s disease (DPD, n
= 20) , non-depressed Parkinson’s disease (NDPD, n = 47)
and healthy controls (HC, n = 46). Compared with HC, the
results showed decreased network efficiency in characteristic
oscillations from 0.05 to 0.12 Hz and from 0.02 to 0.05 Hz for
the DPD and NDPD patients, respectively. Furthermore, com-
pared with HC, the most significant inter-group difference
across five brain oscillations was found in the basal ganglia

(0.01 to 0.05 Hz) and paralimbic-limbic network (0.02 to 0.22
Hz) for the DPD patients, and in the visual cortex (0.02 to 0.05
Hz) for the NDPD patients. Compared with NDPD, the DPD
patients showed reduced efficiency of nodes in the basal gan-
glia network (0.01 to 0.05 Hz). Our results demonstrated that
DPD is characterized by a disrupted topological organization
in large-scale brain functional networks. Moreover, the
CEEMD analysis suggested a prominent dissociation in the
topological organization of brain networks between DPD and
NDPD in both space and frequency domains. Our findings
indicated that these characteristic oscillatory activities in dif-
ferent functional circuits may contribute to distinct motor and
non-motor components of clinical impairments in Parkinson’s
disease.
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Introduction

Parkinson’s disease is the most common movement disorder,
characterized by cardinal motor symptoms, including tremor,
rigidity, bradykinesia and postural instability (Aarsland et al.
2012), and is associated with various affective symptoms
(Luo et al. 2014; F. M. Skidmore et al. 2013). Depression is
considered one of the most commonly observed neuropsychi-
atric disturbances in Parkinson’s disease, affecting
approximately 35% of patients with Parkinson’s disease
(Aarsland et al. 2012). However, the pathophysiology of
depression underlying Parkinson’s disease remains unclear
(McDonald et al. 2003; Postuma et al. 2012; Ravina et al.
2007).

Studies indicate a complex relationship between depres-
sion and the motor defect in Parkinson’s disease and that these
two aspects may influence separate as well as overlapping
neural circuits (McDonald et al. 2003; Postuma et al. 2012;
Ravina et al. 2007). Resting state functional connectivity (FC)
research further demonstrated the association of convergent
and divergent brain connectivity patterns between non-
depressed Parkinson's disease (NDPD) and depressed
Parkinson's disease (DPD) patients (Luo et al. 2014).
Whereas NDPD patients are related with abnormalities in
the mesolimbic-putamen circuit, the DPD group is associated
with aberrations in the prefrontal-limbic network, temporal-
putamen and mesolimbic-putamen circuits. Based on
our knowledge, no work has been reported to delineate
the topological organizations of whole-brain functional
connectivity networks (FCNs) for both patient groups
simultaneously.

In the past decades, graph theoretical analysis has been
demonstrated to provide a powerful framework for character-
izing topological properties of the brain networks (Bullmore
and Sporns 2009), which is typically achieved through all
major modalities of magnetic resonance imaging (MRI) and
neurophysiological data acquisition from both functional and
structural perspectives (Bullmore and Bassett 2011). Under
this framework, resting state functional MRI is applied to
measure the topological organization of brain networks in this
current research. Studies using resting state functional MRI
(fMRI) have assessed the potential associations between the
topological organization of the brain network and cognitive
performance, as well as its association with psychiatric brain
disorders (Baggio et al. 2014; Itahashi et al. 2014; Yong Liu et
al. 2008; Stam et al. 2007; van den Heuvel et al. 2009).

The majority of previous studies concerning the brain net-
work derived from resting state fMRI focused on a low fre-
quency of signal oscillation from 0.01 to 0.1 Hz (Bullmore
and Sporns 2009; Van Den Heuvel and Hulshoff Pol 2010).
However, the frequency specificities concerning the topolog-
ical properties of the brain networks have not been fully re-
vealed. In addition, previous studies demonstrated motor and

non-motor components of clinical impairment in Parkinson’s
disease contributing to different functional circuit oscillatory
activities across multiple frequency bands (Brown 2003;
Huebl et al. 2011; Li et al. 2012; Neufeld et al. 1994; Oswal
et al. 2013; Sinanovic et al. 2005; Soikkeli et al. 1991).
Specifically, motor impairments in Parkinson’s disease were
associated with a generalized slowing of the electroencepha-
logram (EEG) and magnetoencephalography (MEG) frequen-
cy (Oswal et al. 2013; Soikkeli et al. 1991), an increase of beta
frequency waves (Li et al. 2012; Oswal et al. 2013), and ab-
normal subthalamo-pallidal circuit frequency (<30 Hz and
>60 Hz) (Brown 2003; Oswal et al. 2013); non-motor symp-
toms in Parkinson’s disease such as depression (Huebl et al.
2011) and dementia (Neufeld et al. 1994; Sinanovic et al.
2005) were related to the alterations in alpha and delta
rhythms, respectively (Oswal et al. 2013). Nevertheless, the
specific BOLD oscillation related to brain networks in NDPD
and DPD patients remains to be elucidated.

Derived from the aforementioned literature, it was hypoth-
esized that the functional organizations of brain networks in
both patient groups were disrupted. Furthermore, we intended
to investigate the association and dissociation in the topolog-
ical organization of intrinsic brain networks between NDPD
and DPD patients from the perspectives of both spatial and
spectral spaces. To achieve our goals, a novel data-driven
approach named complementary ensemble empirical mode
decomposition (CEEMD) was introduced to separate the
fMRI time series into several intrinsic mode functions
(IMFs) with distinct frequencies. CEEMD can automatically
isolate the underlying processes of BOLD activities in a data-
driven manner without any assumption of linearity, station-
arity, or recourse to any rigid prior chosen band-pass filter,
which had been discussed in our previous works (Qian et al.
2015; Song et al. 2014). After applying the CEEMD method,
the small world properties of brain networks were analyzed
for each of these brain oscillations in both patients and healthy
control (HC) groups. Inter-group differences were measured
as well.

Materials and methods

Participants

The study was approved by Medical Research Ethical
Committee of Nanjing Brain Hospital. All patients were re-
cruited from Nanjing Brain Hospital (Nanjing, China) and
written informed consents were obtained from all subjects
prior to MRI scanning. Seventy patients (37 males) with idi-
opathic Parkinson’s disease and 50 age- and gender- matched
healthy controls (23 males, P > 0.05) were recruited. All the
subjects were right-handed. The selection of Parkinson’s dis-
ease patients fulfilled the criteria of UK Parkinson’s Disease
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Society Brain Bank for idiopathic Parkinson’s disease (Gibb
and Lees 1988). All subjects with Mini-Mental State
Examination (MMSE) scores < 24 were also excluded.
Patients on dopamine agonists were also excluded, and the
dopamine dosing for all patients was stable for at least 4 weeks
before and during the study. Laboratory examinations and
MRI scans were performed to exclude other diseases.
Healthy controls were interviewed to confirm that they had
no history of a neurological disorder or psychiatric illness, and
no gross abnormality was observed from their brain MRI im-
ages (Table 1 and 2).

For each Parkinson’s disease patient, all psychometric and
neurological evaluations were conducted during a practically
defined Bon^ state. The stage of the disease was evaluated by
the Hoehn and Yahr (H&Y) staging scale (Hoehn and Yahr
1998); motor disability was evaluated using the Unified
Parkinson’s Disease Rating Scale motor part III
(UPDRS III) (Vassar et al. 2012); and global cognitive
function was evaluated using the Mini-Mental State
Examination (MMSE) score (Folstein et al. 1975). The
severity of depression in patients was evaluated by the
17-item Hamilton Depression Rating Scale (HDRS-17)
for differentiating NDPD from DPD patients (Stebbins

and Goetz 1998; Schrag et al. 2007). All patients with
no less than 14 points on the HDRS-17 test were con-
sidered depressive (Leentjens et al. 2000). Confirmation
of the diagnosis of depression was accomplished by an
experienced clinical psychiatrist.

MRI data acquisition

MR images were acquired on a 3T Siemens Verio system
(Siemens, Germany). All subjects were instructed to rest with
their eyes closed, not to think about anything in particular, or
to fall asleep. A gradient-recalled echo-planar imaging (GRE-
EPI) pulse sequence was used for acquiring resting state func-
tional images, with the parameters as follows: TR = 2000 ms,
TE = 30 ms, flip angle = 90°; matrix size = 64 x 64, FOV =
220 x 220 mm2, thickness/gap = 3.5 mm/0.6 mm, in-plane res-
olution of 3.4 mm x 3.4 mm, slices numbers = 31. The scan for
resting state fMRI lasted for 280 seconds, containing 140
brain volumes. Thereafter, anatomical images were acquired
using a T1-FLAIR sequence, with the parameters as follows:
TR = 2530 ms, TE = 3.34 ms, flip angle = 7°, matrix = 256 ×
192, FOV = 256 x 256 mm2, thickness/gap = 1.33 mm/0.5 mm,
slices numbers = 128.

Table 1 Cortical and subcortical regions of interest defined in the study

Index Region Abbr. Index Region Abbr.

(1,2) Precental gyrus PreCG (47,48) Lingual gyrus LING

(3,4) Superior frontal gyrus, dorsolateral SFGdor (49,50) Superior occipital gyrus SOG

(5,6) Superior frontal gyrus, orbital part ORBsup (51,52) Middle occipital gyrus MOG

(7,8) Middle frontal gyrus MFG (53,54) Inferior occipital gyrus IOG

(9,10) Middle frontal gyrus, orbital part ORBmid (55,56) Fusiform gyrus FFG

(11,12) Inferior frontal gyrus, opercular part IFGoperc (57,58) Postcentral gyrus PoCG

(13,14) Inferior frontal gyrus, triangular part IFGtriang (59,60) Superior parietal gyrus SPG

(15,16) Inferior frontal gyrus, orbital part ORBinf (61,62) Inferior parietal, but supramarginal and angular gyri IPL

(17,18) Rolandic operculum ROL (63,64) Supramarginal gyrus SMG

(19,20) Supplementary motor area SMA (65,66) Angular gyrus ANG

(21,22) Olfactory cortex OLF (67,68) Precuneus PCUN

(23,24) Superior frontal gyrus, medial SFGmed (69,70) Paracentral lobule PCL

(25,26) Superior frontal gyrus, medial orbital ORBsupmed (71,72) Caudate nucleus CAU

(27,28) Gyrus rectus REC (73,74) Lenticular nucleus, putamen PUT

(29,30) Insula INS (75,76) Lenticular nucleus, pallidum PAL

(31,32) Anterior cingulate and paracingulate gyri ACG (77,78) Thalamus THA

(33,34) Median cingulate and paracingulate gyri DCG (79,80) Heschl gyrus HES

(35,36) Posterior cingulate gyrus PCG (81,82) Superior temporal gyrus STG

(37,38) Hippocampus HIP (83,84) Temporal pole: superior temporal gyrus TPOsup

(39,40) Parahippocampal gyrus PHG (85,86) Middle temporal gyrus MTG

(41,42) Amygdala AMYG (87,88) Temporal pole: middle temporal gyrus TPOmid

(43,44) Calcarine fissure and surrounding cortex CAL (89,90) Inferior temporal gyrus ITG

(45,46) Cuneus CUN

The regions are presented according to a prior template obtained from an AAL atlas; odd numbers represent the corresponding brain regions in the left
hemisphere, and even numbers denote the specific brain regions in the right hemisphere. AAL: automated anatomical labeling
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Image preprocessing

Images were analyzed using both FMRIB Software Library
(FSL: http://www.fmrib.ox.ac.uk/fsl, version 5.0) and
Analysis of Functional NeuroImaging (AFNI: http://afni.
nimh.nih.gov/afni, version 2011_12_21_1014). Functional
images, after excluding the first 5 time points to ensure
signal equilibrium, were corrected for temporal differences
and head motions. The mean image was acquired by
averaging the volumes. Seven subjects with translation or
rotation parameters exceeding ± 2 mm or ± 2 degrees were
excluded, and no inter-group difference was observed with
respect to head translation or rotation (both P > 0.05). To
enhance the accuracy of normalization, individual structural
images were primarily co-registered to the mean functional
image, and then we estimated a nonlinear transformation from
individual space of the co-registered structural image into
MNI152 space. Spatial normalization of the functional image
to a standard template (Montreal Neurological Institute) was
performed by using the normalization parameters estimated in
the last step, resulting in a functional image series of 61 x 73 x
61 voxels (3-mm isotropic voxels). A regression of nuisance
variables from the obtained data, including white matter, ven-
tricular signals, global signals and the six motion parameters
determined in the realignment procedure, was performed to
reduce the influence of motion and unspecific physiological
effects. These images were not spatially smoothed as the pre-
vious study suggested (Song et al. 2014). A linear trend was

regressed out from the time course of each voxel to remove the
signal drifts that arose from scanner instability or other causes.

Empirical mode decomposition

After preprocessing, CEEMD (Yeh et al. 2010) was performed
to separate the time series of each voxel into five intrinsic
oscillation rhythms with distinct corresponding frequen-
cy bands. CEEMD was originated from empirical mode
decomposition (EMD) (Huang et al. 1998) and modified
from noise-assisted ensemble empirical mode decompo-
sition (EEMD) (Wu and Huang 2009), which resolved
the mode-mixing problem and effectively eliminated the
residue noise in each IMF (Wu and Huang 2009; Yeh et
al. 2010). The detailed algorithm is presented as
follows:

The whole procedure of EMD was depicted by Huang
(Huang et al. 1998). Apart from most of the data analysis
methods, EMD is an adaptive and efficient method to decom-
pose nonlinear and non-stationary biomedical signals by
extracting a series of IMFs from the analyzed signal stage by
stage (Lin and Zhu 2012). Mathematically, for a real-valued
BOLD signal x(t), the standard EMD determines a set of N
IMFs(IMFi(t)), i = 1 to N, and a monotonic residue signal r(t),
so that

x tð Þ ¼ ∑N
i¼1IMFi tð Þ þ r tð Þ ð1Þ

Table 2 Demographic and
neuropsychological
characteristics of all subjects

HC (n = 46) NDPD (n = 47) DPD (n = 20) P value
Mean ± SD Mean ± SD Mean ± SD

Age(years) 57.74 ± 5.56 57.64 ± 7.00 58.05 ± 7.72 0.973*

Education(years) 11.61 ± 4.95 10.83 ± 3.29 11.15 ± 3.12 0.647*

Gender(M/F) 22/24 25/22 9/11 0.791#

HDRS-17 2.17 ± 2.42 6.98 ± 3.29 20.45 ± 4.58 0.0001 a, b, c

UPDRS III NA 26.21 ± 13.44 27.65 ± 13.17 0.689@

H&Y NA 1.63 ± 0.54 1.43 ± 0.59 0.175@

LED(day/mg) NA 553.69 ± 345.43 500.63 ± 412.41 0.589@

Duration time of Parkinson’s disease NA 6.28 ± 3.35 5.35 ± 2.81 0.282@

Values are represented as the mean ± SD. For comparisons of demographics, *P values are obtained using one-
way ANOVA tests; #P value for the gender distribution in the three groups was obtained using χ2 test. Com-
parisons of neuropsychological scores among the three groups (HC, NDPD, DPD) were performed using a
separate one-way ANOVA. Post hoc pairwise comparisons were performed using t-tests. The UPDRS III,
H&Y, LED andDuration time of Parkinson's disease were compared utilizing a two sample t-test between NDPD
and DPD for @ P value. P < 0.05 was considered significant

NA not applicable, F female, M male, HC healthy control, NDPD non-depressed Parkinson's disease, DPD
depressed Parkinson's disease, HDRS-17 17-item Hamilton Depression Rating Scale, UPDRS III Unified
Parkinson’s Disease Rating Scale motor part III,MMSEMini-Mental State Examination, LED levodopa equiv-
alent dose, SD standard deviation
a Post hoc paired comparisons showed significant group differences between HC and NDPD
b Post hoc paired comparisons showed significant group differences between HC and DPD
c Post hoc paired comparisons showed significant group differences between NDPD and DPD

Brain Imaging and Behavior (2017) 11:224–239 227

http://www.fmrib.ox.ac.uk/fsl
http://afni.nimh.nih.gov/afni
http://afni.nimh.nih.gov/afni


To ensure that meaningful frequency estimates can be
yielded from the time frequency spectra (e.g. no negative fre-
quencies), all the IMFs satisfied the following conditions: the
number of zero crossings and the number of extrema equaled or
differed at most by one; and the mean value of the upper and
lower envelopes defined by the local maxima and local minima
was zero at all points. With the above definition of an IMF, all
of the signals could be decomposed in the following steps:

1) Identify all of the local extrema;
2) Interpolating all of the minima (resp. maxima) to produce

the lower (resp. upper) signal envelope, elow(t) (resp.
eup(t));

3) To obtain the local mean time course using the following
formula:

m tð Þ ¼ elow tð Þ þ eup tð Þ½ �
.
2 ð2Þ

4) Obtain the Boscillatory mode^ from the equation:

r tð Þ ¼ x tð Þ �m tð Þ ð3Þ

5) If r(t) meets the standard stopping criterion (shifting pro-
cess only after the IMF condition is achieved for S con-
secutive times, in the current study S = 3), IMFi(t) = r(t)
becomes an IMF. Otherwise set x(t) = r(t) and repeat the
above steps.

6) To obtain the next IMF, regard the residue r(t) as a new
data and repeat the same procedure until r(t) is smaller
than a predetermined value, or r(t) becames a monotone
function. Repeat step 6 for the former case, and terminate
the shifting process for the latter case. Thus, a series of
IMFs was obtained.

Complementary ensemble empirical mode decomposition

The method of complementary ensemble empirical mode de-
composition (CEEMD) was originated from EMD invented by
Huang (Huang et al. 1998) and extended from ensemble em-
pirical mode decomposition (EEMD) by Wu (Wu and Huang
2009). The EEMD generates an ensemble of data sets by
adding different realizations of white noise with finite ampli-
tude ε0 to the original data. EMD analysis is then applied to
each data series of the ensemble; ultimately, the IMFs are
achieved by averaging the respective components in each real-
ization over the ensemble (Wu and Huang 2009). The averag-
ing effect of the assisted white noise εf will decrease as:

ε f ¼ ε
. ffiffiffiffiffiffiffi

NE
p

ð4Þ

In Eq. (4), ε= ε0std(y0), ε0 is the input noise level,
y0 represents the input signal, and NE is the ensemble
number. Theoretically, NE will approach infinity in

order to smooth out the assisted white noise. In prac-
tice, ε0 is chosen in the interval of 0.1-0.4; NE of the
order of 100 will generally produce satisfactory results
and render the residual noise less than a fraction of 1% of the
error (Wu and Huang 2009). In our previous study (Qian et al.
2015), we discussed the selection of parameter ε0 . Here, we
followed it (ε0 = 0.4; NE = 100). To further reduce the final
white noise residue in each IMF component and time con-
sumption, a new method, CEEMD, is applied here, where
white noise is particularly included in pairs to the original data
(i.e. one positive and one negative) to generate two sets of
ensemble IMFs (Yeh et al. 2010).

Hilbert weighted frequency

After the decomposition step, the Hilbert weighted frequency
(HWF) of each IMF (Xie andWang 2006) was applied to reflect
the mean oscillation frequency of the IMF in order to visualize
the frequency distribution of each IMF in each group (Song et al.
2014). The detailed algorithms were calculated as follows:

Identify all local extrema;

1) For each IMF in Eq. (1), Hilbert transform was applied
using the following formula:

yi tð Þ ¼
1

π
P∫

IMFi t0ð Þ
t−t0

dt ð5Þ

where P indicates the Caushy principle value.

2) Calculate the corresponding analytical signalzi(t):

zi tð Þ ¼ IMFi tð Þþiyi tð Þ¼ ai tð Þe‐iθi tð Þ ð6Þ

Whe r e ai tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IMF2i tð Þ þ y2i tð Þ

q
a n d θi tð Þ ¼ arctan

yi tð Þ
IMFi tð Þ

� �

3) The instantaneous frequency of each IMF is defined as:

wi tð Þ ¼ dθi tð Þ
dt

ð7Þ

4) The Hilbert weighted frequency (HWF) of each IMF
with m data points is defined as:

HWFi ¼ ∑
m

i¼1wi tð Þa2i tð Þ
∑

m

i¼1a
2
i tð Þ

ð8Þ

For most voxels, the decomposition of the time course
yielded only four to five IMFs and the frequency range of
the first five IMFs covered 0-0.25 Hz (TR = 2 s).
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Consequently, only the first five IMFs of each voxel were
considered in the current study, denoted as IMF1 to IMF5,
and we calculated the HWFs of IMF1 to IMF5 for each voxel
to get the histograms of the HWF distribution of IMF1 to
IMF5 for the voxels in the whole brain (Fig. 1)

Graph analysis

Network construction

In the current study, Pearson’s correlation was performed to
estimate the IMF dependent correlations between each pair of
the 90 cortical and subcortical (90 ROI from the common
AAL atlas) BOLD signals derived from each individual set.
A set of five (90 x 90) inter-regional Pearson’s correlation
matrices was then obtained for each subject. Typical graph

analyses of the weighted networks ignored negative ties while
a recent study proposed to incorporate negative weights into
analyses of subgraph detection (Power et al. 2011). Here, we
followed the traditional approach. False discovery rate (FDR)
correction was applied to regulate the expected FDR at a sta-
tistical significance threshold of P < 0.05 across ROI pairs
within each subject. Thus, five frequency dependent
population-based functional connectivity networks were con-
structed by capturing the underlying common connectivity
pattern of the brain at each IMF for each subject in all groups.

Network analysis

Small-world analysis Previous studies (He et al. 2008; Liu et
al. 2012) demonstrated the two keymetrics applied to describe
the complex networks in the human brain: clustering

Fig. 1 Histogram of frequency
distribution among three groups.
The histograms of the HWF
distributions display the first five
IMFs of the voxels in the whole
brain gray matter using the
CEEMD approach across all
subjects within each group.
Colors were assigned in the
sequence of red, yellow, blue,
magenta and cyan from IMF1 to
IMF5. Heights of the histograms
represent the amount of voxels
with HWF equals the frequency
on the horizontal axis. Each of the
five histograms from Fig. 1a to
Fig. 1c represents statistics of the
whole-brain gray matter voxels
within the HC, NDPD and DPD
group respectively. The frequency
bands denoted by IMFs were
similar within each of the three
groups. From Fig. 1a to Fig. 1c,
the frequency of each IMF fell
into a unique frequency band,
with the first IMF (IMF1)
indicating the highest frequencies
(0.12-0.22 Hz), IMF2 from 0.05
to 0.12 Hz, IMF3 from 0.02 to
0.05 Hz, IMF4 from 0.01 to 0.03
Hz, and IMF5 being the lowest
frequency band from 0 to 0.02
Hz. HWF Hilbert weighted
frequency; CEEMD
Complementary Ensemble
Empirical Mode Decomposition;
IMF Intrinsic mode
decomposition; HC healthy
control; NDPD non-depressed
Parkinson's disease; DPD
depressed Parkinson's disease
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coefficient (CP) and characteristic path length (Lp). In order to
investigate the small-world properties, Cp and Lp were com-
pared with the corresponding random networks (Maslov and
Sneppen 2002). A small-world network possessed a signifi-
cantly higher clustering coefficient value and similar path
length than a random network, that is γ = Cp(real)/
Cp(rand) > 1, λ=Lp(real)/Lp(rand)≈1 (Watts and Strogatz
1998). In order to observe these frequency specificities of
brain networks, graph characteristics were calculated at
multi-sparsity (or density), which represented the fraction of
the present connections to all possible connections (Watts and
Strogatz 1998). Notably, in the current study, the estimation of
all parameters was under the consideration of a weighted co-
efficient, which was consistent with a previous study (Zhang
et al. 2011). The estimation of all parameters was calculated
using the code provided in the Brain Connectivity Toolbox
(BCT) (Rubinov and Sporns 2010).

Regional nodal characteristics To determine the nodal
(regional) characteristics of frequency specific brain networks,
the regional efficiency (Ew

i ) was computed in the present
study, which was defined as the inverse of the mean harmonic
shortest path length between the target node and all other
nodes in the network (Bai et al. 2012; Liu et al. 2012).
Considering the sparsity-dependent regional nodal character-
istics, the area under the curve of Ew

i across a range of the
interested sparsity thresholds (Smin(0.16):0.01:Smax(0.35))
was regarded as the estimation for each node, denoted as

E w;aucð Þ
i , where Smin represented a minimum network sparsity

in which all nodes would become fully connected in the five
IMF-dependent brain networks (Qian et al. 2015)General

speaking, the nodes demonstrating high E w;aucð Þ
i were consid-

ered as the hubs (Hosseini et al. 2012). However, in the current

study, to integrate the E w;aucð Þ
i in each frequency band, nodes

were first ranked by their efficiencies in descending order in
each frequency band, which resulted in five rank orders for
each node. Then, the overall rank order (ORO) for each node
was obtained by averaging these five rank orders for the spe-
cific node, thereafter, the ORO was normalized by dividing
the maximal ORO of the network. Specifically, nodes were
considered as hubs if their nodal normalized ORO (NORO)
was at least one standard deviation (SD) smaller than the av-
erage nodal NORO of the network. Additionally, for refer-
ence, hubs defined by the conventional method (Zhang et al.
2011) were also presented in the current study.

Statistical analysis and correlation with clinical variables

To test the differences in age, education level and neuropsy-
chological scores across the three groups, the data was ana-
lyzed using separate one-way ANOVAs. Post-hoc pair wise
comparisons were then performed using a t-test. The gender

difference were also analyzed using a χ2 test. Pair-wise com-
parisons were performed using a general linear model to de-
termine the inter-group differences in global network mea-
surements and regional efficiency. The effects of age, gender
and years of education were adjusted for all of these analyses.
A value of P < 0.05 was considered statistically significant
except for when comparing the group effects of regional to-
pological characteristics (statistical significance level at P <
0.01). Thus, some nodes may show significant differences in
several brain oscillation rhythms between each paired com-
parisons across the three groups. For simplicity, the maximum
inter-group significant difference of one node across five
IMFs was reported specifically.

To investigate the clinical relevance of altered brain net-
work regional topology in DPD, the correlations of scores of
the 17-item Hamilton Depression Rating Scale (HDRS-17)

and nodal efficiency (E w;aucð Þ
i ) were calculated. Pearson’s cor-

relation analysis was applied to control underlying cofounders
such as gender, age, and education level (P < 0.05).

Results

Neuropsychological test results

Twenty patients were diagnosed with DPD according to their
HDRS-17 scores. There was no observed inter-group signifi-
cant difference in age (F = 0.0275, P = 0.973), education level
(F = 0.4369, P = 0.647) or gender (χ2 = 0.470, P = 0.791). The
HDRS-17 scores varied significantly across the three groups (F
= 248.16, P < 0.0001). No significant difference existed in
UPDRS III (t = -0.4029, P = 0.6884), H&Y (t = 1.3729, P =
0.1745), LED (t = 0.5429, P = 0.5890) or Parkinson’s disease
duration (t = 1.0843, P = 0.2822) between NDPD and DPD
groups, as presented in Table 2. The inter-gender difference for
HDRS-17 scores was not statistically significant in either the
NDPD group (male: 6.92 ± 3.417; female: 6.62 ± 2.599; P =
0.757) or the DPD group (male: 20.56 ± 6.044; female: 20.36 ±
3.264; P = 0.933), and depression severity was not correlated
with age in the NDPD group (R = 0.085, P = 0.051).

Frequency properties of IMF in NDPD, DPD and HC

The histogram of HWF distribution presented in Fig. 1 demon-
strated the first five IMFs (IMFs, s = 1, 2, 3, 4 or 5) of voxels
determined using the CEEMD method in the whole brain grey
matter across all subjects within each groups. The result showed
that the same IMF derived from all voxels fell approximately
into the same frequency band, where the five IMF components
covered a frequency band ranging from 0 to 0.22 Hz [27].
Moreover, the frequency bands denoted by IMFs were similar
across the three groups. As demonstrated from Fig. 1a to Fig. 1c,
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the first IMF (IMF1) indicated the highest frequencies of 0.12-
0.22 Hz, IMF2 of 0.05 to 0.12 Hz, IMF3 of 0.02 to 0.05Hz,
IMF4 of 0.01 to 0.03Hz, and IMF5 of 0 to 0.02Hz as the lowest
frequency band. The results suggested that CEEMD could adap-
tively decompose the original time series into several similar
intrinsic oscillatory modes within distinct frequency bands
across the three groups.

Frequency specific global topology alterations in NDPD
and DPD

The significant inter-group global topological difference was
observed in IMF1, IMF2 and IMF3 components (Fig. 2), but
not in other frequency bands. In addition, all groups showed a
small-world organization of these five frequency specific
FNCs (Fig. 2).

Fig. 2 shows the mean values of Cp, Lp, γ and λ as a
function of sparsity for all groups, respectively. The network
metrics were calculated for each individual frequency specific
FC graph, while the group mean values and significantly dif-
ferent levels were displayed.

Within IMF1, a significant inter-group difference of γ was
observed at a narrow range of sparsity (from 0.1 to 0.12).
Within the IMF2, a significantly higher Lp was observed in
the DPD group over a wide range of densities as compared to
HC (Fig. 2). Both the NDPD and DPD groups showed a
significantly lower λ at a range of the density threshold
from 0.1 to 0.35. The same network parameters were
compared and presented within IMF3 in Fig. 2.
Among which, a significantly lower γ and higher Lp were
observed in the NDPD group over a wide range of densities
relative to HC. Both the NDPD and DPD groups further

Fig. 2 Global measures of frequency specific brain networks were
quantified in the HC, NDPD and DPD patients. All groups showed a
small-world organization of these five frequency specific FNCs. The
significant inter-group overall global topological differences are
presented in IMF2 and IMF3. The data points are marked with a red plus

sign to indicate a significant difference (HC vs. NDPD; P < 0.05), and
with a black asterisk to indicate a significant difference (HC vs. DPD;
P < 0.05). IMF Intrinsic mode decomposition; HC healthy control;
NDPD non-depressed Parkinson's disease; DPD depressed Parkinson's
disease
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showed a significantly lower λ over a wide range of densities
compared with HC.

Nodal characteristics

Identification of network hubs

Fig. 3 and Table 3 show the nodes identified as hubs. In line
with previous reports (Achard et al. 2006; Zhang et al. 2011;
Nijhuis et al. 2013; Tomasi and Volkow 2011), several com-
mon nodes were observed to present the network hub property
across the three groups. In particular, seven of the hub regions
were identified for all groups including bilateral medial orbital
parts of superior frontal gyrus (ORBsupmed), rectus gyrus
(REC), superior temporal gyrus (STG) and right temporal pole
part of superior temporal gyrus (TPOsup). Four hub regions:
bilateral medial parts of superior frontal gyrus (SFGmed), left
TPOsup and right insula (INS), were identified as hub regions
in both patient groups, but not in the HC group. Instead of the
NDPD group, hub regions in the occipital lobe were only
observed in HC andDPD groups—those were the left superior
occipital gyrus (SOG) and lingual gyrus (LING) in both the

Fig. 3 The distribution of hub regions in the HC, NDPD and DPD
groups. Hub regions were visualized using BrainNet view (NKLCNL,
Beijing Normal University). Three-dimensional rendering maps showed
the hub regions defined by normalized overall rank order for each node
(Table 3). The hub nodes are colored in red, yellow, and cyan indicating
Associations, Primary, Paralimbic regions, respectively. The abbrevia-
tions of the regions are shown in Table 1. HC healthy control; NDPD
non-depressed Parkinson's disease; DPD depressed Parkinson's disease

Table 3 Hub regions in HC, NDPD and DPD groups

Hub regions Functional classification Normalized ORO

HC STG.L Association 0.0473

SOG.R Association 0.0709

ORBsupmed.L Paralimbic 0.0898

ORBsupmed.R Paralimbic 0.0993

SOG.L Association 0.1064

REC.R Paralimbic 0.1229

PoCG.L Primary 0.1418

STG.R Association 0.1418

REC.L Paralimbic 0.1489

PoCG.R Primary 0.1915

CUN.R Association 0.2080

TPOsup.R Paralimbic 0.2222

CAL.R Primary 0.2364

MOG.R Association 0.2506

ACG.L Paralimbic 0.2577

CUN.L Association 0.2600

LING.L Association 0.2695

NDPD SFGmed.L Association 0.0437

ORBsupmed.R Paralimbic 0.0506

STG.L Association 0.0713

ORBsupmed.L Paralimbic 0.0851

ACG.L Paralimbic 0.0874

SFGmed.R Association 0.0989

REC.L Paralimbic 0.1195

STG.R Association 0.1379

REC.R Paralimbic 0.1540

TPOsup.L Paralimbic 0.1747

ACG.R Paralimbic 0.1816

INS.R Paralimbic 0.2391

TPOsup.R Paralimbic 0.2460

PCG.L Paralimbic 0.2667

SFGdor.L Association 0.2782

DPD STG.L Association 0.0566

ORBsupmed.L Paralimbic 0.0792

REC.R Paralimbic 0.1154

REC.L Paralimbic 0.1312

ORBsupmed.R Paralimbic 0.1335

SFGmed.L Association 0.1493

CAL.L Primary 0.1629

SOG.L Association 0.2172

INS.R Paralimbic 0.2240

TPOsup.R Paralimbic 0.2376

LING.L Association 0.2557

IFGtriang.L Association 0.2624

TPOsup.L Paralimbic 0.2647

SFGmed.R Association 0.2738

STG.R Association 0.2828

Major Bhubs^ of the brain networks in each group defined by normalized
overall rank order. The cortical regions were classified as primary, asso-
ciation, and paralimbic. ORO overall rank order. For the abbreviations of
the regions, refer to Table 1
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HC and DPD groups, and the bilateral cuneus (CUN), right
SOG, calcarine fissure (CAL) and middle occipital gyrus
(MOG) in the HC group, and left CAL in the DPD group.
Bilateral postcentral gyri (PoCG) were identified as hub re-
gions in the HC group, but not in the other two groups. Hubs
in the cingulate gyrus were demonstrated in the HC and
NDPD groups—left anterior cingulate gyrus (ACG) in both
HC and NDPD groups, left posterior cingulate gyrus (PCG)
and right ACG in the NDPD group—but no hub in the cingu-
late gyrus for the DPD group. In addition, the left dorsal su-
perior frontal gyrus (SFGdor) and triangular part of inferior
frontal gyrus (IFGtriang) were identified as a hub in the
NDPD and DPD group, respectively. Moreover, convergent
results between the hubs were defined by both NORO (Fig. 3
and Table 3) and the conventional method (Supplementary
Fig. 1, Supplementary Tables 1 to 5) (Zhang et al. 2011).
The hubs identified in the NDPD group were predominantly
detected in regions of paralimbic cortices. Similar findings
have been reported in a previous study of temporal lobe epi-
lepsy, where the authors also observed a higher proportion of
paralimbic hubs in patients than in controls (Zhang et al.
2011).

Between-group difference in regional efficiency

Along with the discovery of a disrupted frequency-specific
global network organization, pair-wise group comparisons
on regional efficiency (Ew

i ) in distinct frequency bands re-
vealed the alterations of nodal efficiency in both patient
groups (Fig. 4).

Compared to HC, the regions with the most significant
group effects were mainly concentrated in IMF3 and predom-
inantly observed in the visual cortex in the NDPD group (Fig.
4a). Decreased Ew

i of IMF3 in the NDPD group was observed
in the bilateral lingual gyri (LING), superior occipital gyrus
(SOG), left postcentral gyri (PoCG), right calcarine fissure
(CAL), cuneus (CUN), middle occipital gyrus (MOG), fusi-
form gyrus (FFG) and angular gyrus (ANG), while increased
Ew
i of component IMF4 was observed in the left supplemen-

tary motor area (SMA) (Fig. 4a and Table 4).
Relative to HC, the most significant observed group effects

mainly focused on IMF2 and IMF3, and were predominately
distributed in the paralimbic-limbic system in the DPD group
(Fig. 4b). Decreased Ew

i was observed in DPD patients in the
left orbital part of superior frontal gyrus (ORBsup) from IMF1;
bilateral amygdala (AMYG), left orbital part of middle frontal
gyrus (ORBmid), hippocampus (HIP), and right precentral gy-
rus (PreCG) from IMF2; bilateral caudate nucleus (CAU), left
anterior cingulate gyrus (ACG) and PoCG from IMF3; and
right SOG from IMF4.Meanwhile, increasedEw

i of component
IMF5 was observed in the left insula (INS) (Fig. 4b and Table
4). Compared with NDPD, the most obvious observation for

group effects was concentrated in IMF3 and IMF4 components
and was distributed in the subcortical network in the DPD
group (Fig. 4c). Decreased Ew

i was observed in the right
CAU and left putamen (PUT) from IMF3, and right PUT from
IMF4 in the DPD group (Fig. 4c and Table 4). In addition, Ew

i
of the right CAU (R = -0.3366, P = 0.0054) in IMF3 and right
PUT (R = -0.3558, P = 0.0031) in IMF4 were negatively cor-
related with the HDRS-17 score (Fig. 5).

Fig. 4 The distribution of brain regions with most significant differences
in nodal efficiency among the HC, NDPD and DPD groups across five
frequency bands. Nodes from Fig. 4a to Fig. 4c represent the brain
regions with the most significant differences across the three groups in
the regional efficiencies across five identical frequency bands (P < 0.01,
uncorrected). Colors were assigned in the sequence of red, yellow, blue,
magenta and cyan from IMF1 to IMF5. The nodes with significant
topological alterations were mainly distributed in the visual cortex in
NDPD patients, and in the paralimbic-limbic and basal ganglia networks
in DPD patients. The significant disrupted nodal topological characteris-
tic was dominated in the frequency bands from 0.02 to 0.05 Hz in the
visual cortex in the NDPD group, as well as from 0.01 to 0.05 Hz in basal
ganglia and from 0.02 to 0.22 Hz in the paralimbic-limbic network in the
DPD group. Brain regions were visualized using the BrainNet viewer
(NKLCNL, Beijing Normal University). For the abbreviations of the
regions, refer to Table 1. IMF Intrinsic mode decomposition; HC healthy
control; NDPD non-depressed Parkinson's disease; DPD depressed
Parkinson's disease
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Discussion

In this current study with the utilization of resting state fMRI,
the results suggested the dissociations of topological organi-
zations of brain networks between NDPD and DPD patients in
both spatial and spectral domains. Our data revealed three
major findings: i) Compared to HC, the increased characteris-
tic path length was exclusively observed in IMF2 in the DPD
group and in IMF3 in the NDPD group; (ii) The nodes with

significant topological alterations were mainly distributed in
the visual cortex in NDPD patients, or in the paralimbic-
limbic and basal ganglia networks in DPD patients at the
nodal topological level; (iii) The significant disrupted nodal
topological characteristic was dominated in the frequency
band from 0.02 to 0.05 Hz in the visual cortex in the NDPD
group , as well as from 0.01 to 0.05 Hz in the basal ganglia and
from 0.02 to 0.22 Hz in the paralimbic-limbic network in the
DPD group.

Table 4 Between-group
differences of nodal efficiency
among NDPD, DPD and HC

Regions Functional
classification

Anatomical
classification

Difference values

(P values)

HC vs NDPD IMF1 NS NS NS NS

IMF2 NS NS NS NS

IMF3 CAL.R Primary Occipital 3.09 (0.0027)

CUN.R Association Occipital 2.92 (0.0044)

LING.L Association Occipital 2.72 (0.0079)

LING.R Association Occipital 3.14 (0.0023)

SOG.L Association Occipital 3.16 (0.0022)

SOG.R Association Occipital 3.25 (0.0016)

MOG.R Association Occipital 4.34 (0.00004)

FFG.R Association Temporal 3.00 (0.0035)

PoCG.L Primary Parietal 2.71 (0.0081)

ANG.R Association Parietal 2.94 (0.0041)

IMF4 SMA.L Association Frontal -3.42 (0.0009)

IMF5 NS NS NS NS

HC vs DPD IMF1 ORBsup.L Paralimbic Prefontal 2.80 (0.0071)

IMF2 PreCG.R Primary Frontal 3.18 (0.0023)

ORBmid.L Paralimbic Prefontal 2.70 (0.0090)

HIP.L Limbic Temporal 2.72 (0.0084)

AMYG.R Subcortical Temporal 2.85 (0.0058)

AMYG.L Subcortical Temporal 2.79 (0.0069)

IMF3 ACG.L Paralimbic Prefontal 3.10 (0.0029)

PoCG.L Primary Parietal 2.74 (0.0080)

CAU.L Subcortical Subcortical 4.39 (0.00004)

CAU.R Subcortical Subcortical 2.94 (0.0046)

IMF4 SOG.R Association Occipital 2.94 (0.0045)

IMF5 INS.L Paralimbic Subcortical -2.77 (0.0073)

DPD vs NDPD IMF1 NS NS NS NS

IMF2 NS NS NS NS

IMF3 CAU.R Subcortical Subcortical -2.99 (0.0039)

PUT.L Subcortical Subcortical -2.68 (0.0093)

IMF4 PUT.R Subcortical Subcortical -3.15 (0.0025)

IMF5 NS NS NS NS

The functional connectivity networks for each participant in five specific brain oscillations were constructed
using an AAL template. Pair wise comparisons were performed using a general linear model (adjusted for the
effects of age, gender and years of education) to determine the inter-group differences for regional efficiency. A
value of P < 0.01(uncorrected) was considered statistically significant. Only the maximum inter-group significant
difference of regional efficiency in one IMF was reported specifically. NS: Not significant. For difference values,
negative values in each pair-wise comparison represent HC < NDPD, HC < DPD, and DPD < NDPD respec-
tively. IMF Intrinsic mode decomposition; HC healthy control; NDPD non-depressed Parkinson's disease; DPD
depressed Parkinson's disease; the abbreviations of the regions, refer to Table 1
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Global network measurements (i.e. γ and λ) indicated a
small-world organization of all frequency specific brain net-
works in all groups. Compared to HC, the increased charac-
teristic path length observed in IMF2 and IMF3 of the DPD
and NDPD groups respectively, indicated an altered organiza-
tion of the brain networks with specific brain oscillation lead-
ing to lower efficiency. Additionally, a previous electrophys-
iological study suggested that distinct motor and non-motor
components of clinical impairment in Parkinson’s disease
might be detected as oscillatory activities across multiple fre-
quency bands and their cross-frequency interactions within
spatially segregated loops of the basal ganglia-thalamo-
cortical system (Oswal et al. 2013). Performing resting state
fMRI, dissociation in global topological patterns of brain net-
works between NDPD and DPD patients in the frequency
domain was observed. The results indicated the potential dis-
association of global FC differences with their corresponding
activities in distinct resting oscillation rhythms. In addition,
the results of some topological profiles, including Cp in IMF2,
and γ in IMF1 and IMF2, were difficult to interpret due to the
fact that their inter-group differences were only significant at a
narrow range of sparsity. Future studies may classify this topic
in a large cohort.

Regarding regional properties, brain regions with reduced
efficiency in NDPDwere predominately located in the occipital
cortex, which was consistent with previous studies (Gottlich et
al. 2013; Luo et al. 2014; Skidmore et al. 2011). Previous stud-
ies documented that the Parkinson’s disease-related visual dam-
ages ranged from deficits in basic perceptual and semantic vi-
sual processing at an early stage of cognitive deterioration
(Laatu et al. 2004; Cardoso et al. 2010), problems in motion
and orientation discrimination (Bodis-Wollner and Paulus
1999; Trick et al. 1994) to even visual hallucinations (Barnes
and David 2001; Mindham 2001). The observed modification
of nodal efficiency in the right ANGmight account for the non-

motor symptoms of patients with Parkinson’s disease such as
linguistic deficits and executive dysfunction (Altmann and
Troche 2011; Kudlicka et al. 2011; Murray and Rutledge
2014; Shirer et al. 2012). Meanwhile, decreased efficiency in
the left PoCG might be associated with the motor symptoms in
Parkinson’s disease, which was consistent with a previous
study (Sharman et al. 2013). Similarly, the disrupted BOLD
signal activities in the PoCG and PreCG were also observed
in the DPD group. On the other hand, a higher efficiency ob-
served in the left supplementary motor area might reflect the
compensatory mechanisms in Parkinson’s disease (Kwak et al.
2010; Yu et al. 2013; Sharman et al. 2013).

The occurrence of depression in Parkinson’s disease might
arise from the disturbance in the paralimbic-limbic system as
well as the basal ganglia network. Our results highlighted the
critical role of nodes in the paralimbic-limbic system in DPD,
which was consistent with previous studies (Luo et al. 2014;
Skidmore et al. 2013). In addition, extensive evidence indicat-
ed that the abnormal function of the striatum and the associ-
ated limbic-basal ganglia circuitry played a role in the emo-
tional processing system in patients with depression (Jiao et al.
2011; Lui et al. 2011; Marchand et al. 2012). Moreover, a
recent study reported by Joutsa et al. (2013) suggested that
impaired striatal dopaminergic function was related to depres-
sion symptoms in Parkinson’s disease. In the current study,
decreased nodal efficiency observed in DPD patients in bilat-
eral CAU (compared with HC) as well as bilateral PUT and
right CAU (compared with NDPD) further supported the hy-
pothesis. Additionally, the increased regional efficiencies in
the left INS observed in DPD patients might have resulted
from depression symptoms in Parkinson’s disease. For in-
stance, recent studies (Connolly et al. 2013; Frodl et al.
2010) indicated an increased FC between the subgenual ante-
rior cingulate and insula cortex in patients with depression,
which goes along with our findings that the subgenual anterior

Fig. 5 Relationship between frequency specific nodal efficiency and
clinical variables. The results of the correlation analysis between the
HDRS-17 score (x-axis) and frequency specific nodal efficiency in the
left thalamus (R = -0.2721, P = 0.0259) and right caudate nucleus (R = -

0.3366, P = 0.0054) in IMF3 component, and of the right putamen (R = -
0.3558, P = 0.0031) and pallidum (R = -0.3184, P = 0.0086) in IMF4.
HDRS-17 17-item Hamilton Depression Rating Scale; IMF Intrinsic
mode decomposition
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cingulate was likely to be the vital hubs in the neural circuits
associated with depression in Parkinson’s disease. It was dis-
putable whether regional efficiency differences demonstrated
by fMRI in the high frequency band (IMF1, 0.12~0.22 Hz)
were attributable to a susceptibility artifact as the frequency
band such as the IMF1was covered by a respiratory frequency
interval from 0.1 to 0.5 Hz (Cordes et al. 2001). However,
several other studies detected that the spectral range of
BOLD signals was greater than 0.1 Hz, which also demon-
strated consistent patterns with low-frequency fluctuations (<
0.1 Hz) (Boubela et al. 2013; Van Someren 2011).
Furthermore, the orbitofrontal cortex detected in IMF1 might
be the key region in DPD (Choe et al. 2013; Gottlich et al.
2013). Hence, we speculated that the high frequency band
IMF1 might be associated with some physiological signifi-
cance, rather than susceptibility artifact.

Meanwhile, these nodes with significant group effects were
dominated in distinct frequency bands. From one perspective,
it has been suggested that the brain oscillations within distinct
frequency bands were generated by diverse mechanisms and
possessed different physiological functions (Buzsaki and
Draguhn 2004; Engel et al. 2001; Penttonen and Buzsáki
2003). In addition, the previous study (Oswal et al. 2013)
suggested the associations between the distinct functional cir-
cuits oscillatory activities acrossmultiple frequency bands and
distinct motor, non-motor components of clinical impairment
in Parkinson’s disease. From another perspective, the distinct
frequency characteristics of spatially distributed nodes were
complicated, concerning unclarified origins, relations, and
specific physiological functions of different oscillatory bands.
Future work combining EEG, resting state fMRI as well as
various task-based fMRI may contribute to a more precise
understanding of the neurophysiological basis of the signals
located in different frequency bands.

Limitations

In the current study, the comparison of frequency-specific
brain networks was performed. Several limitations were note-
worthy. The first limitation was due to the little-known influ-
ence of head motion on the frequency specificities in a small
world network, since several recent studies (Power et al. 2012;
Van Dijk et al. 2012) reported decreased long range connec-
tivity and increased local connectivity due to head motion.
Further investigation will be conducted in our next study.
Moreover, other methods were not considered to define the
value of FC, like partial correlation, which could estimate the
direct interdependence after ruling out third-party effects
(Pereda et al. 2005). Another limitation of our study was that
the analysis of node definition was limited to AAL template-
based brain networks. A previous study suggested that the
topological organization of brain networks was affected by
various parcellation strategies (Wang et al. 2009). Future

studies need to clarify the impact of various node definitions
on this topic. Additionally, in the FC analysis in BOLD fMRI,
an ongoing debate on the necessity to correct global signals in
fMRI time courses did not reach a consensus (Hayasaka
2013). One previous study (Hayasaka 2013) suggested that
without global signal correction, nodes along the inter-
hemispheric fissure were highly connected while some nodes
and subgraphs around white-matter tracts became disconnect-
ed from the rest of the network. In the current study, regression
of global signals was performed. The discussion on how this
preprocessing step influenced the results was beyond our fo-
cus. Lastly, the conclusion of the current study was demon-
strated using limited sample data; further studies need to be
done in a large cohort.

Conclusion

In the present study, we have introduced a novel method
CEEMD to divide the resting state fMRI signals into five
specific brain oscillations within distinct frequency bands.
Our results demonstrated that brain networks for all groups
showed small world architecture, and the optimal topological
organization of brain networks decreased in both NDPD and
DPD patients. Moreover, disrupted global topological organi-
zation, Lp, was distinct from frequency between NDPD and
DPD groups. Additionally, altered brain regions within three
key neural networks in NDPD and DPD patients and distinct
frequency characteristics of these spatially distributed nodes
were demonstrated. Overall, the present study demonstrated
that there was dissociation in topological organizations of
brain networks between NDPD and DPD patients in spatial
and frequency domains. More importantly, the initial method
described in the current study provided a novel insight to
investigate the neuroimaging biomarkers of various brain dis-
orders in both spatial and spectral domains.
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