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Abstract 

Background:  Recent evidences indicated that shear stress is critical in orchestrating gene expression in cardiovas-
cular disease. It is necessary to identify the mechanism of shear stress influencing gene expression in physiology 
and pathophysiology conditions. This paper aimed to identify candidate hub genes and its transcription factors with 
bioinformatics.

Methods:  We analyzed microarray expression profile of GSE16706 to identify differentially expressed genes (DEGs) in 
low shear stress (1 dyne/cm2) treated human umbilical vein endothelial cells (HUVECs) compared with static condi-
tion for 24 h.

Results:  652 DEGs, including 333 up-regulated and 319 down-regulated DEGs, were screen out. Functional enrich-
ment analysis indicated enrichment items mainly included cytokine-cytokine receptor interaction and cell cycle. Five 
hub genes (CDC20, CCNA2, KIF11, KIF2C and PLK1) and one significant module (score = 17.39) were identified through 
protein–protein interaction (PPI) analysis. Key transcriptional factor FOXC1 displayed close interaction with all the hub 
genes via gene-transcriptional factor network. Single-gene GSEA analysis indicated that CDC20 was linked to the 
G2M_CHECKPOINT pathway and cell cycle pathway.

Conclusions:  By using integrated bioinformatic analysis, a new transcriptional factor and hub-genes network related 
to HUVECs treated with low shear stress were identified. The new regulation mechanism we discovered may be a 
promising potential therapeutic target for cardiovascular disease.
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Background
Atherosclerosis is the main causes of cerebrovascualr and 
cardiovascular disease around the world [1]. The risk fac-
tor of atherosclerosis contains many conventional risk 
factors, including diabetes, smoking, hypertension, obe-
sity, hypercholesterolemia and family history [2]. In addi-
tion, mounting evidence indicated that atherosclerosis 
was prone to occur at the curve or bench region of the 

vascular, where was characterized by disturbed blood 
flow with low wall shear stress [3]. Thin-cap fibroather-
oma, which is prone to locate in the proximal of coronary 
artery characterized by low shear stress, was associated 
with plaque rupture in coronary artery disease [4]. This 
phenomenon suggested that low shear stress played a 
pivotal role in the initiation and progression of athero-
sclerosis [5]. This link between atherosclerosis progres-
sion and low shear stress is very well established and has 
been known for many decades [6]. Several mechanosen-
sitive biomarkers have been considered to be associated 
with low shear stress in endothelial cells [7]. However, the 
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mechanism of shear stress regulating gene expression in 
endothelial cells remains not be fully understood.

Transcription factor (TFs) is a protein that can bind 
to specific DNA sequences to regulate multiple bio-
logical processes including cell differentiation, cell cycle 
regulation, stress responses, cell proliferation and apop-
tosis [8]. It can form complex with other proteins or TFs 
alone, modulating the expression of genes by activating 
or repressing the recruitment of RNA polymerase [9]. 
Thanks to the rapid development of array technology 
and next generation sequencing technology, it makes 
bioinformatic analysis method an important way to iden-
tify new biomarkers in various disease, including can-
cer, metabolic disease and cardiovascular disease. For 
instance, Hu [10] identified TFs and its binding sites via 
characteristic domain analysis method in genome wide. 
Meanwhile, researches could screen out regulatory net-
works participating in many biological and molecular 
processes in co-expression studies.

In the present study, we firstly selected the differen-
tially expressed genes (DEGs) in human umbilical vein 
endothelial cells (HUVECs) exposed to low shear stress 
treatment comparing with static treatment. Then, we 
analyzed the biological function of DEGs via Gene 
ontology (GO) [11] and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [12] pathway analyses. The pro-
tein–protein interaction (PPI) network was constructed 
through the search tool for the retrieval of interacting 
genes (STRING) website [13] to find hub genes and the 
results were displayed with Cytoscape software [14]. 
Last, we established the gene-TFs regulation network to 
identify the TFs which participated in the regulation of 
ECs under low shear stress treatment. The relationship 
between CDC20 and FOXC1 was further validated by 
RT-PCR method. Based on these results, it provided new 
insight of TFs-gene regulation pathway in atheroscle-
rosis and potential therapeutic target of cardiovascular 
diseases.

Methods
ECs cell culture, transfection and low shear stress 
treatment
HUVECs were supplied by China Infrastructure of Cell 
Line Resource (Beijing). The culture condition con-
tains Dulbecco modified Eagle medium (DMEM), 37  °C 
and 5% CO2 atmospheres. When the density reached 
70–80%, ECs were transiently transfected with FOXC1 
siRNA or scrambled control supplied by Sangon Biotech 
(Biotech (Shanghai) Co., Ltd. Shanghai, China) at the 
concentration of 100  nM to down-regulate the expres-
sion of FOXC1. The sequence of FOXC1 siRNA or the 
scrambled control was validated by the company. After 
the transfection was successfully performed, ECs were 

continued cultured in the shear stress treatment simulat-
ing system (Shanghai Naturethink life science & Technol-
ogy CO, Ltd) treated with low shear stress (5 dyne/cm2) 
lasting 24 h. The control group was cultured under static 
condition for 24 h, too.

Data acquisition and preprocessing
First of all, we searched datasets focusing on the gene 
expression profile related to low shear stress treat-
ment via GEO database. According to the selection 
criteria, GSE16706 emerged from the GEO database 
which included low shear stress and static treatment 
in HUVECs. Dataset GSE16706 was annotated by 
GPL6480. GSE 16706 consisted of 3 low shear stress 
treatment samples, 3 high shear stress treatment group, 
3 reverse treatment samples and 3 static control treat-
ment samples. Considering low shear stress is a prone 
atherosclerotic factor, in this paper we selected low shear 
stress treatment samples (GSM418608, GSM418612 
and GSM418616) and static control treatment samples 
(GSM418611, GSM418615 and GSM 418619) for further 
study. The experimental protocol in GSE16706 dataset: 
HUVECs were mounted in a parallel plate flow cham-
ber. After that the HUVECs were exposed to 1 dyne/
cm2 shear stress treatment or static culture for 24  h. 
Ending exposure to shear stress treatment, total RNA 
was prepared via TRI-Zol method (Invitrogen) accord-
ing to manufacturers’ instructions. The gene expression 
was detected using corresponding annotation platform 
according to the manufactures’ instruction. Three inde-
pendent experiments were performed in each group.

R/Bioconductor package GEOquery [15] was used 
to download the gene expression data from GEO web-
site. The downloaded data from GEO datasets consisted 
of probe ID and expression matrix. Then probe ID was 
converted to corresponding gene symbols according to 
the annotation of GPL6480. When multi-probes were 
matched to the same gene, we selected the maximum 
value of theses probes as the expression level for the fol-
lowing analysis. PreprocessCore package of R was used 
to perform quantile normalization and background 
correction.

Identification of DEGs
Limma package [16] was applied to identify DEGs 
between low shear stress treatment group and static con-
trol group. Briefly, DEGs were selected according to the 
following criteria: adjusted P-value < 0.05 and absolute 
log2 fold change (FC) value > 2. Volcano plots compar-
ing log10 (statistical relevance) to log2 FC were generated 
using R software (version3.6.3, AT&T Bell Laboratories, 
New York, NY, USA). We visualized DEGs via heatmap 
generated by the pheatmap package in R software.



Page 3 of 14Yang and Xu ﻿BMC Med Genomics          (2021) 14:120 	

GO and KEGG pathway analyses
To better research and demonstrate the biological func-
tion of DEGs, we routinely performed GO analysis, 
which included biological process (BP), cellular com-
ponent (CC) and molecular function (MF). In addition, 
signal pathway analysis of DEGs was also carried out 
according to the latest KEGG database [12]. The clus-
terProfiler package in R software was utilized in per-
forming GO and KEGG analysis. When P value was 
below 0.05, we considered the results had statistical 
significance.

Establishment and analysis of PPI network
STRING (https://​string-​db.​org/) is a widely used web-
site to study the protein–protein interaction informa-
tion and is also broadly adopted to identify hub genes 
according to the connectivity and node parameter. In 
this paper, we also established the PPI network accord-
ing to the latest STRING database [13]. We selected 
node pairs with a combined score ≥ 0.4 in the PPI net-
work for next step analysis. Following that, the protein–
protein interaction results were displayed by Cytoscape 
software. The topological parameters of each gene in 
the PPI network were analyzed to identify hub genes. 
Next, Molecular Complex Detection (MCODE) [17] 
was utilized to find out the most important modules 
among PPI network. The cutoff value was set as: node 
score cutoff = 0.2, K-Core = 2, and degree cutoff = 2.

Establishment of TFs‑hub genes network
Network Analyst [18] (http://​www.​netwo​rkana​lyst.​ca/​
faces/​home.​xhtml) was used in this paper to analysis 
the TFs-gene interactions. By this analysis we could 
further investigate the effect of TFs on the target hub 
genes. In the present bioinformatic analysis, we pre-
dicted the TFs of identified hub genes. Meanwhile, the 
TFs-genes regulatory results were established and dis-
played by Cytoscape software.

Gene set enrichment analysis (GSEA)
We performed GSEA analysis in order to investigate the 
potential function of hub genes in the TFs-genes net-
work [19]. Briefly, according to the average expression 
level of the low shear stress treated group, the Spear-
man correlation coefficient between CDC20 and other 
genes in low shear stress treatment group was calcu-
lated and sorted by Spearman correlation coefficient. 
Then the clusterProfiler package [20] was adopted to 
complete the single gene GSEA analysis. P value < 0.05 
means the results have significant difference.

Validation of target gene by qRT‑PCR assay
The mRNA expression profile of target genes was evalu-
ated through RT-PCR method. Briefly, total RNAs were 
extracted from HUVECs with FastPure Cell/Tissue 
Total RNA Isolation Kit (Vazyme, Nanjing, China) fol-
lowing the manufacturer’s instruction. Then total RNA 
was reverse transcribed to cDNA with HiScript II 1st 
Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). 
The mRNA expression level of FOXC1 and CDC20 was 
detected with ChamQ Universal SYBR qPCR Master 
Mix (Vazyme, Nanjing, China). GAPDH was used as 
house-keeping gene. 2−ΔΔCT method was performed to 
compare the gene expression level between low shear 
stress treated group and control group. The protocol 
of PCR: 5 min at 95 °C, 40 cycles of 95 °C for 10 s and 
60  °C for 30  s. The sequences of primer pairs are as 
follows:

CDC20: F: 5’-GGC​AGT​CCA​ATG​TCC-3’; R: 
5’-GGA​GAC​CAG​AGG​ATG​GAG​CAC-3’
FOXC1: F: 5’- TTC​TTG​CGT​TCA​GAG​ACT​CG-3’; 
R: 5’- TCT​TAC​AGG​TGA​GAG​GCA​AGG-3’
GAPDH: F: 5’-CAT​ACC​AGG​AAA​TGA​GCT​TG-3’, 
R: 5’-ATG​ACA​TCA​AGA​AGG​TGG​TG-3’

Measurement of apoptosis in ECs by flow cytometry assay
The apoptosis of HUVECs transfected with siFOXC1 
or scrambled control treated with or without low shear 
stress treatment was evaluated using Annexin V-PE/7-
AAD Apoptosis Detection Kit (Vazyme, Nanjing, 
China) according to the manufacture’s instruction. The 
results were detected by FACS (BD Celesta). Flowjo 
software 7.6 was used to analyze the data.

Statistical analysis
All the statistical analyses were performed in R soft-
ware and P value < 0.05 was considered statistically 
significant. The differences between two groups was 
analyzed using non-parametric test or t test according 
to the data distribution characteristics.

Results
Data acquisition and DEGs identification
The microarray expression matrices of GSM418608, 
GSM418612, GSM418616, GSM418611, GSM418615 
and GSM 418,619 were successfully downloaded. By 
calculating the log2 FC and adjusted p value, we iden-
tified 652 DEGs including 333 up-expressed and 319 
down-expressed according to the selection criteria. The 
results of microarray expression matrix were displayed 
by volcano graph and each plot in the volcano graph 

https://string-db.org/
http://www.networkanalyst.ca/faces/home.xhtml
http://www.networkanalyst.ca/faces/home.xhtml
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represented a gene in the expression matrix, and red 
represents the log2 fold change is above 2 and p-value 
is below 0.05, blue represents the log2 fold change of 
gene is below -2 and p-value is below 0.05 while gray 
suggested genes has no statistical significant differential 
expression or absolute fold change is below 2 (Fig. 1a). 
DEGs expression with the top 100 significant genes was 
displayed with heatmap in Fig. 1b.

Functional and pathway enrichment analysis of DEGs
Terms or pathways of GO and KEGG analysis with 
adjusted P value < 0.05 were selected. The most sig-
nificant 10 enriched GO terms were displayed in Fig. 2. 
The results of Fig.  2a–c indicated that GO BP enriched 
terms of DEGs were mainly enriched in nuclear division, 
chromosome segregation, DNA replication, cell cycle 
G1/S phase transition and etc. GO CC analysis was sig-
nificantly enriched in chromosomal region, microtubule, 
spindle and condensed chromosome. The main enriched 
MF terms included microtubule binding, growth factor 
binding, cytokine binding and transmembrane receptor 
protein kinase activity. Furthermore, we analyzed the net-
work of enriched GO terms and related genes, As shown 
in Fig.  2d, the results indicated that there existed com-
plicated connection between DEGs and GO annotation 

terms, which meant that many genes may play pivotal 
and multiple functions in cell cycle and cell division.

As listed in Fig.  2e, these KEGG pathways mainly 
included Cytokine-cytokine receptor interaction, Cell 
cycle, NOD-like receptor signaling pathway, TNF sign-
aling pathway and DNA replication. Among the KEGG 
pathways identified from the KEGG analysis, cell cycle 
pathway possessed the most number of gene counts and 
the highest statistical significance.

PPI network and identification of hub genes
After PPI network was constructed by STRING website, 
the results were further visualized by Cytoscape software 
in Fig.  3a. This PPI network was made up of 228 DEGs 
and this network was consisted of 660 interaction pairs 
among these 228 nodes. The node degree was calculated 
to evaluate the importance of DEGs in the PPI network 
and the 24 highest node-degree genes constitute one sub-
network (Fig.  3b). By comparing the network topology 
parameters, cell division cycle 20 (CDC20; degree = 37, 
betweenness centrality = 0.149, closeness central-
ity = 0.607), cyclin A2 (CCNA2; degree = 33, between-
ness centrality = 0.176, closeness centrality = 0.602), 
kinesin family member 11 (KIF11; degree = 30, between-
ness centrality = 0.051, closeness centrality = 0.573), 

Fig. 1  The volcano plots and heat map showing expression profiles of GSE16706. a The volcano map of GSE16706. Red dot indicates genes with 
high levels of expression, blue indicates genes with low levels of expression, and gray indicates genes with no differential expression based on the 
criteria of P value < 0.05 and |log2 FC|> 2.0. b Heatmap of top 100 DEGs in GSE16706. Gene expression levels were indicated by colors as shown by 
the row, red represents high expression level and blue represents low expression level
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Fig. 2  GO and KEGG analysis of DEGs. a GO-BP analysis of DEGs. b GO-CC analysis of DEGs. c GO-MF analysis of DEGs. d Network of the enriched 
terms and pathways. Nodes represent enriched terms or pathways with node size indicating the number of DEGs involved in. Nodes sharing the 
same cluster are typically close to each other. e KEGG pathway analysis of DEGs
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kinesin family member 2C (KIF2C; degree = 30, between-
ness centrality = 0.038, closeness centrality = 0.563), and 
polo like kinase 1 (PLK1; degree = 30, betweenness cen-
trality = 0.147, closeness centrality = 0.582) were identi-
fied as hub geness (Fig. 3c).

Functional analysis of module analysis
According to the MCODE analysis results, we screened 
out 17 significant models among the PPI network. 
Furthermore, we chose the most important module 
(MCODE score = 17.39) which contained the five hub 
genes as described before. This module included 24 

nodes and 200 edges, and the entire hub DEGs were in 
the module. Next, we used the 24 genes in the module 
to perform GO and KEGG analysis by Metascape online 
website. The results suggested that these genes were 
mainly enriched in chromosome segregation and micro-
tubule cytoskeleton organization involved in mitosis. In 
addition, AURORA B PATHWAY and G alpha signaling 
events pathway were enriched of these genes (Fig.  4a). 
Furthermore, network graph displayed that these iden-
tified enriched terms displayed closely connection with 
each other and these terms also clustered into intact net-
works (Fig. 4b).

Fig. 3  The protein–protein interaction (PPI) networks of DEGs. a The PPI network of total 652 DEGs. b The 24 genes with highest node degree. c The 
most significant module obtained from PPI network of DEGs (MCODE score = 17.39). The red color squares represents the hub genes of the DEGs
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Transcriptional factor regulatory network analysis of hub 
genes
Network Analyst website was used to construct TFs-
genes intersection network and it is easier to identify 
the key TFs in the gene expression regulation. For the 5 
identified hub genes, we established a TFs-genes regu-
latory network, which included 42 interaction pairs 
with 29 nodes (Fig. 5). From the TFs-genes interaction 
network graph, CCNA2 and CDC20 were both found to 
be influenced by 11 TFs, PLK1 and KIF2C were affected 
by 7 TFs, and KIF11 was regulated by 6 TFs accord-
ing to the degree data. In addition, we also found that 
various TFs having the ability to regulate more than 
one hub gene, for example, STAT3 and NFKB1 both 
regulated 3 hub genes in the network. More impor-
tant, based on TFs-genes network graph we found 
that FOXC1 could regulate all of the hub genes, which 
meant FOXC1 maybe an important transcription factor 
in the gene regulation in ECs responded to low shear 
stress treatment.

Single‑gene gene set enrichment analysis (GSEA)
The purpose of single-gene GSEA analysis was to find 
regulatory pathways or biological functions which 
were associated with the expression of interested 
genes. Considering that CDC20 had the highest node 
degree in PPI of the DEGs and its relationship with 
key transcription factor FOXC1, we further performed 
pathway analysis of CDC20 using single gene GSEA 
method. Briefly, the Spearman correlation coefficient 
between CDC20 and other genes in low shear stress 
treatment samples was calculated and sorted by Spear-
man correlation coefficient. The PPI network of genes 
with spearman correlation coefficient over 0.4 between 
CDC20 and other genes in low shear stress treatment 
samples was visualized by Cytoscape software. From 
the results (Fig.  6a), it displayed that CDC20 has the 
highest connectivity degree compared with other 
genes. Further GSEA analysis results indicated that 
most of the enriched pathways were suppressed and 
G2M checkpoint pathway had the highest enrichment 

Fig. 4  Functional and pathway enrichment analysis of module derived from PPI network. a GO terms and KEGG pathway were presented, and each 
band represents one enriched term or pathway colored according to the − log 10 P value. b Network of the enriched terms and pathways. Nodes 
represent enriched terms or pathways with node size indicating the number of DEGs involved in. Nodes sharing the same cluster are typically close 
to each other, and the thicker the edge displayed, the higher the similarity is
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score with FDR < 0.25 and P value < 0.05 (Fig.  6b) and 
the top-scoring gene in the G2M checkpoint pathway 
was CDC20 (Fig. 6c). We further investigated the gene 
expression in cell cycle pathway and found that most 
of the genes involved were down-regulated in this 
pathway of expression profile matrix. Two hub genes 
(CDC20 and PLK1) were also found in this pathway. 
From the position of these two genes in cell cycle path-
way, we could find that CDC20 mainly participate in 
the ubiquitin mediated proteolysis process (Fig. 6d).

The mRNA expression level of CDC20 and FOXC1 in ECs
RT-PCR method was used to assess the mRNA expres-
sion profile of CDC20 and FOXC1. As expected, the 
RT-PCR results demonstrated that the expression of 
FOXC1 was obviously promoted in HUVECs exposed 
to low shear stress treatment which is consistent 
with the data of the microarray (Fig.  7a). In addition, 
from Fig. 7a we also certified that the expression level 
of FOXC1 indeed decreased when transfected with 
siFOXC1.

Fig. 5  The hub gene-transcription factors (TF) regulatory network. Red diamond stands for the hub gene and circle node stands for the 
transcription factor. Purple node represents the key TF
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From the bioinformatics analysis we speculated that 
FOXC1 suppressed the expression of CDC20, in order 
to validate the hypothesis we compared the expression 
level of CDC20 between HUVECs transfected with or 

without siFOXC1. First we compared the CDC20 mRNA 
level between low shear stress and static groups, the 
results demonstrated that CDC20 expression was inhib-
ited by low shear stress treatment. This implied that 

Fig. 6  Single-gene GSEA analysis of CDC20. a The PPI network of genes with spearman correlation coefficient over 0.4 between CDC20 and other 
genes in low shear stress treatment samples. Red diamond stands for CDC20. The thicker edge represents the higher correlation efficient. b GSEA 
pathway enrichment results of CDC20 single-gene GSEA analysis. c Enrichment plot of G2M_CHECKPOINT pathway of CDC20 single-gene GSEA 
analysis. d Pathway annotations of cell cycle pathway. Red label nodes represent down-regulated genes; green nodes have no significance. The 
author obtained  copyright permission to use and modify the KEGG pathway map image hsa04110 Cell cycle—Homo sapiens (human)
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there existed a negative correlation between CDC20 and 
FOXC1 and this trend was similar with that in the micro-
array data. Furthermore, the results indeed accorded with 
the hypothesis on the evidence that the mRNA expres-
sion level of CDC20 was increased when HUVECs were 
transfected with siFOXC1 (Fig. 7b).

Apoptosis of ECs treated with low shear stress
Considering that these identified hub genes, especially 
CDC20, mainly participated in cell cycle, mitosis, chro-
mosome separation pathway, we further evaluated the 
apoptosis incidence in ECs. As shown in Fig.  8a–e, we 
could find that low shear stress induced the apoptosis 
of HUVECs compared with static control group. More 
interestingly, when ECs were transfected with siFOXC1, 
the apoptosis incidence of ECs apparently decreased 
compared with the control group.

Discussion
Based on the development of microarray and next gener-
ation sequencing technology, scientists could effectively 
identify various biomarkers and key molecular in various 
diseases. Amount of potential RNA and protein biomark-
ers have been predicted by bioinformatic analysis and 
validated by wet-lab experiment. The microarray dataset 
GSE16706 was generated by Conway [21] and he mainly 
compared the differential expressed genes between 

different shear stress treatments in HUVECs via parallel 
flow chamber device. However, the previous published 
paper did not investigate the regulatory network about 
these differential genes. Therefore, in my research, we 
re-analyzed the chip data and further demonstrated the 
regulatory mechanism of hub genes in ECs treated with 
shear stress treatment. Based on the new information of 
this paper, it will broaden our knowledge about cardio-
vascular disease. In this study, bioinformatic analysis was 
performed in HUVECs with low shear stress treatment 
compared with static treatment to find hub genes and 
potential TFs. We screened the expression matrix down-
loaded from GEO database and selected 652 DEGs from 
the datasets, including 333 up-regulated and 319 down-
regulated genes. According to the topology parameters of 
PPI network, CDC20, CCNA2, KIF11, KIF2C and PLK1 
were selected as the hub genes. Furthermore, hub gene-
TFs regulatory network revealed that FOXC1 could regu-
late the entire hub genes indicating that FOXC1 may be 
an important regulatory factor in HUVECs responded to 
shear stress treatment.

Conway [21] demonstrated that low average shear 
stress, including low shear stress and reversal flow, gener-
ated the similar gene expression changes compared with 
high shear stress. The author also indicated that shear 
stress mainly regulated the direction of gene changes 
in contrast with static culture, while the magnitude and 

Fig. 7  The mRNA expression level of CDC20 and FOXC1. a The mRNA expression level of FOXC1. b The mRNA expression level of CDC20. Sample size 
(n = 3). Data were expressed as mean ± SD. * indicates p value < 0.05 compared to control
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waveform of shear stress determined the amplitude of 
gene expression change. Based on the previous knowl-
edge and discovery of Conway, we also learned that 
low shear stress facilitated atherosclerosis and caused 
the most number of DEGs. Therefore, in this paper we 
mainly compared low shear stress with static condition to 
further investigate the gene regulation.

TFs regulate gene expression and play an essential role 
in almost all of the physiological process [22]. TFs are a 
group of protein molecules that could bind to the spe-
cific sequence of target genes and regulate gene expres-
sion at a time and space specific manner. By analyzing the 
characteristic of validated binding sites of TFs, we could 
predict the target gene by computational approaches 
[23]. Bioinformatic analysis method displayed important 
role in predicting new TFs and biomarkers in many dis-
eases. In this paper, we identified related TFs with iden-
tified hub genes using NetworkAnalyst website which 
is thought to be a customer friendly and accurate tools 
to predict TFs. Our results demonstrated that these TFs 
screen out from NetworkAnalyst website formed a com-
plicated regulatory network with identified hub genes. 

These results suggested that TFs may play multiple roles 
in regulating gene expression in ECs among cardiovascu-
lar disease.
CDC20 is located in the 1p34.2 region of human chro-

mosome, and the genome sequence contains 11 exons 
and 10 introns. CDC20 is the activator of anaphase pro-
moting complex/cyclosome (APC/C) which is an impor-
tant constituent of the ubiquitin-proteolytic enzyme 
complex pathway [24]. CDC20, one of the earliest known 
cell cycle factors, whose main function is regulation of 
cyclin-B and the cell cycle regulator P21, and can affect 
the Wnt /β-catenin signaling pathway, Nek2A and the 
Kif18A pathway. CDC20 also depletes endogenous PHF8 
resulting in a prolonged G2 cycle and leads to mitotic 
defects [25]. CDC20 plays an important role in guiding 
the ubiquitination and degradation of some proteins in 
the cell cycle and ensuring the normal separation of chro-
mosomes [26]. During the cell division cycle, CDC20 is 
the target of spindle assembly checkpoint and the posi-
tive regulator of the post-mitotic complex promotion. 
Previous study also indicated that shear stress influ-
enced vascular endothelial cell proliferation by regulating 

Fig. 8  The apoptosis of HUVECs. The flow cytometry result of ECs treated with a static condition b low shear stress c low shear stress transfected 
with siFOXC1 d low shear stress transfected with siFOXC1 scrambled. e The bar graph of cytometry results. Sample size (n = 3). Data were expressed 
as mean ± SD. * indicates p value < 0.05 compared with control



Page 12 of 14Yang and Xu ﻿BMC Med Genomics          (2021) 14:120 

cyclin-dependent kinase activity [27]. There also existed 
evidence suggested that exposure to laminar shear stress 
results in a reduction in endothelial cell rates of DNA 
synthesis and proliferation [28]. In this paper, we also 
identified that CDC20 was the most significant hub gene 
and it was significantly down-regulated in the microar-
ray expression matrix which is consistent with the previ-
ous study results. From the pathway analysis results and 
the annotation of cell cycle, we could find that CDC20 
mainly participated in the G2M checkpoint process and 
ubiquitin-mediated proteolysis process. Numerous cel-
lular process regulated by ubiquitin-mediated proteoly-
sis include the cell cycle, DNA repair and transcription 
and the immune response [29]. Defects in this proteolysis 
have a causal role in many human diseases, including a 
variety of cancer [30] and cardiovascular disease [31]. As 
well known, cell cycle disorders play an important role in 
the apoptosis in many cellular processes [32], this study 
results also displayed that the CDC20 expression level 
had a similar variation trend with that of the apopto-
sis incidence in HUVECs treated with low shear stress. 
Based on this information, we implied that CDC20 was 
an important biomarker in HUVECs responding to low 
shear stress.

We also search the references to investigate the func-
tion of other hub genes for the future research related 
with shear stress. CCNA2 plays important role in S/G2 
transformation and G2 phase checkpoint in human uri-
nary bladder transitional cell carcinoma treated with 
fluid shear stress. It could induce cell cycle arrest and its 
function is consistent with the bioinformatics analysis in 
this paper. However, there is no relevant evidence that 
CCNA2 could regulate cell cycle in endothelial cells [33]. 
Unfortunately, there was no relevant reference that sup-
ported the other three hub genes participated in the cell 
cycle regulation of shear stress treated endothelial cells. 
We also noticed that, among the five hub genes, CCNA2 
had the second highest connectivity. Therefore, these hub 
genes, especially CDC20 and CCNA2, were worthy to be 
further investigate in the future.
FOXC1 locates in chromosome 6p25.3 and it belongs 

to the forkhead family of transcription factors. Previous 
study revealed that FOXC1 was involved in many bio-
logical processes, such as eye development [34], cancer 
[35], cardiovascular system development [36]. Previ-
ous studies certified that FOXC1 mutations were asso-
ciated with the defection of eye anterior segment [37] 
and cerebral small vessel disease [38]. Human patients 
with FOXC1 mutations were associated with congeni-
tal heart disease [39]. In mice, knock-out of FOXC1 in 
ECs impaired valve maturation [40]. There were experi-
ments which demonstrated that shear stimulation of 
FOXC1 regulated cytoskeletal activity [41]. In this 

study, we found that FOXC1 had the highest connectiv-
ity with the entire hub genes which implied that FOXC1 
may have the ability to regulate multiple genes and play 
a pivotal role in low shear stress treated endothelial 
cells. In addition, we found that FOXC1 was up-regu-
lated in the expression profile matrix by log2FC equaled 
to 1.59, which implied that FOXC1 may suppress the 
expression of CDC20 in direct or indirect method. This 
hypothesis was supported by the results of the qRT-
PCR of CDC20 and FOXC1 in wet experiment. How-
ever, there is still a lot of work to do to further validate 
the association of FOXC1 and its target genes.

The proper selection of cell lines in cardiovascular 
disease research, especially in articles related to shear 
stress, is of great importance. The reasons for the choice 
of cell type (HUVEC) used in this paper are as follows. 
(a): HUVEC is a common used cell line in cardiovas-
cular disease research, searching with key words ‘shear 
stress’ and ‘HUVEC’, there are hundreds of papers in 
PubMed. (b): The results derived from HUVECs were 
consistent with the results in animal experiment. 
HUVECs cell line was used in different types of shear 
stress and signal pathways in previous papers [42, 43]. 
However, I think the direct comparison of different cell 
types, including HUVECs and Arterial ECs, in shear 
stress research is very important in the future study.

The sample size of this paper was relatively small. 
Therefore, more microarray data and next generation 
sequencing data would be very important to help us 
study the regulatory mechanism in HUVECs subjected 
to shear stress treatment. In the paper we also identi-
fied other hub genes, but we did not further investigate 
these genes and its relationship with predicted TFs. 
This needs more work to do in the future.

Conclusions
In conclusion, we identified five hub genes (CDC20, 
CCNA2, KIF11, KIF2C and PLK1) from the expression 
matrix downloaded from GEO datasets. Gene func-
tional analysis suggested that biological functions of 
these hub genes mainly enriched in cell cycle. In addi-
tion, we identified a key transcription factor FOXC1 
which could regulate the entire hub genes. Single-gene 
GSEA analysis indicated that CDC20 was linked to the 
G2M_CHECKPOINT pathway and cell cycle path-
way. With the integrated bioinformatic analysis, a new 
transcriptional factor and hub-genes network related 
to endothelial cells treated with low shear stress were 
screened, and the new regulation mechanism we dis-
covered may be potential therapeutic target for cardio-
vascular disease.
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