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Abstract
Background: Codon substitution constitutes a fundamental process in molecular biology that has been studied 
extensively. However, prior studies rely on various assumptions, e.g. regarding the relevance of specific biochemical 
properties, or on conservation criteria for defining substitution groups. Ideally, one would instead like to analyze the 
substitution process in terms of raw dynamics, independently of underlying system specifics. In this paper we propose 
a method for doing this by identifying groups of codons and amino acids such that these groups imply closed 
dynamics. The approach relies on recently developed spectral and agglomerative techniques for identifying 
hierarchical organization in dynamical systems.

Results: We have applied the techniques on an empirically derived Markov model of the codon substitution process 
that is provided in the literature. Without system specific knowledge of the substitution process, the techniques 
manage to "blindly" identify multiple levels of dynamics; from amino acid substitutions (via the standard genetic code) 
to higher order dynamics on the level of amino acid groups. We hypothesize that the acquired groups reflect earlier 
versions of the genetic code.

Conclusions: The results demonstrate the applicability of the techniques. Due to their generality, we believe that they 
can be used to coarse grain and identify hierarchical organization in a broad range of other biological systems and 
processes, such as protein interaction networks, genetic regulatory networks and food webs.

Background
Ever since its discovery by Nirenberg and Matthaei [1],
the structure [2-8] and evolution [9-18] of the genetic
code from nucleotide triplets in DNA to amino acid resi-
dues in proteins has been studied extensively. In struc-
ture-based studies--in terms of a snapshot of what codes
to what--similar codons have for instance been found to
be associated with amino acids with similar properties
[19] and amino acids with simple structures are typically
coded by more codons [6]. However, amino acids may be
grouped with respect to several different properties, and
it is difficult to quantitatively judge the relative and actual
relevance of these properties. By studying the effective
evolutionary dynamics of codons and amino acids one
avoids this problem. In dynamic-based approaches the
substitution process is often modeled as a Markov chain,
where the distribution of substitutions of a given residue

is independent of neighboring residues as well as prior
residues at the same site. These assumptions are clearly
not strictly correct, but are still meaningful as approxima-
tions. Dayhoff and coworkers pioneered Markov model-
ing by estimating substitution frequencies empirically
from alignments of orthologous sequences [20]. From
inspection of log odds scores they concluded that amino
acids with similar properties indeed tend to form groups
that are conserved. In other words, members of a group
usually substitute to each other, rather than to external
residues. In subsequent work [21-24], conservation has
been turned into a criteria used for defining and inferring
amino acid substitution groups. An interpretation of
these results is that the substitution process hierarchically
operates on multiple levels, from nucleotides to codons
to groups of codons [4]. However, one relies on strong
assumptions when aiming to infer hierarchical levels in
terms of certain biochemical properties or explicit con-
servation criteria. Ideally, one would instead like to
"blindly" infer levels purely from the observed dynamics.
In this paper we present such an approach, which is based

* Correspondence: olofgo@chalmers.se
1 Complex Systems Group, Department of Energy and Environment, Chalmers 
University of Technology, 412 96 Göteborg, Sweden
Full list of author information is available at the end of the article
BioMed Central
© 2010 Görnerup and Jacobi; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/


Görnerup and Jacobi BMC Bioinformatics 2010, 11:201
http://www.biomedcentral.com/1471-2105/11/201

Page 2 of 7
on recently developed methods for identifying hierarchi-
cal levels in dynamical systems [25]. The methods are
derived from first principles, and only rely on the
assumption that the dynamic process can be described as
a Markov chain; there are no assumptions regarding for
example amino acid conservation or group isolation. In
fact, the techniques presented here are not limited to the
substitution process, but may also be applied to the broad
range of biological systems that can be represented by
networks or transition matrices. In this presentation,
however, we will concentrate on the substitution process
by applying the techniques on an empirically derived
codon transition matrix provided by Schneider et al. [26].

In the next section we will present our methodology.
The underlying theory is only introduced briefly here,
and will have a focus on Markov chains. A more thorough
presentation (including proofs) that covers a broader
class of systems can be found in Ref. [25]. We will then
report on the results when applying our techniques on
the codon transition matrix. After discussing the
acquired results and their possible relation to the evolu-
tion of the genetic code, we conclude the paper with a few
closing remarks about the methods relation to biological
modeling in general, and possible future directions.

Methods
Hierarchical organization is an intrinsic property of com-
plex systems as it is a prerequisite for a system to stably
evolve complexity [27]. Formally, a hierarchy can be
viewed as a set of levels at which the system operates,
where each level approximately has its own closed
dynamics. Each level is defined by an aggregation (group-
ing) of states. Aggregating a Markov chain, which we con-
sider here, means that the state space is partitioned into
macro-states. The original dynamics and the partition of
the state space then defines a new stochastic process on
the coarser level. However, in general such an aggregation
does not define a proper level of description in the hierar-
chy since the partition introduces memory on the aggre-
gated level. Put differently, the dynamics on the
aggregated level is not closed. In the special case when
the aggregated dynamics indeed is closed, the stochastic
process over the partitions constitutes a Markov chain
with the same order as the original process. In such cases,
the aggregation is termed lumping in the literature, and
the Markov chain is said to be lumpable [28]. See Figure 1
for a schematic illustration of Markov chain lumping in
the context of the codon substitution process.

The degree by which a coarser process fulfills the
Markov criteria (i.e. its degree of closeness) can be mea-
sured for example as the expected mutual information,
denoted �I�, between the process' past and future states,
given its current state. Let {s1, s2, ..., sn} be the state space
of an aggregated process, Pi a stochastic variable of the

preceding state of si, and Fi a stochastic variable of the
subsequent state of si (here we only consider one step--in
general the past and future may be of arbitrary length).
The mutual information between past and future states,
given a current state si is

where H(Pi) is the Shannon entropy

of Pi. H(Fi) and H(Pi, Fi) of the joint distribution of Pi
and Fi are defined analogously. Then

where Pr(si) is probability that the system is in state si.
The criterion can be used to test whether or not a given
partition defines a lumping, but it is typically not useful
for constructing the partitions that define lumpings.
Since the number of possible ways to partition a state
space of N states is astronomical even for relatively small
N it is not feasible to evaluate all partitions. Instead, we
employ two novel techniques for identifying aggregations
that enables one to analyze systems with a large number
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Figure 1 Three levels of dynamics by Markov chain lumping. (a) 
Codon substitutions are modeled as a Markov chain. States represent 
codons and transitions represent substitutions between codons. (b) If 
the codons are aggregated with respect to the amino acids they code 
for, the new aggregated process remains a Markov chain. For instance, 
since AAA and AAG both code for lysine, they can be aggregated into 
one unit. (c) Specific aggregates of amino acids also exist such that 
their dynamics is Markovian. Lysine and arginine can for example be 
merged to form one state.
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of states (on the order of 103, or 104 if the transition
matrix is sparse). The first technique is based on the fol-
lowing observation (see [25,29] for further details): Con-
sider n eigenvectors of a transition matrix. These will
define N points in an n-dimensional space, where each
point is associated with a state in the Markov chain. If the
N points form n clusters, these clusters define an aggrega-
tion, where aggregates of states are given by corresponding
points within clusters. The task of finding aggregations is
then reduced to the problem of finding n eigenvectors
that respect the same n clusters of eigenvector elements.
We will illustrate this with an example. Consider a
Markov chain whose dynamics over some state space {a,
b, c, d} is given by a transition matrix

where p and q are probabilities. We can determine if the
states can be aggregated by examining P's eigenvectors.
These are given by the columns in

where r = p(q - 1)/q and . We see

that there are two clusters in the second eigenvector (with

values 1 and -1). Since the first eigenvector respects the

same clusters (trivially so since the first eigenvector forms

a single cluster), the first and the second eigenvectors

define an aggregation, namely {{a, c}, {b, d}}. There are

also two trivial aggregations: {{a, b, c, d}} (due to the first

eigenvector alone) and {{a}, {b}, {c}, {d}} (due to all eigen-

vectors, assuming they form a complete base). Due to the

conservation of probability in a Markov process, the triv-

ial aggregations where all states are in the same aggregate

always exist.
Identifying n eigenvector constitutes a constraint satis-

faction (SAT) problem. We have implemented a back-
tracking algorithm that in the typical case identifies
aggregates in polynomial time. It is beyond the scope of
this paper to describe the algorithm here. Instead we refer
to [30], where we specify the algorithm in detail and pro-
vide pseudocode.

The spectral method works best for inferring large
aggregates, but in order for small aggregates to be identi-
fied, they need to be distinct. Therefore we also use a sec-
ond technique akin to agglomerative clustering. It works
in the following:

1. Initialize an aggregation  as the partition where

each partition element consists of one element.

2. Evaluate every partition where two elements of 

are merged by calculating the expected mutual infor-

mation hIi (Eq. 3) (there are | |(| |-1)/2 partitions

to test).
3. Let V be the partition that resulted in the lowest �I�.
4. Replace  with V and repeat from step 2.

That is, initially each state is in a separate partition ele-
ment, and the state space is then successively aggregated
by joining the pair of aggregates that result in the lowest
mutual information. The agglomeration method gives
good results on the first levels in the aggregation hierar-
chy, but becomes less accurate at coarser levels. Since the
spectral method works best in the latter case, the tech-
niques complement each other.

We have applied the two techniques on a Markov chain
of codon substitutions, whose transition probabilities
have been empirically derived by Schneider et al. [26].
The codon substitution frequencies have been estimated
from 17,502 pairwise alignments of orthologous
sequences from human, mouse, chicken, frog and
zebrafish. For this purpose, they aligned 8.3 million
codons, counted the substitutions between codons, and
derived the substitution probability matrix from the
resulting counts.

Results
A first observation is that the spectrum of the transition
matrix provided by Schneider et al. has a clear gap after
the 21st eigenvalue, Figure 2(a). This gap indicates a time
scale separation and that the 21 first eigenvectors may
reveal an aggregation of the substitution process. By clus-
tering the elements of the 21 first eigenvectors of P--
resulting in 61 points in a 21 dimensional space--21 dis-
tinct clusters are acquired. Since the number of eigenvec-
tors equals the number of clusters, these define a valid
aggregation. As exemplified in Figure 2(b) the clusters
show as level sets in the individual eigenvectors. The
aggregation constitutes the standard genetic code as each
cluster constitutes codons that are associated with the
same amino acid, with the exception of the codons of ser-
ine, which are divided into two clusters ({TCT, TCC,
TCA, TCG} and {AGT, AGC}). This unique separation is
due to that serine is the only amino acid whose codons
are not connected with single point mutations (i.e. some
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codons are separated by a Hamming distance larger than
one on a hypercube).

At the higher order aggregated level of amino acid sub-
stitution, lumpings are not as clearly revealed by the
eigenvectors. This is expected since the redundancy in
the genetic code reflects a much stronger neutrality than
possible similarities between the amino acids. If the parti-
tioning of the state space is viewed as an optimization
problem aiming to minimize the mutual information
defined in Eq. 3, then there are many almost equivalent
minima. In this situation significant amino acid aggre-
gates are identified by the complementary agglomeration

technique. The progress of the procedure is shown in the
dendrogram in Figure 3. Due to that tryptophan (W) has
very low mutability and is the least occurring amino acid,
a significant two-state lumping exists where tryptophan
forms one aggregate and the rest of the amino acids form
another aggregate. To simplify further analysis trypto-
phan is therefore discarded. The resulting most signifi-
cant aggregation is given by {A, T}, {I, M, V}, {E, D} and
{K, R}, cf. Figure 4. If we go back to the spectral view, we
see that the same aggregation is indicated by three of the
eigenvectors in the transition matrix, Figure 5. This
exemplifies that one may also identify aggregates by
searching for clusters or clear separations of eigenvector
elements and then test if these constitute valid aggregates

Figure 3 Agglomeration progress. A dendrogram of the result of an 
agglomeration based on successively joining pairs of states or aggre-
gates that result in the best aggregate with respect to the mutual in-
formation measure in Eq. 3. The dashed line marks the most significant 
aggregation, which is also shown in Figure 4. S1 denotes serine coded 
by TCT, TCC, TCA and TCG, and S2 denotes serine coded by AGT and 
AGC. Amino acids forming Riddle et al.'s minimum set capable of form-
ing complex protein folds [41] are underlined.
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Figure 2 A spectral gap and level sets reveal the genetic code. Eigenvalues of the codon substitution transition matrix P (note that the system has 
61 states as substitutions from the three stop codons are not considered). A distinct spectral gap after the 21st first eigenvalues (marked in red) sug-
gests that the 21 first eigenvectors reveal an aggregation. (b) Vector elements of the fourth eigenvector of P are organized in level sets, where codons 
that map to the same amino acid are on the same level (with the exception of serine). All the eigenvalues are real because the transition matrix P is 
reversible.
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Figure 4 The most significant amino acid aggregation. Amino acid 
groups resulting in the most significant lumping {A, T}, {I, M, V }, {E, D} 
and {K, R} as shown in the standard genetic code table.

TTT  F/Phe  TCT  S/Ser       TAT  Y/Tyr   TGT  C/Cys  
TTC  F/Phe      TCC  S/Ser       TAC  Y/Tyr      TGC  C/Cys  
TTA  L/Leu      TCA  S/Ser       TAA  */Ter       TGA  */Ter  
TTG  L/Leu     TCG  S/Ser       TAG  */Ter       TGG  W/Trp  

CTT  L/Leu      CCT  P/Pro       CAT  H/His       CGT  R/Arg  
CTC  L/Leu      CCC  P/Pro       CAC  H/His     CGC R/Arg  
CTA  L/Leu      CCA  P/Pro       CAA  Q/Gln     CGA  R/Arg  
CTG  L/Leu    CCG  P/Pro       CAG  Q/Gln     CGG  R/Arg  

ATT  I/Ile      ACT  T/Thr      AAT  N/Asn     AGT  S/Ser  
ATC  I/Ile       ACC  T/Thr     AAC  N/Asn     AGC  S/Ser  
ATA  I/Ile       ACA  T/Thr     AAA  K/Lys     AGA  R/Arg  
ATG  M/Met   ACG  T/Thr   AAG  K/Lys     AGG  R/Arg  

GTT  V/Val     GCT  A/Ala      GAT  D/Asp   GGT  G/Gly  
GTC  V/Val     GCC  A/Ala     GAC  D/Asp   GGC  G/Gly  
GTA  V/Val     GCA  A/Ala     GAA  E/Glu    GGA  G/Gly  
GTG  V/Val     GCG  A/Ala     GAG  E/Glu    GGG  G/Gly 
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by using Eq. 3. For instance, one known grouping is to
separate purine-centred and pyrimidine-centred codons
[31,32]. Inspecting Figure 2(b) and Figure 5, we can see
that the two groups indeed are separated if we exclude
the rare amino acids C, Y and W, although not forming
two distinct meta-clusters. However, a purine-pyrimidine
separation is not present in the dendrogram in Figure 3.

Discussion
We will now compare our results with amino acid group-
ings that previously have been discussed in the literature.
Firstly, Jiménez-Montaño and He have used the same
matrix that we employed here to perform hierarchical
clustering of codons based on an Euclidian distance mea-
sure [33] (supplementary material). In their case W also
forms its own aggregate and S is split up. Other similari-
ties are the grouping of {E, D} and {A, T}. However, A and
T are also grouped with P, R and S, and so their groupings
do not respect the purine-pyrimidine separation. This is
also the case in Figure 3, but not on the first aggregation
levels. Another difference is that the genetic code is not
as distinct in their case. The codons of F, for instance, are
more separated than some of the amino acid aggregates
(e.g. A and T).

Kosiol et al. [34] have estimated a different empirical
codon model than the one used here and perform an
aggregation with the Almost Invariant Sets (AIS) algo-
rithm [35], which aims to find groups of elements that are
conserved. They group codons into 20 and 7 aggregates
and first identify the genetic code. In the 7-element
aggregation, the aliphatics {I, M, V, L} form one group and
the aromatics {Y, F} form one group (in our case, this is
not as distinct, see Figure 3). Furthermore, half of the
amino acids--those that are hydrophilic and basic--form
one large group (in this way, S is not split). This group,
however, does not respect the purine-pyrimidine separa-
tion. Kosiol et al. also apply the same algorithm on an
empirical amino acid model [36] and acquire very similar
results. One may argue that this is expected, since the AIS
algorithm identifies the genetic code and since the aggre-
gation of the codon model with respect to genetic code
probably is very similar to the amino acid model. If we
compare the aggregates acquired by Jiménez-Montaño et
al. and Kosiol et al., we see that there is little agreement,
with the exception that A, S and T are in the same aggre-
gates in both cases.

Johnson and Overington have compared dendrograms
based on twelve different scoring matrices with respect to
a distance measure between scoring distributions [37]. In
the resulting dendrograms all of our aggregates occur to
various degrees (in 7, 4, 6 and 3 out of 12 times for {K, R},
{A, T}, {E, D} and {I, M, V}, respectively). Interestingly, all
of our aggregates occur both in the dendrograms based
on the scoring matrices by Gonnet et al [38] and Jones et
al [39], where W also forms its own aggregate. Both these
matrices are based on empirical sequence comparisons.
In contrast, there is much less agreement with respect to
matrices based on chemical or physical properties.

The standard genetic code is quite easily identified
since member codons within an aggregate are invariant
under mutations as they code for the same amino acid. It
is not as clear, however, why the most significant amino
acid aggregation is given by {A, T}, {I, M, V }, {E, D} and
{K, R}--one of many other possible ways to group
together amino acids. One may hypothesize that the
aggregated dynamics of codon substitutions provide
information about the origin of the genetic code. There
are several theories aiming to address the fundamental
question on how the code came to be. See Ref. [15] for a
comprehensive comparison. With the exception of the
frozen accident theory by Crick [40], these theories cou-
ple the evolution of the genetic code primarily with phys-
ico-chemical properties of the amino acids or evolved
biosynthetic pathways. Woese [9], specifically, suggested
that the code has evolved by a process of ambiguity
reduction. The idea is that a crude primordial version of

Figure 5 Eigenvector clusters indicate aggregation levels. Ele-
ments of the fourth, seventh and eighth eigenvector of the codon sub-
stitution matrix. Codons that map to the same amino acids are 
clustered, which indicate the standard genetic code. There are also 
clusters of amino acids in turn (marked with the same colors as in Fig-
ure 3 and 4): {A, T}, {I, M, V}, {E, D} and {K, R}, which indicate that these 
form higher order aggregates.
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the code, where groups of codons code for groups of
amino acids with resembling properties, evolved into the
code's current state by a series of refinements. One may
ask if amino acid groups reflect earlier versions of the
code. Riddle et al. [41] experimentally searched for a min-
imum set of amino acids capable of forming complex pro-
tein folds. They found that the five amino acids A, G, I, E
and K (underlined in Figure 3) are capable of forming
most of the ancient SH3 protein domain. Consider again
the most significant amino acid aggregation and note that
A, I, E and K are all members of separate aggregates and
that G forms its own aggregate. One could speculate that
the aggregates reflect group codons in an earlier version
of the code, and that these groups were specialized into
present day codons. It is an intriguing hypothesis that is
also partly supported by Jiménez-Montaño's hypothesis
on the evolutionary history of the code [14]. In the pro-
posed evolutionary tree, which is based on group theory
and the thermodynamics of codon-anticodon interac-
tions, amino acids within aggregates {A, T}, {I, M, V} and
{E, D} share the same branches up till the two last reas-
signment of codons, although K and R are separated ear-
lier than that (four reassignments). However, these
observations remain speculative and clearly a more care-
ful analysis would be required in order to conclusively
relate acquired aggregates to the evolution of the stan-
dard genetic code and its deviates.

Conclusions
We have employed two techniques to identify multiple
levels of substitution dynamics. The techniques only con-
sider the raw dynamics of the system and are therefore
independent of system dependent assumptions that may
be irrelevant or even false. The techniques therefore
manage to blindly identify the amino substitution process
via the standard genetic code, as well as higher order sub-
stitution dynamics via amino acid groups. The tech-
niques are not limited to the codon substitution process,
but may be applied to systems that are specified by a state
space and a transition matrix. This is a very broad class of
systems that for instance include networks (where verti-
ces constitute the state space, and where the transition
matrix is defined by the network Lagrangian). The tech-
niques may therefore be used to identify hierarchical
dynamics in seemingly very different biological systems,
such as protein interaction networks, genetic regulatory
networks, metabolic pathways and food webs. Identifying
the hierarchical structure of a system does not only
increase our understanding of the system, especially if the
levels are intuitively difficult to grasp, but it also enables
effective coarse graining in simulations. As soon as one
hierarchical level is identified, details of lower levels can
be discarded if they are not of relevance when simulating
the system at the new level. Due to the increasing size and

complexity of current models that owe to the rapid
growth of available biological data, such reductions are of
particular value.

Authors' contributions
OG conceived of the study. OG and MNJ designed and implemented the algo-
rithms, performed the computational experiments, analyzed the results, wrote
the paper, and read and approved the final manuscript.

Acknowledgements
This work was funded in part by the EU integrated project FP6-IST-FET PACE, by 
EU FP6-NEST project EMBIO, and by EU STREP project FP6-IST-STREP MORPHEX. 
The authors thank Rickard Sandberg for helpful discussions, and the anony-
mous reviewers for their valuable comments.

Author Details
Complex Systems Group, Department of Energy and Environment, Chalmers 
University of Technology, 412 96 Göteborg, Sweden

References
1. Nirenberg MW, Matthaei JH: The Dependence of Cell-Free Protein 

Synthesis in E. Coli Upon Naturally Occuring or Synthetic 
Polyribonucleotides.  Proceedings of the National Academy of Sciences of 
the USA 1961, 47:1588-1602.

2. Jungck JR: The genetic code as a periodic table.  Journal of Molecular 
Evolution 1978, 11(3):211-224.

3. Karasev V, Stefanov V: Topological Nature of the Genetic Code.  Journal 
of Theoretical Biology 2001, 209(3):303-317.

4. Chechetkin VR: Block structure and stability of the genetic code.  
Journal of Theoretical Biology 2003, 222(2):177-188.

5. Wilhelm T, Nikolajewa S: A new classification scheme of the genetic 
code.  Journal of molecular evolution 2004, 59(5):598-605.

6. Di Giulio M: The origin of the genetic code: theories and their 
relationships, a review.  BioSystems 2005, 80:175-184.

7. Marquez R, Smit S, Knight R: Do universal codon-usage patterns 
minimize the effects of mutation and translation error?  Genome Biology 
2005, 6(11):R91.

8. Itzkovitz S, Alon U: The genetic code is nearly optimal for allowing 
additional information within protein-coding sequences.  Genome 
Research 2007, 17:405-412.

9. Woese CR: On the evolution of the genetic code.  Proceedings of the 
National Academy of Sciences of the USA 1965, 54:1546-1552.

10. Wong JTF: Role of minimization of chemical distances between amino 
acids in the evolution of the genetic code.  Proceedings of the National 
Academy of Sciences of the United States of America 1980, 77(2):1083-1086.

11. Hornos JEM, Hornos YMM: Algebraic model for the evolution of the 
genetic code.  Physical Review Letters 1993, 71(26):4401-4404.

12. Jiménez-Sánchez A: On the origin and evolution of the genetic code.  
Journal of Molecular Evolution 1995, 41(6):712-716.

13. Trifonov E, Bettecken T: Sequence fossils, triplet expansion, and 
reconstruction of earliest codons.  Gene 1997, 205(1-2):1-6.

14. Jiménez-Montaño MA: Protein evolution drives the evolution of the 
genetic code and vice versa.  BioSystems 1999, 54:47-64.

15. Trifonov EN: Consensus temporal order of amino acids and evolution of 
the triplet code.  Gene 2000, 261:139-151.

16. Copley SD, Smith E, Morowitz HJ: A mechanism for the association of 
amino acids with their codons and the origin of the genetic code.  
Proceedings of the National Academy of Sciences of the United States of 
America 2005, 102(12):4442-4447.

17. Bollenbach T, Vetsigian K, Kishony R: Evolution and multilevel 
optimization of the genetic code.  Genome Research 2007, 17(4):401-404.

18. Novozhilov AS, Wolf Y, Koonin EV: Evolution of the genetic code: partial 
optimization of a random code for robustness to translation error in a 
rugged fitness landscape.  Biology Direct 2007:2.

19. Woese CR: Order in the genetic code.  Proceedings of the National 
Academy of Sciences of the USA 1965, 54:71-75.

Received: 20 October 2009 Accepted: 23 April 2010 
Published: 23 April 2010
This article is available from: http://www.biomedcentral.com/1471-2105/11/201© 2010 Görnerup and Jacobi; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Bioinformatics 2010, 11:201

http://www.biomedcentral.com/1471-2105/11/201
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14479932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=691072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11312591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15693616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15823416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16277746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17293451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5218910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6928661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10055237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8587115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10658837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11164045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15764708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17351130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17229320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5216368


Görnerup and Jacobi BMC Bioinformatics 2010, 11:201
http://www.biomedcentral.com/1471-2105/11/201

Page 7 of 7
20. Dayhoff MO, Schwartz RM, Orcutt BC: A model of evolutionary change in 
proteins.  In Atlas of protein sequence and structure Volume 5. National 
biomedical research foundation, Washington DC.: M. O. Dayhoff; 
1978:345-358. 

21. Taylor W: The classification of amino acid conservation.  Journal of 
Theoretical Biology 1986, 119(2):205-218.

22. Wu TD, Brutlag DL: Discovering Empirically Conserved Amino Acid 
Substitution Groups in Databases of Protein Families.  In Proceedings of 
the Fourth International Conference on Intelligent Systems for Molecular 
Biology AAAI Press; 1996:230-240. 

23. Hwang DG, Green P: Bayesian Markov chain Monte Carlo sequence 
analysis reveals varying neutral substitution patterns in mammalian 
evolution.  Proceedings of the National Academy of Sciences 2004, 
101(39):13994-14001.

24. R O, F LW: A collection of amino acid replacement matrices derived 
from clusters of orthologs.  Journal of Molecular Evolution 2005, 
5(61):659-665.

25. Jacobi MN, Görnerup O: A Spectral Method For Aggregating Variables 
In Linear Dynamical Systems With Application To Cellular Automata 
Renormalization.  Advances in Complex Systems 2009, 12(02):131-155.

26. Schneider A, Cannarozzi GM, Gonnet GH: Empirical codon substitution 
matrix.  BMC Bioinformatics 2005, 6(13):.

27. Simon HA: The Architecture of Complexity.  Proceedings of the American 
Philosophical Society 1962, 106:467-482.

28. Kemeny JG, Snell JL: Finite Markov Chains.  2nd edition. New York, NY, 
USA: Springer; 1976. 

29. Meilă M, Shi J: A random walks view of spectral segmentation.  In AI and 
Statistics (AISTATS) 2001.

30. Görnerup O, Nilsson Jacobi M: A Method for Finding Aggregated 
Representations of Linear Dynamical Systems.  Advances in Complex 
Systems 2010 in press.

31. Trifonov EN, Kirzhner A, Kirzhner VM, Berezovsky IN: Distinct Stages of 
Protein Evolution as Suggested by Protein Sequence Analysis.  Journal 
of Molecular Evolution 2001, 53(4):394-401.

32. Trifonov EN: Theory of Early Molecular Evolution.  In Discovering 
Biomolecular Mechanisms with Computational Biology Springer US; 
2006:107-116. 

33. Jiménez-Montano MA, He M: Irreplaceable Amino Acids and Reduced 
Alphabets in Short-Term and Directed Protein Evolution.  In ISBRA '09: 
Proceedings of the 5th International Symposium on Bioinformatics Research 
and Applications Berlin, Heidelberg: Springer-Verlag; 2009:297-309. 

34. Kosiol C, Holmes I, Goldman N: An empirical codon model for protein 
sequence evolution.  Molecular biology and evolution 2007, 
24(7):1464-1479.

35. Kosiol C, Goldman N, Buttimore NH: A new criterion and method for 
amino acid classification.  Journal of Theoretical biology 2004, 228:97-106.

36. Whelan S, Goldman N: A general empirical model of protein evolution 
derived from multiple protein families using a maximum-likelihood 
approach.  Molecular Biology and Evolution 2001, 18(5):691-699.

37. Johnson MS, Overington JP: A Structural Basis for Sequence 
Comparisons: An Evaluation of Scoring Methodologies.  Journal of 
Molecular Biology 1993, 233:716-738.

38. Gonnet GH, Cohen MA, Benner SA: Exhaustive Matching of the Entire 
Protein Sequence Database.  Science 1992, 256(5003):1443-1445.

39. Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation 
matrices from protein sequences.  CABIOS 1992, 8:275-282.

40. Crick FH: The origin of the genetic code.  Journal of Molecular Biology 
1968, 38(3):367-379.

41. Riddle DS, Santiago JV, Bray-Hall ST, Doshi N, Grantcharova VP, Yi Q, Baker 
D: Functional rapidly folding proteins from simplified amino acid 
sequences.  Nature Structural and molecular biology 1997, 4:805-809.

doi: 10.1186/1471-2105-11-201
Cite this article as: Görnerup and Jacobi, A model-independent approach 
to infer hierarchical codon substitution dynamics BMC Bioinformatics 2010, 
11:201

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3461222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15927081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11675599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17400572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15064085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8411177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1604319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1633570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4887876


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


