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transcription factors govern haematopoietic
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Abstract

Recent advances in molecular profiling provide descriptive data-
sets of complex differentiation landscapes including the
haematopoietic system, but the molecular mechanisms defining
progenitor states and lineage choice remain ill-defined. Here, we
employed a cellular model of murine multipotent haematopoietic
progenitors (Hoxb8-FL) to knock out 39 transcription factors (TFs)
followed by RNA-Seq analysis, to functionally define a regulatory
network of 16,992 regulator/target gene links. Focussed analysis of
the subnetworks regulated by the B-lymphoid TF Ebf1 and
T-lymphoid TF Gata3 revealed a surprising role in common activa-
tion of an early myeloid programme. Moreover, Gata3-mediated
repression of Pax5 emerges as a mechanism to prevent precocious
B-lymphoid differentiation, while Hox-mediated activation of
Meis1 suppresses myeloid differentiation. To aid interpretation of
large transcriptomics datasets, we also report a new method that
visualises likely transitions that a progenitor will undergo follow-
ing regulatory network perturbations. Taken together, this study
reveals how molecular network wiring helps to establish a multi-
potent progenitor state, with experimental approaches and analy-
sis tools applicable to dissecting a broad range of both normal and
perturbed cellular differentiation landscapes.
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Introduction

Mature blood cells are continuously replenished by a flow of dif-

ferentiating cells originating from multipotent, self-renewing

haematopoietic stem cells (HSCs), which give rise to multi, oligo and

unipotent progenitors with decreasing self-renewal potentials. Poten-

tial structures for this differentiation hierarchy (“haematopoietic

tree”) have been proposed through decades of iterative sampling of

cell subpopulations and functional testing using transplantation or

colony assays (Eaves, 2015; Laurenti & Göttgens, 2018). More

recently, single-cell functional assays, scRNA-Seq and barcoding

approaches emphasise the landscape view of haematopoietic dif-

ferentiation, proposing more gradual differentiation trajectories and a

more probabilistic nature of lineage choices (Fig 1A; Nestorowa

et al, 2016; Pei et al, 2017; Dahlin et al, 2018; Rodriguez-Fraticelli

et al, 2018; Tusi et al, 2018; Watcham et al, 2019; Weinreb et al,

2020). Importantly, models based merely on the cataloguing of

molecular data remain descriptive, with little insight into the mecha-

nisms behind cellular decision making as cells traverse the differenti-

ation landscape. The concept of differentiation landscapes was

introduced by Waddington (Waddington, 1957), who proposed, right

from the start, that beneath the landscape there had to be a complex

molecular network which by, determining the shape of the land-

scape, controls cellular decision making.

Deciphering complex regulatory networks constitutes a formid-

able task due to the large number of components and an even

larger number of possible interactions. For the past decade or so,

much hope has been pinned on inference based on correlative

evidence, e.g. trying to explain transcriptional regulation from

variation in gene expression across many conditions or samples.

Correlative inference approaches, however, commonly lack the

means to identify causality or directionality. Regression-based

methods, bayesian networks and differential equation models have

all been proposed to overcome these shortcomings (Sanguinetti &

Huynh-Thu, 2019), but unfortunately have had limited success so

far (Marbach et al, 2012; Chen & Mar, 2018; Pratapa et al, 2020).

Genome-wide binding profiles are often used for cross-validation.

These, however, also face limitations, because singular TF binding

events constitute a poor predictor of gene regulation (ENCODE

Project Consortium, 2012; Calero-Nieto et al, 2014; Kellis et al,

2014; Vijayabaskar et al, 2019). Arguably, the main limitation is
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the lack of gold standards—sets of verified, functional connections

which can be used to objectively evaluate and refine inference

methods.

There is a growing appreciation therefore that renewed emphasis

needs to be given to direct experimental intervention as the way of

identifying causal links. Targeted genetic/chemical perturbations

Hoxb8-FL cells

Macrophages
Dendritic cells
Granulocytes
T cells
B cells

Erythrocytes
Megakaryocytes

differentiation

(self-renewing)

sgRNA 
design

Oligo cloning
pBA439 library

Lentivirus
generation

Infection

Gata3
Cebpa

Myc

Tcf3

Culture
2-4d

Sort (BFP+)
Pools of 375 cells

RNA-Seq
Smart-Seq2 mod.

GA
AACCCGTACTA

AG
TAGT

TTTCGGCATAC
TC
TAGC

TGTCGTTCAAC
CG
GGA

TCTCGATCGAC
CT
A

E

N
eu

tro
ph

ils

E
os

in
op

hi
ls

M
as

t c
el

ls

B
as

op
hi

ls

M
on

oc
yt

es

E
ry

th
ro

cy
te

s

Ly
m

ph
oi

d 
ce

lls

M
eg

ak
ar

yo
cy

te
s

D
en

dr
iti

c 
ce

lls

H
S

C
s

M
P

P
s

O
lig

o/
bi

po
te

nt
pr

og
en

ito
rs

U
ni

po
te

nt
pr

og
en

ito
rs

Gene/protein
networks

Maps

Molecular
profiling

Functional
assays

B C D

Exp. 1 log2(Fold Change)

E
xp

. 2
 lo

g2
(F

ol
d 

C
ha

ng
e)

0.0 2.5 5.0

0

2

4

Regulatory
programmes

0

10

20

30

40

Neu Mono/DC

BasMC

Meg HSC

Ery

Ly

Intermediate 
progenitors

Unassigned

projection
score

A

y = 0.0658 + 0.709x, r2 = 0.92 

Figure 1. CRISPR/Cas9 screen with a transcriptomics readout.

A Understanding the cell state landscapes of haematopoietic progenitors. (left) Annotated UMAP projection of a scRNA-Seq landscape—mouse LK + LSK populations
(Dahlin et al, 2018) (middle) diagram representing haematopoietic hierarchy with gradual changes in cell fate potential (colour gradient) from HSCs to differentiated
states (adapted from the Molecular Cell Biology, 9th edition under preparation). (right) Diagram of a molecular network.

B Differentiation capacity of Hoxb8-FL cells.
C Projection of Hoxb8-FL transcriptome onto the LK/LSK mouse landscape. The projection score (based on nearest neighbours) reflects relative transcriptional similarity

to the Hoxb8-FL state for each LK/LSK cell. For the majority of cells, no neighbours are identified (grey), some cells exhibit low similarity (yellow), and a small set of
cells exhibit high similarity (blue).

D Schematic of the screen layout, sgRNAs were cloned into the pBA439 backbone and introduced into Hoxb8-FL cells via lentiviral infection. Cells were cultured for
either 2 or 4 days, followed by sorting for cells carrying sgRNA constructs (BFP+) into small pools and subsequent small-scale RNA-Seq analysis.

E Reproducibility of 2 independent experiments—correlation of observed changes in expression. Blue line indicates the linear fit with shaded areas as confidence intervals.

Data information: Abbreviations: Meg—megakaryocytes, HSC—haematopoietic stem cells, Ery—erythrocytes, MC—mast cells, Bas—basophils, Mono—monocytes, DC—
dendritic cells, Neu—Neutrophils, Ly—lymphoid, Myo—myeloid.
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have been used to reconstruct small networks (Jaeger, 2011; Briscoe

& Small, 2015; Hill et al, 2016) with considerable success. However,

scalability of conventional “functional” experiments has been

limited. The CRISPR/Cas9 revolution has now firmly established the

feasibility of large-scale gene perturbation screens. Moreover, the

miniaturisation of next-generation sequencing protocols allows for

significant cost savings thus enabling scalable genetic perturbations

with simultaneous transcriptomic readout (Datlinger et al, 2017).

In this study, we constructed an experimentally defined network

connecting 39 TFs—chosen key regulators of haematopoietic dif-

ferentiation—with their downstream targets. Due to extensive

heterogeneity of primary cells and difficulties in maintaining their

steady-state ex vivo, we utilised a multipotent cell line model—

Hoxb8-FL (Redecke et al, 2013). By establishing a scalable screening

pipeline to knock out single TFs and analyse the resulting transcrip-

tomic changes by RNA-Seq, we identified 16,992 TF-target regula-

tory links across 7,388 target genes, revealing a range of target gene

modules associated with specific functions including the

maintenance of self-renewal and preventing dominance of specific

lineage-specific programmes. To help attribute biological functions

to analysed TFs, we also propose a new method—DoT score—

which aids interpretation of transcriptomic changes using scRNA-

Seq landscapes as a reference.

Results

A sensitive and scalable method to infer TF-target connections

Hoxb8-FL cells represent a functional in vitro counterpart to

lymphoid-primed multipotent progenitors (LMPP), which can be

maintained as a self-renewing culture in the presence of Flt3

ligand and activation of a Hoxb8 oestrogen receptor fusion trans-

gene, and can differentiate to myeloid and lymphoid cells both

in vitro and in vivo (Redecke et al, 2013) (Fig 1B). To relate

Hoxb8-FL cells to their likely counterparts in primary cell tran-

scriptional landscapes, we identified the nearest neighbour cells

connecting our previously published landscape of over 40,000

mouse HSPCs (Dahlin et al, 2018) with 82 single-cell transcrip-

tomes from Hoxb8-FL cells cultured in self-renewal conditions

(Basilico et al, 2020). As shown in Fig 1C, the primary HSPC cells

that are most transcriptionally similar to Hoxb8-FL cells occupy a

defined territory between myeloid and lymphoid progenitors,

consistent with their LMPP-like properties. The value of Hoxb8-FL

cells as a model for haematopoietic progenitors is enhanced further

by previously generated genome-wide CRISPR/Cas9-dropout screen

data (Basilico et al, 2020), which highlight genes critical for self-

renewal of Hoxb8-FL cells.

To establish functional links between TFs and their targets, we

developed a CRISPR/Cas9-RNA-Seq screening approach (Fig 1D).

Each TF was perturbed independently by three sgRNAs, introduced

via lentiviral infection into Cas9-expressing Hoxb8-FL cells. These

were subsequently analysed for transcriptomic changes after 2 or

4 days using an adapted Smart-Seq2 protocol (Picelli et al, 2014;

Bagnoli et al, 2018) on 8 pools each of 375 cells. We avoided previ-

ously reported barcode recombination (Xie et al, 2018) by produc-

ing viral particles and infecting cells separately. As a negative

control, we used two control constructs: sgRNA targeting GFP

(sequence not present in the genome) and sgRNA targeting the

Rosa26 locus. In parallel, we analysed pools of cells after switching

off Hoxb8 ectopic expression for 18 h but maintaining Flt3L signal-

ling (Hoxb8*), a condition ultimately leading to dendritic cell dif-

ferentiation after 4–5 days.

Gene knockout efficiency was confirmed by targeting the ubiq-

uitously expressed CD45 locus, which was successfully inactivated

in 48% of cells (Fig EV1A). Moreover, CRISPR/Cas9 perturbation

also resulted in the loss of the corresponding TF protein as vali-

dated by the absence of Gata3 ChIP-Seq signal in single-cell clones

derived from cells targeted with the Gata3 guide RNAs

(Appendix Fig S6). Furthermore, high-throughput sequencing of

loci targeted by 11 sgRNAs across 4 genes showed consistent

frameshift in 30–50% DNA copies (Fig EV1B, Table EV1), indicat-

ing that targeted populations will contain some heterozygous and

WT cells despite efficient editing. To ensure high-sensitivity in

detecting expression changes, we therefore performed 8 replicate

RNA-Seq experiments per condition (Fig EV1C). Differential

expression (DE) statistic between matching perturbed and control

samples was used to identify regulator–target relationships, with

the observed log2(fold change) providing the weights for the result-

ing network edges. Two independent experiments targeting Gata3

show strong overlap and effect correlation across target genes

(Fig 1E), and there is a strong correlation among the 3 sgRNAs

targeting the same gene (Fig EV1D and F).

Choice of time-point for the analysis is critical. There is a fine

balance between the risk of analysing cells before the protein is suf-

ficiently depleted if analysed too early and skewing data towards

secondary (and higher order) effects at later time-points. Addition-

ally, it takes approximately 1 day for the viral construct to integrate

and transcribe/translate after the infection. When targeting the non-

essential Gata3, we observed robust and reproducible signal

between days 3 and 5 after perturbation (Fig EV1E); hence, we

chose the 4 day time-point to provide sufficient time for gene knock-

out effects. For essential genes, we analysed cells mostly after

2 days to precede the drop in cell survival, as observed after remov-

ing Cebpa or Myc (Fig EV1G).

A functional network of haematopoietic transcription factors

We next applied the approach outlined above to identify the down-

stream targets of 38 TFs, chosen based on their haematopoietic

function and expression in progenitor cells (Dataset EV1). We also

assayed a cohesin complex component—Rad21, which plays an

important role in haematopoiesis (Panigrahi & Pati, 2012) and regu-

lates expression of pluripotency genes (Nitzsche et al, 2011).

Twelve out of these 39 genes are essential for survival of Hoxb8-FL

cells, i.e. their knockout leads to a competitive disadvantage when

cultured with WT cells (Basilico et al, 2020) (“Dropout TFs”). Bioin-

formatic analysis of the more than 1,000 newly generated RNA-Seq

datasets revealed a network of 39 TFs connected via 16,992 edges

with 7,388 downstream target genes, i.e. differentially expressed

following perturbation of one or more TFs (Dataset EV2). The

number of differentially regulated genes included within the

network is dependent on the chosen threshold, which balances

sensitivity and specificity, and thus, some targets may have escaped

our detection. Fig 2A and B provides specific numbers of target

genes, and the network structure visualised as a force-directed
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layout, chosen subsets of the data are shown in Fig EV2. The

periphery of the network is occupied by genes regulated by single

TFs, whereas the centre contains coregulated genes (i.e. genes

which are downstream of > 1 TF). Large groups of double-regulated

targets can be distinguished in between the two zones. We observed

large transcriptomic changes for 10 TFs, previously not identified as

essential in Hoxb8-FL cells (Basilico et al, 2020) (> 200 target

genes). Reassuringly, we detected strong effects for several essential

TFs, proving that analysis at an appropriate time-point permits the

capture of transient cell stages. For more detailed downstream anal-

ysis, we focused on the 19 TFs with > 200 targets (essential + non-

essential) and considered three aspects of the network: how TFs

coregulate their targets, how TFs regulate each other’s expression

and which target genes form functional modules with common

regulatory mechanisms.

TF coregulation, regulatory modules and common
regulatory mechanisms

Focussing on the 19 TFs with > 200 targets, we next calculated gene

overlaps and correlations in expression changes for all pairs of TFs to

highlight potential functional relationships between them (Fig 3A and

B, Appendix Fig S3A and B). As expected, Myc and Max, known to

operate in the same complex, share a large fraction of target genes

with very high correlation. Of note, not all TFs exhibit strong target

overlap as Fos shares only a small fraction of its 228 targets with other

factors. Importantly, defining target genes by gene expression changes

means that the network model will contain primary and secondary (or

higher order) targets. Thus, a target gene with two upstream regula-

tors (TF1, TF2) may receive both inputs in parallel or sequentially.

Consequently, if TF1 activates TF2, their shared targets would be

expected to change in the same direction. Our network shows exam-

ples of such behaviour (see below), but it may not be a universal trait

due to other regulatory factors (e.g. a feed forward loop dampening

the response) or the time required to manifest secondary and tertiary

effects. While resolution of primary and secondary targets is difficult

without dynamic data, our network captures some hierarchical regula-

tion, as it contains information on cross-regulation of the 19 TFs

(Fig 3C). A case in point is Cebpa, a key myeloid regulator and essen-

tial for Hoxb8-FL cell survival (Avellino & Delwel, 2017; Basilico et al,

2020). We detect 748 genes downstream of Cebpa, including a large

number of myeloid factors such as Irf8, Trem3, Prtn3, Hp and Anxa3

(Appendix Fig S2A). A wide range of TFs bind the Cebpa locus

(Cooper et al, 2015; Avellino et al, 2016) but their relevance was

unclear (Avellino & Delwel, 2017). Our network pinpoints the Cebpa

regulators Erg, Lmo2 and an unexpected input from Gata3. An exam-

ple of cross-regulation of TFs through core circuits is illustrated by the

observation that Cebpa, Gata3 and Lmo2 coregulate 37 genes, includ-

ing activation of myeloid genes like Prtn3, Mmp8, Ctsg, Anxa3, Nrg2

and suppression of B-cell genes Cd79a,Mzb1,Myl4 or megakaryocytic

gene Cd9 (Fig EV2A, Appendix Fig S2C).

Hoxb8-FL cells rely on Hoxb8 activation to suppress myeloid dif-

ferentiation (Redecke et al, 2013). Interrogation of our network

model reveals that Hoxb8 opposes Cebpa as well as other myeloid

factors such as Spi1 and Myb (Fig 3A and B). This function of Hoxb8

appears to be executed at least in part by activating Hoxa9 and

Meis1, previously reported anti-myeloid factors (Zeisig et al, 2004).

We observe strong correlation in target gene expression between

Hoxb8 and Meis1 and to a lesser extent between Hoxb8 and Hoxa9

(Fig 3A). This involves repression of numerous myeloid factors:

Mpo, Prtn3 (regulated by all three factors), Il6ra, Irf8 (Meis1 and

Hoxb8), Elane and Hp (Hoxa9 and Hoxb8) (Appendix Fig S2D). Of

note, only a limited number of targets were shared between Meis1

and Hoxa9 suggesting that they may play complementary roles in

suppressing myeloid differentiation. Additionally, the network

model highlights a negative correlation between Tcf3/E2A and

Cebpa and to some extent Gfi1. Tcf3 classically plays a pro-

lymphoid role (Boller & Grosschedl, 2014), consistent with Tcf3 acti-

vating lymphoid factors Gata3 and Ebf1 in Hoxb8-FL cells. More-

over, Ebf1 and Tcf3 coregulated B-cell lineage factors such as Mzb1

and Igll1 (Appendix Fig S2F).

Cbfb, Runx1 and Runx2 are all essential for Hoxb8-FL cell growth,

and their targets exhibit high correlation (Appendix Fig S3B), consis-

tent with the known dimerisation of Runx and Cbfb proteins

(Warren et al, 2000; Yan et al, 2004). Of note, Runx/Cbfb targets

appear to be involved in promoting myeloid gene expression and

antagonise the Hoxb8 programme. For instance, myeloid lineage

genes Mpeg1, Afap1, Nrp1 and Dtx4 are activated by Cbfb but

repressed by Hoxb8 (Appendix Fig S2B). Interestingly, Runx1/Runx2

and Cbfb show different regulatory patterns with several other factors

(Gfi1, Mitf, Rad21; Appendix Fig S3B), suggesting that Runx1/Runx2

and Cbfb may play roles outside of their common protein complex.

In addition to the TF-TF regulation, we identified 47 target gene

modules (Dataset EV3). These represent groups of genes with

common patterns of regulation by the assayed TFs, for instance

modules 6 and 10 are enriched for genes co-activated by Myc, Max

and Ebf1, while genes in module 12 are mostly co-activated by

Myc/Max/Gfi1 but repressed by Ebf1 (Fig 3D, Appendix Fig S3C–

G). For instance, modules 6 and 10 contain genes involved in repli-

cation, biosynthesis and mitochondrial biogenesis (enrichment anal-

ysis is provided in Dataset EV5) which are co-activated by Myc,

Max and Ebf1, highlighting a novel function of Ebf1. On the other

hand, module 19, with genes involved in replication and translation

(Dataset EV5), is similarly activated by Myc and Max but instead of

Ebf1 receive inputs from Cebpa. Importantly, correlation of Myc/

Max and Ebf1 targets is not universal and depends on the gene

module. Module 12 contains multiple cell cycle genes (Ccne1,

Ccnb1, Cenpt, Dataset EV5) activated by Myc and Max but

suppressed by Ebf1, suggesting that Ebf1 may play a balancing role

between cell growth and proliferation. The module analysis explains

to a large degree observed coregulation between Myc/Max and

other lineage-specific factors like Cebpa, Ebf1 and Gfi1 presented in

▸Figure 2. A functional network connecting 39 transcription factors with their targets.

A Number of target genes identified using differential expression for each assayed TF. *genes identified as essential for self-renewal of Hoxb8-FL cells in (Basilico et al,
2020).

B A force-directed graph displaying perturbed transcription factors (orange dots) and target genes (grey dots). Edges indicate if the target gene is differentially
expressed, blue for genes downregulated and red for genes upregulated. Size of the nodes is proportional to their degrees.
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39 transcription factors
16,992 regulatory interactions
7,388 gene targets
3,993 coregulated genes
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Fig 3A and B. Altogether, our network reveals a wealth of relations

among transcription factors at a single gene resolution, specific hier-

archical TF regulation with novel roles in regulating lineage-specific

programmes and target gene modules with common regulatory

patterns providing new insight into the combinatorial nature of TF

function and downstream biological effects.

Double perturbations reveal TF interactions

To gain deeper insight into possible interactions between TFs, we

performed experiments which simultaneously inactivated two tran-

scription factors. We took advantage of the fact that Hoxb8-FL cells

rely on exogenous Hoxb8 (activated by b-oestradiol) to prevent dif-

ferentiation into dendritic cells. Thus, we chose three TFs with

strong target overlap with Hoxb8—Cebpa, Meis1 and Spi1 and

performed single and double inactivation experiments (Fig 4A)

followed by RNA-Seq.

To analyse these data, we employed a two-factor model with inter-

action (Fig 4B). The model estimates three coefficients for each target

gene, two for expression changes caused by each single perturbation

and one as an interaction term (which is the difference between

changes caused by the double perturbation and the sum of single

perturbations). Thus, a non-zero interaction term indicates a TF-TF

relation beyond additive and can point towards a particular mecha-

nism of action. For instance, three positive coefficients indicate synergy

(also known as aggravating or synthetic interaction; Segrè et al, 2005),

meaning that combined perturbation results in a greater effect than the

sum of the single perturbations. Conversely, the interaction term with

the opposite sign to single perturbations implies a buffering relation

(alleviating or suppressive interaction), where the combined perturba-

tion has smaller effect than the sum of its two parts.

Firstly, we focused on the coregulated genes between Cebpa/

Meis1/Spi1 and Hoxb8* pairs. We applied low-stringency filtering

(|log2(fold change)| > 0.2) to obtain an overview of the interaction

class distributions (Fig 4C–E), and we observed hundreds of genes

with potential non-additive regulation. In the previous section

(Fig 3C), we predicted that Hoxb8 is an upstream activator of Meis1.

Consistently, the Meis1/Hoxb8 interactions mainly belong to the

buffering class, which is expected for positively-linked hierarchical

factors (Segrè et al, 2005; Fig 4D and E). To provide specific gene-level

annotation, we applied more stringent criteria (genes DE in each

comparison, respectively, i.e. |log2(fold change)| > 0.2 and FDR < 0.1).

We observed a complex pattern of interactions in each case, with non-

additive interactions being most common in the case of Cebpa

(Fig EV3C). We provide a detailed overview of genes in each class in

Fig EV3A and B, and Dataset EV6 to facilitate further investigation. Over-

all, combinatorial perturbation data support our previous predictions

and reveal common and complex TF-TF interactions in target regulation.

Genome-wide binding profiles support regulatory
network interpretation

The interpretation of regulatory processes that underlie differential

gene expression following TF perturbation can be enhanced by the

generation of complementary genome-wide TF binding maps. In

addition to our previously published maps of open chromatin

captured by ATAC-Seq (Basilico et al, 2020), we also generated

chromatin immunoprecipitation (ChIP-Seq) datasets using Hoxb8-FL

cells and antibodies against 14 TFs as well as the H3K27Ac histone

modification that indicates transcriptionally active chromatin

(Appendix Figs S6 and S7). Thirteen out of 14 analysed TFs exhibit

extensive binding across the genome (> 5,000 peaks at P-value

< 106), and a narrower set of 1,500 sites was observed for Tcf3. The

TFs exhibit a remarkably similar distribution across genomic

features with most of the binding away from promoters

(Appendix Fig S4A), even though the promoter bound fraction was

slightly higher for Erg, Runx1, Fli1, Gfi1 and Gfi1b.

Analysis of global binding profiles revealed highly overlapping

binding events for Cebpa/Cebpb and Gfi1/Gfi1b, respectively

(Fig 5A), in line with their high homology in DNA binding domains

(van der Meer et al, 2010; Avellino & Delwel, 2017). Furthermore,

we observe high similarity of binding events across 5 members of

the heptad group (Lmo2, Runx1, Fli1, Erg, Tal1) previously reported

to control HSPC genes (Wilson et al, 2010). Importantly, there is

only a partial agreement in interactions identified by ChIP-Seq and

DE. The discrepancy may be in part due to DE capturing also

secondary targets, as in the case of Gata3, Lmo2 and Cebpa. Never-

theless, it is not the only explanation as Spi1 and Fli1 co-occupy a

large portion of sites, yet share very few targets.

Next, we asked how well neighbouring TF binding sites predict

target genes. We compared the observed number of genes simultane-

ously regulated (DE) and bound (ChIP-Seq) by a given TF, with the

number expected from random association (Fig 5B). The observed

enrichment was almost uniformly low (below 2), even in the case of

TFs with large numbers of targets. Furthermore, peaks corresponding

to functionally regulated genes do not appear to have a preferred bind-

ing to any genomic features (Appendix Fig S4B). However, genes with

nearby Tcf3 peaks strongly associate with those downregulated in DE

◀ Figure 3. Network analysis provides insight into hierarchy and relations among TFs and their downstream transcriptional programmes.

A A representation of the pairwise degree of overlap in targets (size of the circle) and correlation in gene expression changes (colour) among overlapping targets for
indicated TF perturbations. Red indicates positive correlations and blue negative correlations.

B Network view of (A) showing relations among TFs based on their target correlation/anti-correlation. Edge width is proportional to the absolute value of the
correlation. To increase readability, connections with |correlation| < 0.4 are not plotted; all correlation values are shown in A.

C Network view of TF-TF cross-regulation. Directed edges indicate how transcription factors regulate each other’s expression. Edge width is proportional to the
magnitude of gene expression change (for clarity capped at a value corresponding to absolute log2(fold change) of 0.8).

D Identification of target gene modules—groups of genes with common regulatory patterns by TFs. Colour indicates the fold change (adjusted for significance) of gene
expression following each TF perturbation. Rows (perturbed TFs) and columns (target genes) are hierarchically clustered. Forty-four modules for target genes are
shown. Modules: 1, 2 and 3 are omitted for clarity, all modules are listed in Dataset EV3. Selected modules with highlighted overall regulation pattern and example
genes listed below. Gene enrichment analysis for indicated modules is provided in Dataset EV5.

Data information: For clarity, only TFs with > 200 target genes detected are shown in all panels. Data for all TFs are available in Appendix Fig S3A and B. Hoxb8*—gene
ectopic expression is disabled by b-oestradiol withdrawal.
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analysis, regardless of the relative positions of peaks in gene elements.

Thus, Tcf3 appears to act as a strong activator of expression, with

binding alone being a strong indication of functional regulation. To

enable further analysis of specific regions, e.g. highlighting TF-target

primary interactions, we provide an interactive UCSC session (http://

genome-euro.ucsc.edu/s/idk25/TFnet2020_allChIPs_impr).

Finally, we analysed binding profiles for the regulators of Cebpa

and Gata3 identified in the previous section. The inferred novel

regulation of Cebpa expression by Gata3, Lmo2 and Erg is supported

by clear binding of these factors downstream of the locus, specifi-

cally nearby a previously identified + 37 kb enhancer, critical for

Cebpa expression and myeloid differentiation in mice and humans

(Fig 5C; Cooper et al, 2015; Avellino et al, 2016). The Gata3 down-

stream regulatory region contains a known enhancer (Tce1)

(Hosoya-Ohmura et al, 2011; Ohmura et al, 2016) critical for Gata3

function in T-cell maturation. In our data, we observed extensive
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Figure 4. Double perturbations reveal patterns of interactions between Hoxb8 and other transcription factors.

A Experimental design: Hoxb8-FL were transduced with sgRNAs targeting the indicated TF (or a control sgRNA) and subjected to b-oestradiol withdrawal (switching off
Hoxb8 ectopic expression—Hoxb8*) or cultured in normal conditions (control).

B A two-factor linear model with interaction used to fit the data. Observed expression (Y) is modelled as a sum of expression in control cells (b0), effect of perturbation
1 (binary factor X1 and coefficient b1), effect of perturbation 2 (X2 and b2), their interaction (X1X2 and b3) and the error term (r). The interaction term can be
interpreted as the difference between the expression changes in the double-perturbed cells and the sum of coefficients of b1 and b2.

C Binary combinations of directions in observed expression changes for perturbation 1, perturbation 2 and the interaction term grouped into four general classes. Based
on classification implemented in Dixit et al (2016).

D Changes in expression for genes coregulated by separate Cebpa/Meis1/Spi1 and Hoxb8 perturbations (FDR < 0.1 and |log2(fold change)| > 0.2). The interaction row
indicates changes beyond simple additive effect (white = additive effect). Each gene was annotated with an interaction class (int. class) as explained in (C), using the
|log2(fold change)| > 0.2) threshold to assign change direction.

E Fractions of genes in each interaction class showed in (D).
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Figure 5. Genome-wide annotation of chromatin states highlights putative primary transcription factor targets.

A Dice scores summarising overlaps among peaks identified for 14 ChIP experiments in Hoxb8-FL cells.
B Comparison of genes identified as differentially expressed following TF loss with mapped ChIP peaks in a corresponding experiment. Enrichment over a random

value and the P-value (based on the hypergeometric test) are shown (bars corresponding to non-significant enrichment values are semi-transparent). Analysis was
performed separately for genes up- and downregulated.

C, D Genomic views of relevant TF binding to Cebpa and Gata3 loci (supporting direct regulatory interactions identified in Figs 3A–C). The red arrow indicates a putative
enhancer element, which is bound by Ebf1 and flanked by AcK27-rich regions.
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epigenetic marks and putative regulatory elements stretching

hundreds of kilobases downstream of Gata3 (Fig 5D). These

included binding by Ebf1 and multiple other factors (like Cebpa and

Spi1), as well as H3K27ac-rich regions. This is in agreement with

Gata3 receiving multiple regulatory inputs (Fig 3C) and its expres-

sion strongly activated by Hoxb8 and Ebf1. We explore this previ-

ously unknown relationship between Gata3 and Ebf1 below.

Hoxb8-FL cells employ Ebf1 to balance growth and self-renewal

Gata3 and Ebf1 are usually seen as antagonistic factors, with their

respective upregulation associated with establishing either a T- or B-

cell fate. This is reflected by reciprocal expression patterns in B- and

T-cell lineages (Fig 6A and B). Of note, Ebf1 expression is barely

detectable in the most immature cells, while Gata3 shows high

expression among the HSCs with a gradual decrease towards more

committed cells with the exception of T cells (Fig 6A and B).

Indeed, Gata3 has previously been reported to control HSC self-

renewal and cell cycle, although there is as yet no consensus on the

exact role of Gata3 in HSCs (Buza-Vidas et al, 2011; Ku et al, 2012;

Frelin et al, 2013). Ebf1 function has so far been mostly studied in

the context of lymphoid development (Boller & Grosschedl, 2014;

Boller et al, 2018), where it is critical for promoting B-cell differenti-

ation and commitment while suppressing other cell fates.

Hoxb8-FL cells simultaneously express Gata3 and Ebf1 (Fig 6A),

we unexpectedly find that Ebf1 activates Gata3 expression (Fig 3C),

and their downstream targets tend to correlate (Fig 3A). To investi-

gate the cause of such correlation, we investigated genome-wide

chromatin data. The ChIP-Seq binding analysis (Fig 5A) indicates

that Gata3 and Ebf1 do not preferentially bind common regions. To

further support this, we analysed our previously published open

chromatin (ATAC-Seq) data (Basilico et al, 2020) and identified ~300

footprints for Gata3 and Ebf1 each (Appendix Fig S5A and B).

Among Ebf1 footprints and RNA-Seq targets, we identified 86

common genes, that are preferentially downregulated following Ebf1

loss (Appendix Fig S5D, Dataset EV7); in case of Gata3, the number

of such genes was limited (Appendix Fig S5D). Consistently, with

the ChIP-Seq data, Gata3 and Ebf1 footprints were almost entirely

exclusive (Appendix Fig S5C). We extended our ChIP-Seq annotation

with these footprinting data to provide another layer of information

for further studies. In conclusion, Ebf1 and Gata3 do not seem to

bind sequences in a coordinated manner, and the Ebf1-Gata3 activa-

tion may largely explain the apparent correlation among their shared

targets. Nevertheless, among Gata3 targets with a nearby Gata3

binding site, 108 out of 475 are also associated with an Ebf1 site.

Thus, we cannot exclude that in some cases Gata3 and Ebf1 may

directly coregulate a target gene from separate binding sites.

To dissect Gata3 and Ebf1 interplay further, we investigated both

concordant and discordant gene expression changes of their shared

downstream targets (Figs 6C, Appendix Fig S2G–J, Dataset EV4,

annotation provided in Fig 7B and C). Sixty-seven genes are

repressed by Gata3 and activated by Ebf1, containing numerous

genes associated with the B-cell programme (Cd79a, Cd79b, Vpreb1,

Vpreb3; Appendix Fig S2J), suggesting that the role of Ebf1 in assert-

ing a B-cell programme is indeed kept in check by Gata3 (Banerjee

et al, 2013; Garcı́a-Ojeda et al, 2013; Nechanitzky et al, 2013). More

surprisingly, multiple genes are activated by both Gata3 and Ebf1,

several of which are associated with the myeloid programme (Prtn3,

Mpo, Ctsg; Appendix Fig S2I), a function executed at least in part by

Cebpa, predicted by our network to be downstream of both Gata3

and Ebf1 (Fig 3C). Furthermore, Ebf1 appears to serve a dual role in

regulating lymphoid genes. Contrary to the activation of genes asso-

ciated with a later B-cell programme outlined above, Ebf1, and also

Gata3, represses genes involved in early lymphoid steps (common

to B and T cells) such as Il7r, Flt3, Tcf4 or Rag1 (Appendix Fig S2G),

suggesting that Gata3 and Ebf1 act together to maintain self-renewal

and prevent premature expression of the lymphoid programme,

while promoting the myeloid one.

From our analysis, Ebf1 emerges as a hub controlling expression

of not only lineage programmes but also gene modules involved in

DNA replication, biosynthesis and cell cycle. As we did not origi-

nally identify Ebf1 as an essential gene (Basilico et al, 2020), we

followed closely Hoxb8-FL cells after inactivating Ebf1 (Fig EV4A

and B). Initially, cells increased their proliferation rates, which was

accompanied by a reduction in cell size and later followed by slower

growth and outcompetition from culture by WT cells. As a control,

we inactivated Myc in Hoxb8-FL cells, which quickly caused slower

growth and smaller cell size as expected. This initial over-growth of

Ebf1-deficient cells is most likely responsible for our failure to detect

Ebf1 as essential in the original CRISPR/Cas9 screen. The enhanced

proliferation accompanied by smaller cell size in the absence of

Ebf1 suggests that Ebf1 limits cell cycle rate, and without it, cells

may not be able to accommodate increased growth demand. This is

in line with Ebf1 inhibition of cell cycle genes (module 12, Fig 3D)

inferred from the gene expression data alone.

To identify similar Ebf1-dependent programmes in other cell

types, we cross-compared Ebf1 binding profiles across available

datasets. The Ebf1 signature in Hoxb8-FL cells is clearly distinct

from late B-cell differentiation stages but shows high similarity to a

transient cell state following Ebf1 re-expression in Ebf1�/� pre-pro-B

▸Figure 6. TF network uncovers novel functions of Ebf1 and Gata3 in maintaining a multipotent, self-renewing state.

A, B Bulk RNA-Seq expression levels for Gata3 and Ebf1 in a set of isolated primary cells (data from Immgen (Heng & Painter, 2008)) compared to Hoxb8-FL cells.
Horizontal line indicates mean expression.

C Correlation in gene expression changes following Ebf1 and Gata3 loss in Hoxb8-FL cells. Each quadrant corresponds to a set of target genes with a common
regulation by Gata3/Ebf1-I—inhibition/inhibition, II—activation/inhibition, III—activation/activation, IV—inhibition/activation. For each group, the sums of scaled
expression values in mouse LK/LSK or human BMMC landscapes is plotted to highlight cell types with the highest overall expression. For landscape annotation, see
Fig 7B and C. Changes in expression for example genes are provided in Appendix Fig S2G–J. Blue line indicates the linear fit with shaded areas as confidence
intervals.

D Schematic representation of the experiment performed by (Li et al, 2018). Ebf1 was re-expressed in Ebf1�/� pre-pro-B cells thus resuming their differentiation.
E Correlation in expression changes after 24 h following Ebf1 loss in Hoxb8-FL cells and re-expression of Ebf1 in Ebf1�/� pre-pro-B cells (Li et al, 2018). Blue line

indicates the linear fit with shaded areas as confidence intervals.
F, G Expression of the key marker genes (F) and Ebf1, Pax5, Gata3 and Cebpa factors (G) along pseudotime corresponding to the B-cell differentiation trajectory in

human foetal liver cells, data from Popescu et al (2019).
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cells (i.e. resuming differentiation) (Li et al, 2018; Figs 6D and

EV4C). What is more, the transient gene expression changes caused

by Ebf1 re-expression overlap and negatively correlate with the ones

observed after Ebf1 knockout in Hoxb8-FL cells (Figs 6E and EV4D).

Importantly, this overlap includes Ebf1 downstream targets associ-

ated with a myeloid expression programme (Fig EV4E and F). Of

note, the differentiating pre-pro-B cells transiently co-express the

key lineage factors Ebf1, Cebpa, Gata3 and Pax5, with Cebpa and

Gata3 suppressed as cells progress towards the pro-B stage

(Fig EV4G). A self-renewing and multipotent cell population of

Pax5�/� pro-B-cells (Nutt et al, 1999; Revilla-i-Domingo et al, 2012)

also co-expresses Cebpa, Gata3 and Ebf1, at similar levels to the

ALP fraction of the bone marrow (Fig EV4G). Hoxb8-FL cells mirror

this state by maintaining high expression of Cebpa, Gata3 and Ebf1,

but keeping Pax5 efficiently suppressed by action of Gata3.

As the Hoxb8-FL cells share multiple features with progenitors in

the early stages of lymphoid differentiation, we searched for a

respective progenitor cell state co-expressing Ebf1, Gata3 and Cebpa

in vivo. scRNA-Seq from human foetal liver (Popescu et al, 2019)

faithfully reconstructs the early lymphoid/B-cell differentiation

trajectory with stereotypical progression of key marker genes

(Fig 6F). Pseudotime ordering of the single cells along this differen-

tiation trajectory shows a decrease in Gata3 expression as cells leave

the HSC compartment, but Gata3 expression remains detectable and

is not immediately extinguished as Ebf1 starts being expressed

(Fig 6G). Of note, the developmental window where both factors

are expressed is additionally accompanied by increasing Cebpa

expression. This state, however, is quickly resolved as Pax5

becomes expressed, with continuous increase of Ebf1 expression

while Gata3 and Cebpa become almost completely undetectable

(Fig 6G). We observe matching expression patterns on a smaller

sample of lymphoid progenitors from mouse bone marrow

(Fig EV4H and I; Loughran et al, 2017). Therefore, Hoxb8-FL cells

seem to represent an intermediate lympho-myeloid progenitor stabi-

lised in vitro, which already expresses potent lineage determinants

(Ebf1) but still retains some expression of other lineage factors

(Gata3, Cebpa) and self-renewal genes (cKit). Comparison with

primary cells thus validates the use of Hoxb8-FL cells for investigat-

ing regulatory interactions between cell fate determining TFs.

Transcriptomic landscape interpretation of gene function

A common endpoint for genome-scale studies is over-representation

analysis of lists of up- and downregulated genes, using external

databases of gene annotation (e.g. gene ontology). While undeni-

ably useful, ontology categories are arbitrary, as they are dictated by

our language and do not indicate whether effects are positive or

negative. Moreover, gene ontology annotations are incomplete and

contain errors. To circumvent these issues, we developed a method

using scRNA-Seq landscapes as references and show how such an

approach transforms our ability to interpret large-scale perturbation

studies using our 39 TF knockout screen as an example.

Taking an individual cell within a single-cell landscape as a view-

point, scaling gene expression in all of the other cells relative to the

viewpoint cell creates a set of directions or vectors connecting all other

cells to the viewpoint cell. By extension, if we consider a perturbation

being applied to the viewpoint state, the observed changes in expres-

sion are a direction (perturbation vector) between the original and the

new cell state. The degree of alignment (angle) between the perturba-

tion vector and the cell state vectors can then be seen to indicate the

direction on the landscape in which cells would shift due to the applied

perturbation. To estimate these values, we developed the direction of

transition method (DoT) method, building on the Fast-Project gene

signature methodology (Fig 7A) (DeTomaso & Yosef, 2016). Our

method assigns a DoT score to each single cell which is visualised on a

reference scRNA-Seq landscape. High positive values (red) indicate

that the perturbation would push the origin cell towards those red

single cells, whereas negative values (blue) indicate transition away

from those cells. DoT score significance is estimated by calculating z-

scores based on simulations. In addition to the score for each cell, the

method provides ranked contributing genes, highlighting the relevant

downstream targets. As the DoT vectors are arrows in gene expression

space anchored at the viewpoint, the DoT score does not follow the

complex cell state manifold. However, it can easily be interpreted

locally in chosen regions of differentiation trajectories inferred by other

methods e.g. PAGA (Saelens et al, 2019; Wolf et al, 2019).

To explore the differentially expressed gene lists from our KO

screen, we chose cells within the mouse and human HSPC scRNA-

Seq landscapes most resembling Hoxb8-FL cells as viewpoints, as

highlighted together with cell type annotation in Fig 7B and C. Since

loss of Hoxb8 activation is known to promote dendritic cell differen-

tiation of Hoxb8-FL cells (Redecke et al, 2013), we tested the DoT

tool first with the genes up/downregulated shortly after b-oestradiol
withdrawal (which equals loss of Hoxb8 activation). Cells located in

the monocyte/DC corner of the landscape showed strongly positive

DoT scores (Fig 7B, C, D and F), indicating a shift of perturbed cells

towards that transcriptional state and thus validating the approach.

In addition to a few selected examples discussed below, analogous

visualisation of the transcriptional consequences following KO of all

other tested TFs is provided in Appendix Figs S8–S13.

As predicted in a previous section based on known functions of

selected genes, expression changes downstream of Hoxb8, Meis1

◀ Figure 7. Understanding transcriptomics changes following a TF perturbation with scRNA-Seq landscapes.

A A toy example with visual explanation of the direction of state transition (DoT) calculation. Three lineage-specific genes are used (full-scale DoT analysis is
unbiased and uses all available genes): erythroid Klf1, neutrophilic Elane and lymphoid Dntt; their scaled expression is plotted on the reference landscape
(annotation in (B, C)). Upon treatment, changes in expression are observed for each gene. We calculate contributions from each gene as the product of its scaled
expression and changes in expression (log2(fold change)). DoT score is the sum of these components and indicates direction of cell state transition with respect to
the chosen viewpoint (point of origin).

B, C Annotated UMAP projections of scRNA-Seq landscapes—mouse LK + LSK populations (Dahlin et al, 2018) and Human Cell Atlas bone marrow mononuclear cells
(Regev et al, 2017). Dashed lines indicate cluster positions, which mean expression values were used to designate points of origin for the DoT score analysis.

D, E DoT scores calculated using genes differentially expressed after Hoxb8 or Ikzf1 loss in Hoxb8-FL cells in the context of mouse LK/LSK landscape (Dahlin et al, 2018).
F, G DoT scores calculated using genes differentially expressed after Hoxb8 or Ikzf1 loss in Hoxb8-FL cells in the context of the human BMMC landscape. Arrows

indicate the HSCs and megakaryocytic trajectories.
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and Hoxa9 KO indicate a shift towards myeloid differentiation

(Fig EV5D and E). Interestingly, individual TFs highlighted mono-

cytic/DC and neutrophilic trajectories, respectively, suggesting

complementary functions in blocking the two major myeloid dif-

ferentiation trajectories. Conversely, a strong shift away from the

myeloid programme is observed when perturbing known myeloid

regulators such as Cebpa, Gfi1 and Spi1 (Fig EV5A and B,

Appendix Figs S9 and S12), with Gfi1 being more specific towards

the neutrophilic trajectory and Spi1 towards the monocytic/DC

lineages. Inactivation of Gata3, Ebf1, Lmo2 and Erg regulators of

Cebpa expression identified in this work, also causes a similar shift

(Fig EV5C and F, Appendix Figs S8, S9, S11 and S12). This analysis

therefore directly reinforces the myeloid subnetwork identified

through bioinformatic analysis of our KO screen results.

KO of Myb and Ikzf1 caused gene expression changes consistent

with a move from the Hoxb8-FL state to less mature cells, indicat-

ing a shift towards the trajectory connecting HSCs and megakary-

ocyte progenitors (Fig 7E and G, Appendix Figs S9 and S12).

There is a limited overlap between the lists of contributing genes

suggesting that the two factors have complementary but indepen-

dent functions. The Ikzf1 score is particularly high, and indeed,

among genes upregulated following Ikzf1 KO are key HSC and

megakaryocyte marker genes Procr and Pf4 (Wilson et al, 2015;

Dahlin et al, 2018). Given that the Ikzf1 and Myb related shifts to

HSCs and megakaryocyte progenitors are based on distinct sets of

genes, the two genes can have distinct effects elsewhere in the

landscape, as illustrated by a dramatic shift away from the B- and

T-cell states only seen with Ikzf1.

We also used DoT to investigate the regulation of the less

commonly studied basophil and mast cell differentiation trajecto-

ries, which are predicted to be suppressed by myeloid factors like

Cebpa, Spi1 but also Myc/Max, Rad21 and Myb (Appendix Figs S8–

S13). Moreover, the basophil programme appears to be activated by

Gata3, indicating additional, Cebpa-independent, fate control func-

tion of Gata3 (Fig EV5C). Therefore, basophil and mast cell

programmes exhibit distinct regulatory patterns from the neutro-

philic/monocytic/DC fates, in line with recent reports (Dahlin et al,

2018; Tusi et al, 2018; Weinreb et al, 2020) suggesting an earlier

than anticipated separation of the two lineages. Taken together, the

DoT score method provides a streamlined interpretation of gene

expression changes generated by a variety of techniques, that will

be broadly applicable to single-cell landscapes across organisms and

tissues. When applied to data generated on shorter time scales (sin-

gle hours), our method should aid interpretation of nascent RNA

data (e.g. scSLAM-Seq or scEU-Seq) (Erhard et al, 2019; Battich

et al, 2020) and complement other cell state prediction techniques

such as RNA velocity (La Manno et al, 2018). As exemplified above,

we utilised this approach to infer (i) direction of cell state shifts, (ii)

new biological functions for perturbed factors and (iii) highlight

downstream targets relevant for specific biological processes, thus

providing comprehensive biological interpretation of the newly

generated haematopoietic TF network.

Discussion

Deciphering gene regulatory networks remains a major challenge,

due to the limitations of inferring relations from correlative evidence

and lack of systematic functional data. Here, we show how CRISPR/

Cas9 perturbation combined with RNA-Seq readout can be used to

construct a functionally defined TF network for haematopoietic

progenitors. This network (i) provides nearly 17,000 connections

between 39 TFs and their targets, (ii) establishes TF coregulation at

common target genes, (iii) unravels regulatory hierarchies among

TFs and (iv) organises target genes into modules with common

regulatory patterns, highlighting relevant biological functions. More-

over, identification of a surprising role for Ebf1 and Gata3 in

contributing to a myeloid expression programme illustrates the util-

ity of the network for discovering new biological mechanisms,

suggesting that it will constitute a significant resource for future

analysis and modelling, as well as serving as a much-needed refer-

ence for cross-validation.

The analysis presented here is consistent with the notion that

Hoxb8-FL cells reflect a rare and transient state during early

myeloid–lymphoid differentiation, where key lineage TFs are co-

expressed, reflecting their potential to produce both lymphoid cells

and myeloid cells. Importantly, our network analysis now provides

insights into the molecular processes that underpin this poised

multipotent state. We demonstrate that Hoxb8-FL cells rely on Ebf1

to control cell cycle rate, which at the same time activates an early

B-cell differentiation programme, consistent with previous findings

(Györy et al, 2012; Boller & Grosschedl, 2014). Differentiation

towards the B-cell fate is kept in check by the activity of Gata3, effi-

ciently suppressing the expression of key B-cell factor, Pax5. This

creates a state similar to that of Pax5�/� pro-B cells, a self-renewing

population with both lymphoid and myeloid potential (Nutt et al,

1999; Heavey et al, 2003; Revilla-i-Domingo et al, 2012) which also

co-expresses Ebf1, Cebpa and Gata3 (albeit the latter at lower levels

than in Hoxb8-FL cells) (Fig EV4G). Our experiments show that

Gata3 expression is activated through Tcf3/E2A and exogenously

expressed Hoxb8 (Fig 3C). As several Hoxb and Hoxa genes exhibit

high expression in HSCs (Pineault et al, 2002; Argiropoulos &

Humphries, 2007; Nestorowa et al, 2016), we speculate that these

may also be responsible for high Gata3 expression in the upper tiers

of the haematopoietic hierarchy. Interestingly, Ebf1 is not counter-

acting this effect in Hoxb8-FL cells but instead activates Gata3

expression (this may be direct or indirect), thus reinforcing this

primed cellular state. A non-antagonistic relation between Ebf1 and

Gata3 is consistent with the early steps of a lymphoid/B-cell trajec-

tory that we inferred from in vivo gene expression data (Loughran

et al, 2017; Popescu et al, 2019). Early during lymphoid differentia-

tion, Ebf1 upregulation does not immediately cause Gata3 downreg-

ulation (Fig 6F and G, and EV4H and I). Complete Gata3

suppression takes place only at higher Ebf1 levels, coinciding with

Pax5 activation. High Ebf1 levels, e.g. upon overexpression (Baner-

jee et al, 2013), have been shown to suppress Gata3 expression, but

as evident from data reported by Li et al (2018) this process occurs

slowly over several days (Fig EV4G). Therefore, the introduction of

Hoxb8 into primary bone marrow cells is able to establish a TF

network wired to pause B-cell differentiation at an early stage while

providing a strong growth cue via Ebf1. Although this introduces

high Gata3 levels compatible with promoting T-cell differentiation,

this route remains unavailable until external Notch is supplied, as

would be the case upon entering the thymus.

Hoxb8-FL cells employ complex gene regulation, intertwined with

the machinery described above, to prevent myeloid differentiation.
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As indicated in Fig 6C and confirmed by the DoT score analysis

(Fig EV5C and F), Gata3 and Ebf1 activate expression of a myeloid

gene programme, while suppressing the earliest lymphoid markers.

Consistently, Gata3 overexpression can promote myeloid differentia-

tion of Pax5�/� cells (Heavey et al, 2003). As evident from our analy-

sis of the Hoxb8-FL gene expression state, lympho-myeloid

progenitors may activate low levels of both myeloid and lymphoid

programmes based on the co-expression of lineage-affiliated factors.

Furthermore, given the inferred TF hierarchy (Fig 3C), we expect that

the Ebf1 pro-myeloid effect is largely mediated through Gata3 and

subsequently Cebpa, a key factor promoting myeloid differentiation

(Avellino & Delwel, 2017). Indeed, Cebpa upregulation is a common

feature in our analysis of the early lympho-myeloid trajectory as cells

leave the HSC territory (Fig 6G). The network presented here also

shows that Cebpa expression promotes the cell growth programme

(Fig 3D), and its loss decreases the survival of Hoxb8-FL cells

Fig EV1G. Interestingly, Cebpa has been previously implicated in

inhibiting proliferation of myeloid progenitors (Porse et al, 2005),

suggesting that Cebpa may play different roles at various stages of dif-

ferentiation or depending on the cell growth conditions. Finally,

Cebpa receives positive inputs from other self-renewal factors such as

Erg and Lmo2 thus highlighting its role as crucial hub.

Importantly, Hoxb8-FL cells must prevent myeloid differentiation

in order to maintain a self-renewing culture. Our analysis high-

lighted Meis1 and Hoxa9 as two factors with established roles of

blocking myeloid differentiation, most notably in the context of

acute myeloid leukaemia cells (Zeisig et al, 2004). Accordingly, DoT

score analysis confirms that Hoxb8-FL cells activate the myeloid

programme following inactivation of either Hoxa9 or Meis1. Interest-

ingly, Meis1 appears to be more specific towards monocytic/

dendritic cell lineages, while Hoxa9 acts more on the neutrophil

programme. This suggests that despite being reported as parts of the

same complex (Shen et al, 1999), the two proteins can serve at least

partially complementary functions in preventing myeloid differentia-

tion. While Hoxa9 is not essential, Meis1 and Hoxb8 maintain self-

renewal of Hoxb8-FL cells and indeed both prevent upregulation of

Irf8, a factor responsible for monocyte and dendritic cell differentia-

tion (Yáñez & Goodridge, 2016). Altogether, our data reveal a fasci-

nating interplay between multiple co-expressed lineage factors.

These, in agreement with their established functions, drive-specific

cell expression programmes but we show here how their specific

wiring at single gene resolution ensures that no lineage becomes

dominant and cells maintain their multipotent state, while providing

sufficient growth signals.

The Waddington landscape is a powerful analogy, but its real-

world application requires detailed understanding of the landscape

shape (to connect cell states with their fates) and the complex

regulatory mechanisms underneath (to modulate cell behaviour).

Mapping of the differentiation landscape is well under way,

evident from exponential accumulation of single-cell transcrip-

tomics and functional data. However, the dissection of regulatory

networks shaping the landscape and controlling cell fate is still in

its infancy. Our study sets out a blueprint of how to tackle this

problem. Using a model of lympho-myeloid progenitors, we

demonstrate how interactions between network components can

be established, thus enabling construction of functional networks

of highly predictive value. Additionally, our DoT score method

combined with a scRNA-Seq landscape reference transforms the

interpretation of gene expression data, well beyond what is possi-

ble using gene/category enrichment analysis. Our work therefore

contributes to the major goal of defining regulatory networks so

that they can be exploited for targeted modulation of cell beha-

viour, including directed differentiation and reprogramming for

cell therapy approaches, as well as differentiation therapy to tackle

a wide range of malignancies.

Materials and Methods

Cell lines and culture conditions

Hoxb8-FL cell line was kindly provided by the Hans Häcker labora-

tory. Cells were grown at 37°C/5% CO2 in: DMEM (Sigma R8758)

with the addition of 10% FCS (ES-culture compatible), 5%

Flt3L conditioned medium, 50 lM 2-Mercaptoethanol, 1% Peni-

cillin + Streptomycin solution (Sigma P0781), 1% Glutamine solu-

tion (200 mM stock solution—Sigma G7513), and 1 lM b-oestradiol
(Sigma E2758). Cells were maintained at densities between 105 and

1.5 × 106 cells/ml.

Conditioned medium was prepared using the B16 cell line constitu-

tively expressing Flt3L, also provided by Hans Häcker. Cells were

grown at 37°C/5% CO2 in: DMEM (Sigma R8758) with addition of

10% FCS (ES-culture compatible), 50 lM 2-Mercaptoethanol, 1% Peni-

cillin + Streptomycin solution (Sigma P0781), and 1% Glutamine solu-

tion (200 mM stock solution—Sigma G7513). To produce the

conditioned medium cells were grown until confluent, supernatant

was harvested and replaced daily over a 3-day period. The harvested

supernatant was filtered, aliquoted and stored at -80°C for further use.

293T cells were grown at 37°C/5% CO2 in DMEM (Sigma R8758)

with addition of 10% FCS (Sigma F7524), 1% Penicillin + Strepto-

mycin solution (Sigma P0781), and 1% Glutamine solution

(200 mM stock solution—Sigma G7513). To prepare lentiviral

supernatants, 293T cells were grown to 90% confluency in 10 cm

dishes or 6-well plates (smaller scale preparation used for the TF

screen) and transfected using the TransIT-LT1 (Mirus MIR2300)

reagents following manufacturer’s instructions with 5 lg (1.1 lg for

the smaller scale) of each plasmid: sgRNA expression transfer plas-

mid (pBA439/GBC; Adamson et al, 2016; Dixit et al, 2016), pMD2G

and DR8.9. Proceeding overnight culture 293T cells were switched

to the culture medium (6 ml or 1.4 ml) of the cell line used for

infection in subsequent experiments. Viral supernatant was

harvested the following day, filtered through a 0.45-lm filter,

aliquoted and stored �80°C for further use. Respective control and

treatment lentiviral supernatants were prepared in parallel.

Hoxb8-FL cells expressing the Cas9 protein (Hoxb8-FL + Cas9)

were generated by transduction with pKLV2-EF1a-Cas9Bsd-W (ob-

tained from the Vassiliou Lab; Tzelepis et al, 2016) and subsequent

selection in medium containing 10 lg/ml Blasticidin (Invivogen ant-

bl-05) for 5 days. Prior to an experiment, cells were again selected

in Blasticidin for 2-3 days and allowed to recover for 24–48 h before

any other treatment.

Hoxb8-FL cells with Gata3 KO were generated by transduction

with the lentiviral GBC library vector containing Gata3 sg2 sgRNA.

48 h after infection single cells were sorted into 96-well plates and

cultured under normal conditions. After expansion (Gata3 sgRNA-

transduced cell initially exhibited retarded growth), we inspected
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the Gata3 genotype using high-throughput sequencing, with proto-

col analogous to the one described in section “Verification of

CRISPR efficiency”. For the ChIP-Seq analysis, we selected a clone

carrying two alleles with frameshift mutations.

Cloning

sgRNA sequences were derived from one of the following: the Brie

library (Doench et al, 2016), Mouse v2 CRISPR library (Tzelepis

et al, 2016), (Dixit et al, 2016) or (Gundry et al, 2016). List of

sgRNA and oligonucleotide sequences are provided in Dataset EV1.

Oligonucleotides carrying sgRNA sequences were cloned into the

Perturb-Seq GBC library (Addgene 85968). Respective pairs of

oligonucleotides were annealed in 50 ll annealing buffer (100 mM

potassium acetate, 30 mM Hepes-KOH at ph 7.4, 4 mM magnesium

acetate). Annealing mix was incubated at 95°C for 5 min and gradu-

ally cooled down to room temperature and stored at �20°C. For the

ligation, 2 ll of annealed oligos (1:20 diluted) was mixed with

100 ng of the vector backbone (digested with BstXI and BlpI), 2 ll
of 10× T4 ligase buffer and 1 ll of T4 ligase (M0202S) in a 20 ll
reaction. Ligation was incubated at 16°C overnight and transformed

into DH5a bacteria (NEB C2987P). Clones were isolated and verified

by sequencing.

CRISPR/Cas9 perturbation

To perturb TFs in Hoxb8-FL+Cas9 cells, we used the following

protocol: 3.3 × 105 cells in 0.56 ml of media were seeded in a 24-

well plate with 90 ll viral supernatant and 5.33 ll of polybrene

(1 mg/ml stock solution, Sigma TR-1003-G), cells were centrifuged

for 90 min at 780 g, at 32°C, incubated at 32°C for 1.5 h and

cultured overnight at 37°C. The following day cells were washed to

remove the viral particles. In the case of non-essential genes (non-

dropout genes in Fig 2A and the Max gene), 0.44 ml of medium was

added on day 1 and cells were split 1:2 into 12-well plates on day 2.

Cells were harvested on day 4 and stained with 7AAD (BD 559925),

and 375 sgRNA-expressing (BFP+) cells were sorted into individual

wells of a 96-well PCR lysis plate containing lysis buffer (see below).

Plates were stored at �80°C for further processing. For essential

genes (excluding Max, see above), 0.6 ml of medium was removed

and 1.04 ml of fresh medium was added on day 1. On day 2, cells

were harvested and sorted as above. To generate the main TF

network, each TF was targeted by 3 sgRNAs, across three culture

wells, and a total of 8 replicates were analysed. Each 96-well plate

contained samples perturbing 3 different TFs and 16–24 samples of

control cells, i.e. infected either with a non-targeting sgRNA (speci-

fic to GFP, absent in the genome) or targeting the Rosa26 locus. To

analyse the consequences of removing Hoxb8 ectopic expression,

cells were infected with the empty vector control as above but b-
oestradiol was withdrawn from the culture for the last 18 h, and 8

biological samples were collected across three different cultures.

For double perturbation experiments, Hoxb8-FL + Cas9 cells

were transduced (as described above) with lentiviral vectors encod-

ing sgRNAs targeting indicated TFs or control sgRNAs. After 30 h,

cells were washed with media and cultured for another 18 h either

with or without b-oestradiol. Further processing was performed

analogously, and scRNA-Seq libraries were generated as detailed in

the section “Sample processing for scRNA-Seq” (with increased

RNase inhibitor concentration). Libraries were sequenced using the

Illumina NovaSeq instrument, obtaining approx. 350 mln reads per

88 samples. Factors Cebpa, Meis1 and Spi1 were targeted by 3

sgRNAs each. In total, 24 replicates were analysed for: control cells,

TF perturbed cells (3 sgRNAs, 8 replicates each), TF perturbed cells

without b-oestradiol (3 sgRNAs, 8 replicates each) and 16 replicates

for control cells without b-oestradiol.
For competitive cultures between TF perturbed and control cells,

the Hoxb8-FL and Hoxb8FL + Cas9 cells were infected as described

above. Each condition was performed in triplicate. Throughout the

experiment, cells were cultured in a 24-well plate and split to main-

tain cell density below 106 cells/ml. The 7AAD�/BFP+ fraction of

cells was analysed for each sample on days: 2, 3, 5, 7, 9 and 11

using the BD LSRFortessa flow analyser. The relative fraction of

BFP+ cells was computed by normalising the BFP+ fraction

observed in Hoxb8-Cas9 cells to the mean BFP+ fraction in respec-

tive Hoxb8-FL control cells, thus cancelling out differences in infec-

tion efficiencies.

Verification of CRISPR efficiency

Hoxb8-FL + Cas9 cells were infected as described above using the

sgRNA targeting the Ptprc (CD45) locus. Cells were cultured for

4 days as above before being stained and analysed for Ptprc protein

levels and BFP+ fractions on the BD LSRFortessa flow analyser.

Cells were stained as follows: harvested cells were resuspended in

100 ll of 2% FCS/PBS solution and incubated with 1 ll of CD45-
FITC antibody (clone: 30-F11, BioLegend 103107) for 30 min on ice,

washed twice with 2 ml of 2% FCS/PBS solution and resuspended

in 500 ll of 2% FCS/PBS with 7AAD (BD 559925).

To verify the fraction of loci successfully mutated across multiple

sgRNA treatments, we applied a deep-sequencing-based strategy.

Hoxb8-FL + Cas9 cells were infected with respective constructs as

described above, cultured for 5 days under normal culture condi-

tions, then selected in medium with 4 lg/ml Puromycin (Invivogen

ant-pr-1) and 1–2 × 106 cells were frozen for further processing.

Genomic DNA was isolated using the QIAGEN AllPrep DNA/RNA

mini kit (Qiagen 80204) according to the manufacturer’s instruc-

tions. Loci around each of the sgRNA-targeted sites were amplified

by PCR using primers listed in Table EV1, adding sequences comple-

mentary to the Illumina adapters. One sample (JunB, sgRNA2)

failed to amplify and was omitted from the analysis. Illumina

indices were added in a 2nd round of PCR using the Illumina Nextera

XT Index Kit v2. Libraries were purified using the AMPure XP beads

(Beckman A63882) and sequenced on a Mi-Seq machine, using the

MiSeq Reagent Nano Kit v2 (Illumina MS-103-1001). 5,000 reads

were analysed and aligned against the reference sequence, subset

for reads matching the leader sequence and sufficient number of

matches. For each sample, a fraction of reads with frameshift muta-

tions (insertion or deletions) was calculated.

Sample processing for RNA-Seq

For the main TF screen, samples were processed using a modified

version of the Smart-Seq2 protocol (Picelli et al, 2014; Bagnoli et al,

2018) described below. 375 cells were sorted into 11.5 ll lysis buffer
containing 0.575 ll of SUPERase-In RNase Inhibitor (20 U/ll
Thermo Fisher AM2694) and 0.23 ll of 10% Triton X-100 solution
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(Sigma 93443), vortexed and stored at �80°C. After thawing on ice,

5 ll of annealing solution (0.5 ll of ERCC RNA Spike-In Mix

(1:300,000 dilution, Thermo Fisher 4456740), 0.1 ll of the oligo-dT

primer (100 lM stock concentration)) was added. Samples were

incubated at 72°C for 3 min and cooled down on ice, and 1/5 of the

volume was used for further processing. The reverse transcription

was performed by: adding 0.1 ll Maxima H Minus enzyme (200

U/ll, Thermo Fisher EP0752), 0.25 ll of SUPERase-In RNase Inhi-

bitor, 2 ll of Maxima RT buffer, 0.2 ll of the TSO oligo (100 lM
stock concentration), 1.875 ll of PEG 8000 (Sigma P1458) and 1 ll
of dNTPs (10 mM stock concentration Thermo Fisher 10319879) to

a total volume of 10 ll followed by 90-min incubation at 42°C and

15-min incubation at 70°C. cDNA was amplified by adding 1 ll of
the Terra PCR Direct Polymerase (1.25 U/ll, Takara 639270), 25 ll
of the Terra PCR Direct buffer and 1 ll of the ISPCR primer (10 lM
stock concentration) to a total volume of 50 ll, and PCR conditions

were as follows: 98°C for 3 min, 98°C for 15 s, 65°C for 30 s, 68°C

for 4 min (13 cycles) and 72°C for 10 min. The PCR product was

purified using AMPure XP beads (Beckman A63882). Remaining

steps were carried out according to the standard Smart-Seq2 proto-

col. For Plates 16–18, the concentration of the RNAse inhibitor was

doubled in the lysis buffer and 0.115 ll of 100 mM DTT concentra-

tion was added. Libraries were sequenced using the Illumina Hise-

q4000 instrument, obtaining 350–400 mln reads per 96 samples.

In the case of the pilot experiment (Experiment 1 in Fig 1E and

time-course data in Fig EV1E), the samples were processed analo-

gously with one difference: 75 cells were sorted into 2.3 ll lysis

buffer, and the entire solution was processed as above.

ChIP-Seq

108 Hoxb8-FL + Cas9 cells were harvested and fixed in 1%

formaldehyde for 10 min at room temperature. Reaction was

quenched by adding 0.125 M glycine and incubated for 5 min at

room temperature. Cells were washed in ice-cold 1× PBS, resus-

pended in cell lysis buffer (10 mM Tris pH 8.0, 10 mM NaCl and

0.2% NP40) containing protease inhibitors (leupeptin, NaBu and

PMSF) and incubated on ice for 10 min. The nuclei were collected

by centrifugation at 600 g for 5 min. at 4°C, resuspended in nuclei

lysis buffer (50 mM Tris pH 8.0, 10 mM EDTA, 1% SDS) with

protease inhibitors (leupeptin, NaBu and PMSF) and incubated on

ice for 10 min. One ml of IP dilution buffer (20 mM Tris pH 8.0,

2 mM EDTA, 150 mM NaCl, 1% Triton X-100, 0.01% SDS) with

protease inhibitors (leupeptin, NaBu and PMSF) was added, and

chromatin was sonicated at 4°C in a Bioruptor (Diagenode) with: 5–

7 cycles (30 s on and 30 s off). The fragmented chromatin was

centrifuged at 3,220 g for 10 min, and supernatant after transferring

was diluted 4 × with IP buffer. The chromatin was pre-cleared as

follows: 25 ll of rabbit IgG (2 lg/ll, Sigma I5006) was added and

incubated at 4°C for 1 h, 200 ll of Protein G sepharose beads

(Roche, 1:1 slurry in IP dilution buffer) was added and incubated at

4°C for 2 h, and beads were harvested at 1,791 g for 2 min at 4°C.

Samples were subsequently incubated with the respective antibodies

at 4°C for overnight with rotation, and 60 ll of protein G agarose

beads (1:1 slurry in IP dilution buffer) was added and incubated

with the samples for 2 h with rotation. Beads were collected by

centrifugation at 5,400 g for 2 min and washed twice with low salt

buffer (Tris pH 8.0, 2 mM EDTA, 50 mM NaCl, 1% Triton X-100,

0.1% SDS), once with LiCl buffer (10 mM Tris pH 8.0, 1 mM EDTA,

0.25 M LiCl, 1% NP40, 1% Sodium deoxycholate monohydrate)

and twice with TE pH 8.0. Complexes were eluted twice by adding

150 ll elution buffer (100 mM NaHCO3, 1% SDS). Cross-linking

was reversed by addition of 0.3 M NaCl, and RNA was digested with

RNase-A during an overnight incubation at 65°C. Samples were

treated with Proteinase K for 2 h at 45°C, and DNA was purified

using Qiagen PCR clean up columns. Illumina libraries were

prepared using the Illumina TruSeq DNA Sample Prep Kit (Illumina

IP-202-1012), size selected by gel purification (250–450 bp) and

sequenced using Illumina HiSeq 2500 or HiSeq4000 instruments

Antibodies used: CEBPa (Santa Cruz sc-61x), CEBPb (Santa

Cruz sc-150x), Gata3 (Cell Signalling D13C9), Ebf1 (Millipore

ABE1294), Tcf3 (Santa Cruz sc-763), Tal1 (Santa Cruz sc12984x),

Meis1 (Santa Cruz sc-10599x), Spi1 (Santa Cruz sc-352x), Runx1

(Abcam, ab23980-100), Erg1 (Santa Cruz sc354x), Lmo2 (R&D

AF2726), Fli1 (Abcam ab15289-500), Lyl1 (Abcam ab15289-500),

Gfi1 (Abcam ab21061), Gfi1b Santa Cruz sc8559x) and H3K27Ac

(Abcam ab4729). The anti-Gata3 antibody specificity was con-

firmed using a Gata3 KO cell line (Appendix Fig S6), and the

remaining antibodies have been used in previous works (Treiber

et al, 2010; Wilson et al, 2016).

ChIP-Seq data analysis

Sequencing data were pre-processed as previously described

(Sanchez-Castillo et al, 2015). We used the IgG control as the back-

ground for all samples, except the Gata3, where we used data from

Gata3-ChIP performed in the Gata3 KO cell line. For each sample,

peaks were called using MACS with P-value cutoff of 10�5; if the

number of peaks exceeded 7,000, then top 7,000 peaks with lowest

P-values were used. Downstream analysis was performed using R

language (R Core Team) and indicated packages. Peaks overlapping

blacklisted regions were removed (Amemiya et al, 2019). Replicates

were subset to a common set of overlapping peaks. ChIP-Seq experi-

ments for Fli1, Erg1, Runx1, Lmo2, Tal1, Gfi1, Gfi1b, Meis1, Spi1

and Cebpb were performed as single replicates; Tcf3, Ebf1 and

Gata3 were performed in triplicate and Cebpa in quadruplicate. One

sample for Tcf3 showed poor signal and was excluded from the

analysis. Peaks were mapped to genes accordingly: peaks overlap-

ping regions 1,000 bp upstream to 200 bp downstream of a TSS

were mapped to the corresponding gene, and peaks overlapping a

gene body were mapped to the respective gene and intergenic peaks

within 50 kb of the nearest genes were assigned to the first closest

gene. Expected values and P-values for overlaps between genes dif-

ferentially expressed and genes with mapped peaks were calculated

using matching hypergeometric distributions. Gene annotations

were extracted from the TxDb.Mmusculus.UCSC.mm10.knownGene

package, and genomic features were annotated using the anno-

tatePeak function from the ChIPseeker package. Data are available

on GEO with accession number: GSE146128 and CODEX (http://c

odex.stemcells.cam.ac.uk/) databases. An interactive UCSC browser

session is available at: http://genome-euro.ucsc.edu/s/idk25/TFne

t2020_allChIPs_impr.

To generate Fig EV4C, previously published Ebf1 ChIP-Seq

datasets were retrieved from Cistrome DB (Mei et al, 2017). Peak

coclustering was essentially performed as previously described

(Edginton-White et al, 2019). Briefly, an intersection matrix for all
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combinations of intersections between peak sets was computed

using pybedtools intersection_matrix (Dale et al, 2011). A Sørensen–

Dice coefficient (Dice, 1945; Sorensen, 1948) was computed for each

intersection relative to the parent peak sample sizes.

Digital genomic footprinting analyses

Digital genomic footprinting was carried out on previously

published ATAC-Seq date generated from Hoxb8-FL cells (Basilico

et al, 2020) using the dnase_footprints function from the pyDNase

package (Piper et al, 2013) with the -A parameter. Motif discovery

and annotation to footprints were performed using the findMotifs-

Genome and annotatePeaks functions (Homer package), respec-

tively (Heinz et al, 2010). Venn diagram overlaps of footprints

were obtained using ChIPpeakAnno (Zhu et al, 2010). Footprinting

matrices were created using dnase_to_javatreview (pyDNase pack-

age), with heatmaps generated using Java TreeView (Saldanha,

2004). To correlate with gene expression data, annotation to the

nearest gene was performed using bedtools closest function (Quin-

lan & Hall, 2010) with the -t first parameter. Ebf1 KO or Gata3 KO

versus wild-type gene expression changes (log2(fold change)) were

retrieved for genes with Ebf1 and Gata3 footprints, respectively.

As controls, random regions of similar sample and sizes were

computed using bedtools random and underwent the same treat-

ment as footprints.

Statistical analysis

RNA-Seq data were modelled using a negative binomial distribu-

tion based on the DESeq2 methodology (Love et al, 2014), using

adjusted P-values (Benjamini–Hochberg method) followed by the

indicated log2 (fold change) filters to call differential expression.

For the single perturbation experiments, we built models with one

coefficient corresponding to the perturbation effect and a blocking

coefficient corresponding to the fraction of reads mapped to the

intronic regions per sample. For the double perturbation experi-

ment, models included a coefficient for each perturbation effect,

the interaction term and the blocking coefficient. Statistical tests

for enrichment overlap or enrichment were performed using hyper-

geometric distribution with matching parameters (base R language

(R Core Team)). Data correlations shown in scatter plots were

analysed with a linear model indicated by the equation, and

shaded areas indicate confidence intervals for the fit (R language,

ggplot2 package).

RNA-Seq and network analysis

Sequencing reads were aligned to the mouse genome (mm10) or

human genome (hg19) using the STAR aligner (version 2.7.3a) with

default parameters. Reads mapping to exons and introns were

counted separately with featureCounts (version 2.0.0) using the

ENSEMBL v93 annotation. Introns were defined as all regions in

between the exon ranges within each gene. Genome sequence and

annotation were augmented with details of ERCC RNAs, GBC library

backbone and Cas9-Bsd expression plasmid where applicable.

For comparison of gene expression values across datasets

(Fig 6A and B, and EV4G), we used data available from GEO

(GSE127267, GSE107240; Revilla-i-Domingo et al, 2012; Li et al,

2018), processed as above and normalised using DESeq2 package

(Love et al, 2014).

Each sample in the TF screen was subjected to a quality control,

samples with: < 500,000 reads, < 30% of reads mapped to exons,

> 12% of reads mapped to ERCC transcripts, > 5 % mitochondrial

reads or < 4,000 genes detected above 10 counts per million were

discarded. 1,138 out of 1,148 samples passed quality control. We

analysed samples from each plate using principal component analy-

sis (PCA) and observed that a considerable part of variation was

correlated with the fraction of reads mapped to intronic regions,

which is inversely correlated with the fraction of reads mapped to

the exons. We believe that this may be due to either differences in

RNA quality or degree of isolated nuclear RNA (nuclei lysis). As the

fraction of intronic reads was evenly and randomly distributed

among control and treated sample, we could effectively remove this

effect by either linear regression (for downstream estimation of gene

expression values) or including fraction of intronic reads as a

covariate in the differential expression model. Inspection of the PCA

analysis highlighted 7 clear outlier samples, which were removed

from further analysis.

As a basis for edges in our network, we used differential expres-

sion. We performed the analysis using the DESeq2 software (Love

et al, 2014), subsetting for samples in the same plate and including

fraction of reads mapped to intronic regions in each sample as a

covariate. We first compared samples treated with each sgRNA

separately and found that the observed changes are highly corre-

lated in almost all cases; thus to construct the full network, we

compared all sgRNA samples with all the controls. In the case of

Meis1, Rad21 and Max, one of each sgRNAs had a much weaker

effect on the gene expression and were therefore excluded from the

further analysis. The remaining sgRNAs showed strong and correlat-

ing effects. To minimise batch effects due to common control

samples in each plate, we also tested differential expression against

the assembly of all controls and included only genes passing both

tests. Although some within-plate correlation remains visible in

cases of samples with small numbers of detected DE, we cannot

exclude that it corresponds to real signal, e.g. targets of Lmo2 and

Ldb1 in Plate7 correlate and indeed are expected to share a large

number of targets based on their function. For selection of targets,

we applied thresholds of adjusted P-value 0.1 and minimal |log2(fold

change)| > 0.2.

For the double perturbation experiments, we used the DESeq2

software to fit a two-factor model with interaction and blocking for

the fraction of reads mapped to intronic regions (model formula:

~perturbation1*perturbation2 + intron_fraction). To define differen-

tially expressed genes, we considered genes with coefficients

passing thresholds of adjusted P-value < 0.1 and |log2(fold

change)| > 0.2. We classified interactions either at: (i) low strin-

gency, selecting only genes DE for both single perturbations and

filtering the interaction changes with |log2(fold change)| > 0.2

criterium; and (ii) high stringency, considering only genes with

significant interaction terms (adjusted P-value < 0.1 and |log2(fold

change)| > 0.2) and classifying the other two coefficients using the

same criteria.

The network was visualised using Gephi (0.9.2) (Bastian et al,

2009) with Force Atlas 2 algorithm. The relations between TFs was

summarised as follows: Fig 3A and B—correlation of observed

log2(fold changes) among common targets between each pair of
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TFs, Appendix Fig S3A—number of shared gene targets and

z-score value computed based on the matching hypergeometric

distribution and Appendix Fig S3B—correlation of observed

log2(fold changes) shrunk using the adaptive shrinkage estimator

(Stephens, 2017) computed on all genes expressed in Hoxb8-FL cells.

Target gene modules were identified using TFs with > 200 target

genes identified, hierarchical clustering of observed log2(fold

change) values (shrunk with the adaptive shrinkage estimator)

using (1-correlation) as distance measure and average linkage

method. The resulting tree was cut dynamically with min. cluster

size of 40 and cutHeight of 0.4 (dynamicTreeCut package). This

results in a single large cluster containing the majority of genes with

no clear regulatory patterns and 46 smaller clusters exhibiting rele-

vant patterns. Enrichment analysis was performed using the Enrichr

software (Kuleshov et al, 2016).

Computer code used for the analysis is available in the reposi-

tory: https://github.com/Iwo-K/TFnet2020.

scRNA-Seq data analysis

Data analysis was performed using functions available in the Scanpy

package (Wolf et al, 2018). For human bone marrow mononuclear

cells, the matrix of cell x genes counts was obtained from Human

Cell Atlas (https://data.humancellatlas.org/explore/projects/cc95ff

89-2e68-4a08-a234-480eca21ce79). To perform quality control, cells

with < 600 Genes detected and > 10% of counts mapped to mito-

chondrial genes were excluded. Data for remaining 235,735 cells

were log-normalised, and 8,498 highly variable genes were identi-

fied. After scaling, the expression values of the highly variable genes

were used to compute 50 principal components, and these were

used to identify 15 nearest neighbours and compute clusters (Leiden

algorithm) (Traag et al, 2019) and the UMAP embedding (Preprint:

McInnes et al, 2018). Data annotation was performed manually

using known marker genes for each lineage, e.g. CD34 for early

progenitors, PF4 for megakaryocytes, CD3E for T cells, CD19 for B

cells, DNTT/IL7R for lymphoid cells, IRF8 for monocytes/dendritic

cells, ELANE/PRTN3 for neutrophils, KLF1/GATA1 for erythroid

cells and MS4A2 for basophils and mast cells.

For the mouse LK + LSK landscape, the matrix of cell x genes

counts was obtained from (Dahlin et al, 2018). Data were anal-

ysed and annotated as above, using 5,140 highly variable genes

(excluding 368 genes associated with cell cycle), 50 principal

components and 5 nearest neighbours to compute the clustering

and UMAP embedding.

In the case of human foetal liver data, the matrix of cell x genes

counts was obtained from ArrayExpress (E-MTAB-7407; Popescu

et al, 2019). Cells expressing < 1,000 genes and with > 10% mito-

chondrial gene counts were excluded. Data were subset for blood

and endothelial populations according to the annotation provided by

the original authors and processed as described above to compute

7,984 highly variable genes and 50 principal components. To inte-

grate the numerous batches of data, we excluded batches with < 400

cells and used batch balanced k-nearest neighbour method (3 neigh-

bours in each batch) (Polanski et al, 2020) to learn a common neigh-

bour graph. To isolate the HSPC and lymphoid cell populations, we

clustered the data with the Leiden algorithm and subset for the rele-

vant populations. The data were re-processed as above, using 8,886

highly variable genes, 30 principal components and batches with

≥ 100 cells, and cells belonging to the HSPC-preB trajectory were

isolated (excluding mature B cells, T-cell progenitors, NK cells and

ILC precursors). Pseudotime values were computed using the diffu-

sion pseudotime method (Haghverdi et al, 2016). Expression values

were averaged using a sliding window (size of 400 cells and step size

of 100) followed by a loess curve fit.

Mouse LMPP/ALP/BLP data (WT cells only) were obtained from

GEO (GSE101735; Loughran et al, 2017), aligned and counted as

described in the “RNA-Seq and network analysis” section. To remove

low-quality cells, we excluded cells with < 25% reads mapped to

exons, < 100,000 counts, > 12% of reads mapped to ERCC RNAs,

< 2,000 genes detected at 50 counts per million and > 15% of reads

mapped to mitochondrial genes. Data were processed as above using

7,000 highly variable genes, 50 principal components, 7 nearest neigh-

bours and excluding 368 genes associated with cell cycle. Cells were

arranged according to the pseudotime values (diffusion pseudotime),

and their expression values were averaged using a sliding window

(size of 50 cells and step size of 20 cells) and a loess fit. Cell type anno-

tation is based on the isolated populations using flow cytometry and

was provided by the original authors (Loughran et al, 2017).

Cell projection across landscapes

To find the most similar cells between datasets (Figs 1C and 7A– C),

we identified the nearest neighbours between them. Briefly, target

and reference datasets were jointly normalised and scaled. Principal

components were computed using the reference dataset, and the

target data were projected onto the PCA space (pca.transform func-

tion from the sklearn module), and nearest neighbours were

computed based on the pairwise Euclidean distances between

samples. Cells in the reference landscape (e.g. landscape in Fig 1C)

were colour-coded based on the total number of nearest neighbours

identified in the target dataset (projection score), reflecting relative

transcriptional similarity.

DoT score

DoT scores for all cells (vector s) are defined as: s = Xv, where X

is a matrix cells x genes with scaled expression values and v is a

vector of weights (in our case value of log2(fold change) for each

gene). This is equivalent to computing the dot product of the vector

of scaled expression values, and the vector of weights for each cell,

i.e., is proportional to the cosine of the angle between the two

vectors. In order to normalise values across different experiments

and assign a statistical significance, we calculated a z-score for each

cell against a simulated DoT score distribution. We ran 500–1,000

simulation randomly assigning weights from the set of all observed

log2(fold changes) and all expressed genes in the Hoxb8-FL cells,

with the number of non-0 weights equivalent to the original weights

vector (here: the number of DE genes observed for the specific

perturbation). As scaling of the reference landscape is important for

the interpretation of the DoT score (it provides a “starting point”),

we used mean expression values best corresponding to the Hoxb8-

FL transcriptome. For LK+LSK mouse data, we used cell projection

data (see section above) to choose the most appropriate cluster. For

the human BMMC data, we chose the most immature cluster,

containing CD34+ cells. The relevant code is available as a python

module - https://github.com/Iwo-K/dotscore.
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Data availability

• RNA-Seq data: Gene Expression Omnibus GSE146128.

• ChIP-Seq data: Gene Expression Omnibus GSE146128 and CODEX

(http://codex.stemcells.cam.ac.uk/).

• Interactive genomic browser session (ChIP-Seq data): http://ge

nome-euro.ucsc.edu/s/idk25/TFnet2020_allChIPs_impr.

• DoT score computer code: https://github.com/Iwo-K/dotscore.

• Analysis computer code: https://github.com/Iwo-K/TFnet2020.

Expanded View for this article is available online.
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