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Abstract

Purpose of Review—Cognitive impairment is associated with obesity, sarcopenia, and 

osteoporosis. However, no critical appraisal of the literature on the relationship between 

musculoskeletal deficits and cognitive impairment, focusing on the epidemiological evidence and 

biological mechanisms, has been published to date. Herein, we critically evaluate the literature 

published over the past 3 years, emphasizing interesting and important new findings, and provide 

an outline of future directions that will improve our understanding of the connections between the 

brain and the musculoskeletal system.
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Recent Findings—Recent literature suggests that musculoskeletal deficits and cognitive 

impairment share pathophysiological pathways and risk factors. Cytokines and hormones affect 

both the brain and the musculoskeletal system; yet, lack of unified definitions and standards makes 

it difficult to compare studies.

Summary—Interventions designed to improve musculoskeletal health are plausible means 

of preventing or slowing cognitive impairment. We highlight several musculoskeletal health 

interventions that show potential in this regard.
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Introduction

Musculoskeletal and cognitive function declines often occur at the same time, for example 

with aging or in individuals with dementia [1–3]. Cognition is an intellectual or mental 

process via which organisms obtain knowledge and cognitive impairment (diminished 

intellectual and/or mental functioning) is associated with obesity [4]. Further, brain function 

and body composition are linked [4–7]. In particular, obesity in middle age has been linked 

with increased risk of developing Alzheimer’s disease (AD) [8, 9]. However, whether 

cognitive and musculoskeletal abnormalities share common mechanistic bases or they 

appear at the same time due to common risk factors is not completed clear and is a subject of 

continuous research.

Efforts to establish the mechanistic links between brain and musculoskeletal function have 

been undertaken. For example, studies showed that metabolically active tissues such as 

skeletal muscle release neurotrophic factors that regulate synapses in the brain [10]. One 

of such factors is the brain-derived neurotrophic factor (BDNF), released during skeletal 

muscle contraction [11], and which absence has been linked to neurodegenerative processes 

[12]. Similarly, serotonin controls bone mass accrual by acting on its receptor in the 

receptors on ventromedial hypothalamic neurons [13]. Further, several factors released by 

osteoblasts and osteocytes in bone, including osteocalcin, sclerostin, and fibroblast growth 

factor 23, can cross the blood–brain barrier and alter brain function [14]. Herein, we review 

the current literature on brain-musculoskeletal system interactions (summarized in Figure 1) 

and propose future directions that might help resolve controversies in the field.

Musculoskeletal System and Cognition

Mounting evidence suggests that physical activity is connected to cognitive development 

and brain evolution, whereas lifestyles and habits characterized by prolonged stasis (e.g., 

office work, sedentary entertainment) are associated with increased risk for cognitive 

impairment [15, 16]. The effects on musculoskeletal conditions and cognitive status of 

2-h prolonged sitting [17] and standing [18] during office work were evaluated in an adult 

population in Australia. Prolonged sitting and standing were associated with increased 

whole-body musculoskeletal discomfort based on the Nordic Musculoskeletal Questionnaire 

[17, 18], with detrimental effects on mental status and attention reaction responses [17, 18]. 
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Contrasting results were found for problem-solving skills, assessed with the Ruff Figural 

Fluency Test, showing improvements during prolonged sitting, but the opposite effect 

during prolonged standing [17, 18]. Moreover, prolonged standing combined with a foot 

movement exercise further decreased problem-solving skills while focused musculoskeletal 

discomfort to the foot and ankle regions [19]. Other studies suggest that prolonged standing 

decreases cognitive performance during complex tasks [20]. Therefore, moving from sitting 

to standing while working, involving minimal physical activity, must be evaluated further 

to understand the mechanisms behind the relationship between musculoskeletal health and 

cognitive status.

The effects of intermittent physical activity were assessed in a study involving 8 middle-age 

men and 3 women, by determining the effect of three different disruptive activities (social 

interaction, functional resistance training, and walking) on cognitive performance and 

salivary cortisol levels (as a marker of stress) during 3-h sitting [21]. Using a memory task 

evaluation and the numerical n-back test method, this study found that walking improves 

cognitive performance. Interestingly, the study also determined a reduction in salivary 

cortisol levels when participants were exposed to any of the three disruptive activities. The 

n-back test is useful to assess working memory, since it allows the participants to recall the 

last in a series of events [22]. Another study of healthy adults 65 years and older showed 

improved performance on memory task when the letter n-back test was assessed 15 and 

45 min after stationary bicycle exercise [23]. Further, following exercise, activity in the 

parietal brain region was found higher than that of the frontal region, as determined by brain 

hemoglobin concentration [23]. Further, a positive relationship between the intensity of daily 

physical activities (from sedentary to highly active) and bone mass was found in adults aged 

over 70 years, with sex-dependent differences in certain brain regions [24]. Additionally, the 

later study revealed that women with bone fracture history had been less active earlier in life 

than women without fractures [24].

Musculoskeletal and dental conditions affecting mastication are also associated with 

negative effects on cognition. Thus, studies in Japanese individuals 65 years and older show 

an association between either having less than 20 functional teeth and reduced occlusal force 

or being fully edentulous and cognitive impairments [25, 26]. Furthermore, a systematic 

review identified a study linking reduced cognitive performance (based on the Mini-Mental 

State Exam (MMSE)) with impaired masticatory function in AD patients compared to an 

age-matched healthy population [27]. Nonetheless, the relationship between mastication and 

cognitive impairment is not fully understood [28].

Skeletal Muscle and Cognition

Sarcopenia and Cognitive Impairment

Sarcopenia is generally defined as age-related progressive loss of muscle mass and function, 

although the working definition varies among different groups [29, 30]. Thus, several 

operational definitions of sarcopenia are in use, including those provided by the European 

Working Group on Sarcopenia in Older People [31], the United States Foundation for 

the National Institutes of Health (FNIH) [32], the Asian Working Group for Sarcopenia 

(AWGS) [33], and the Sarcopenia Definition and Outcomes Consortium [34]. Therefore, 
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the prevalence of sarcopenia reported in the literature varies substantially within and 

across geographic areas, due to differences in the criteria and cutoff points applied [35, 

36]. Researchers conducting the Geelong Osteoporosis Study (GOS) [37] described the 

consequences of applying different criteria and cutoff points (international and population-

specific) in a homogeneous sample for prevalence estimates for the Australian population 

[38, 39]. The main finding was that, across all the definitions, the prevalence of sarcopenia 

increased with increasing age; however, the varied criteria and cutoff points resulted 

in inconsistent case ascertainment. The GOS explored the relationship between several 

muscle parameters and overall cognitive function, specific cognitive domains, and cognitive 

impairment among men [40]. The findings suggested that muscle parameters, especially 

muscle function [41••], muscle quality [42•], and muscle density [43••], are associated with 

certain cognitive domains (including working memory, attention, and information processing 

speed) independent of age, physical activity levels, education, and lifestyle factors. However, 

these associations were not detected for all the cognitive domains tested. Similar results 

on the association between dynapenia (age-associated muscle strength loss not caused 

by neurologic or muscular diseases) and low cognition were reported in female GOS 

participants [44•].

In summary, inconsistencies in studies associating muscle health with cognition could be 

due to differences in criteria used to define sarcopenia, sarcopenic obesity, and cognitive 

deficits. Evidence for mechanisms linking muscle health with certain brain functions also 

remain unclear.

Sarcopenic Obesity and Cognitive Impairment

Sarcopenic obesity is a condition characterized by concurrent high adiposity levels and low 

muscle mass and function with advanced age [45]. The association between sarcopenic 

obesity and cognition was assessed in 353 community-recruited USA participants aged 

40 years and over [46]. Body composition was measured by bioelectrical impedance 

analysis. Obesity was determined by body mass index (BMI) and fat percentage. Global 

cognition was assessed using the Montreal Cognitive Assessment. Specific cognitive 

domains in verbal fluency and mental flexibility were assessed using the animal naming test 

(participants are asked to name as many animals as they could within one minute). Visual 

search speed, scanning, and processing speed were assessed using Trail Making A. The 

authors recommended that sarcopenia and sarcopenic obesity should be regarded as clinical 

indicators of cognitive impairment, listing potential mechanisms that explain sarcopenic 

obesity and cognitive deficits association, including low-grade chronic inflammation, 

oxidative stress, and insulin resistance; however, no biomarker data was included in the 

report.

The association between sarcopenic obesity and cognitive impairment was examined in 948 

community-based Chinese participants aged 60 years and over (51% female) [47]. Body 

composition was measured by bioelectrical impedance analysis and cognition by MMSE. 

Sarcopenia was defined using the AWGS criteria, and obesity was determined by body 

fat percentage (fat mass/weight). Six percent of participants were identified as sarcopenic 

obese. This study reported an independent association between sarcopenic obesity and 
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cognitive impairment and proposed that the mechanisms underlying the link between 

muscle, fat, and cognition were inflammation, insulin resistance, and decreased growth 

hormone secretion, but these hypotheses were not tested.

The association between sarcopenic obesity and cognitive performance was also examined 

in 1235 Singaporean patients (~48% female) aged 45 years and over with type 2 diabetes; 

all were attending diabetes care [48]. Body composition was assessed using bioelectrical 

impedance analysis, and the Repeatable Battery for the Assessment of Neuropsychological 

Status and MMSE were applied for assessing cognition. This study identified an association 

between sarcopenic obesity and poor cognitive performance, particularly in the domains of 

memory and language. The authors acknowledged that the mechanisms underlying these 

dual deficits in brain and body were not fully understood; however, it is likely that in these 

patients, abnormal levels of insulin affect amyloid β metabolism, which controls neuronal 

function.

Further, in a longitudinal, population-based study in the USA, the association between 

sarcopenic obesity and incident cognitive function was determined in 5822 participants 

(~56% female) aged 65 years old and over, without cognitive impairment at baseline [49]. 

They adopted the FNIH definition of sarcopenia, and defined obesity by BMI. Cognition 

was assessed using AD-8 score or immediate/delayed recall, orientation, clock-draw test, 

or date/person recall. At baseline, 12.9% of subjects were identified as having sarcopenic 

obesity; 21.2% were identified with cognitive impairment at follow-up. Sarcopenia obesity 

and sarcopenia alone were significantly associated with higher risk of cognitive impairment. 

On the other hand, a study including 542 participants 21–90 years recruited from the 

Chinese community produced contrasting findings [50]. The researchers obtained body 

composition data using dual-energy x-ray absorptiometry (DXA) and defined obesity as 

the upper two quintiles of fat mass index. They employed a sarcopenia definition based 

on the 2019 AWGS criteria. Cognitive impairment was determined using the Repeatable 

Battery for the Assessment of Neuropsychological Status. This battery included 12 tests 

to assess immediate memory, visuospatial/constructional abilities, language, attention, and 

delayed memory. Sarcopenia and sarcopenic obesity were not associated with cognitive 

impairment, but obesity alone and muscle function (grip strength or gait speed) were. The 

authors speculated that insulin resistance underpins the association.

Bone and Cognition

Osteoporosis is characterized by low bone mass, and is defined by the number of standard 

deviations a patient’s BMD differs from the average of a population of the same age and 

sex (Z-score) or from a young normal reference value (T-score). T-scores lower than −2.5 

standard deviations are indicative of osteoporosis, whereas values between −1.0 and −2.5 

lead to a diagnosis of osteopenia, a milder condition [51], as defined by the Word Health 

Organization [52]. Low BMD increases risk for fracture [53] and has been associated with 

high morbidity and mortality [54], in particular among older individuals.

Several epidemiologic studies have looked at the potential correlation between low bone 

mass and cognitive decline. The PRESENT project 2018 [55] examined the association 
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between BMD and cognition in 650 Koreans without stroke or dementia, aged 50 years 

or older. MMSE was used to assess cognition in 197 participants with osteopenia and 

154 with osteoporosis. As expected, osteoporosis was more common among women than 

among men, but low BMD was associated with cognitive impairment in both genders, 

although the association appeared stronger in women for both osteopenia and osteoporosis. 

The authors listed possible common mechanisms underlying this association, including 

estrogen deficiency. Postmenopausal estrogen deficiency leads to an initial increase in bone 

formation and resorption, with bone loss resulting from remodeling imbalance. In the brain, 

estrogen reduces inflammation and promotes neuroplasticity in the brain processes crucial 

for learning and memory [56].

Similarly, a systematic literature review and meta-analysis reported that both lower BMD 

and lower femoral neck BMD were linked to increased risk of AD and gender seems 

to play a role in this association [57]. Further studies, under the Bushehr Elderly Health 

Program [58], examined gender-specific cross-sectional associations between osteoporosis 

and cognitive impairment in a community-dwelling sample of 1508 Iranian participants 

aged 60 years and over (~49% female). BMD was assessed using DXA; osteoporosis 

and osteopenia were identified by DXA-derived BMD at any skeletal site. Cognition was 

assessed using Mini-Cog and categorical verbal fluency tests. Five hundred and ninety-

eight participants had osteoporosis and 677 had cognitive impairment. Osteoporosis at 

the spine and total hip was associated with increased risk of cognitive impairment in 

women and, conversely, cognitive impairment was associated with increased risk of spinal 

osteopenia/osteoporosis, total hip osteoporosis, and whole-body osteoporosis in women. 

These associations were not found in men. The authors propose that gender differences 

identified in this study are due to changes in estrogen levels in women during their lifespan 

and suggested that hypothalamic–pituitary–adrenal axis dysregulation reflected the dual 

decline in bone health and cognitive function [58].

The associations between osteoporosis and cognitive function were also examined in 260 

hospitalized Korean patients (59% female) recovering from acute stroke [59]. Osteoporosis 

was defined by T-score ≤−2.5 or low BMD in the femoral neck or lumbar spine, and 

cognitive impairment was assessed by the Korean MMSE. Patients with osteoporosis before 

and after the recovery phase had higher prevalence of cognitive impairment. In addition, 

women who experienced significant cognitive decline in the first 5 years after stroke had 

increased risk of fracture over the next decade. None of the associations identified in women 

was found in men. The authors recommended further investigation of gender-specific 

biological mechanisms that might underlie these associations.

Using the Canadian Multicentre Osteoporosis Study (CaMos), the relationship between 

cognitive decline, bone loss, and fracture risk was examined in 2361 participants (74% 

female) selected from the general population [60]. Cognition was assessed using the MMSE. 

In women, but not in men, there was an association between cognitive decline and bone loss. 

The authors suggested that estrogen could mediate this association [60]. The association 

between dementia, low BMD, and osteoporosis was examined in 363 Turkish adults aged 65 

years and over (63% female) [61]. In this study, BMD assessed by DXA was found lower 
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in participants with dementia, but without differences based on the type of dementia (AD, 

vascular dementia, or mixed dementia), gender, disease duration, or severity.

In summary, cross-sectional and longitudinal data support an association between 

osteoporosis and poor cognition, independent of aging. This pattern appears to be more 

evident in women than in men, although further research is needed to identify mechanisms 

linking these deficits in bone and brain.

Muscle and Bone Crosstalk and Cognitive Impairment

A recent report examined lean mass (a surrogate for skeletal muscle mass) and bone mass in 

association with cognitive status among 535 Taiwanese participants, aged 65 years or over, 

of which 67.3% had normal cognition status, 18.3% had mild cognitive impairment, and 

14.4% had a diagnosis of dementia [62]. An association between bone loss and cognitive 

impairment was detected. In addition, the authors claimed that diminishing lean mass 

reduced BMD, so was an indirect contributor to cognitive impairment. Parallel losses of 

lean and bone mass have also been reported using data from the GOS [63].

Frailty and Cognitive Impairment

Frailty is reduced resilience to stressors that may lead to declines in multiple functional 

systems. It is associated with skeletal muscle weakness, fatigue, reduced mobility, low 

physical activity, and weight loss [64]. Cognitive frailty is defined as concurrent physical 

frailty and cognitive impairment (excluding dementia and AD) [65], and is associated 

with adverse health outcomes, such as functional disability, depression, malnutrition, 

hospitalization, impaired quality of life, loss of independence, and, ultimately, mortality, 

in the elderly [66–68]. There is currently no universally recognized definition of cognitive 

frailty, which has been argued to constitute an independent dimension of frailty [69]. Our 

current understanding of the neuropathological pathways in cognitive frailty is insufficient 

to develop a cost-effective screening tool, partially because the high cost of specialized 

equipment (e.g., functional MRI) means that most research involved only small numbers 

of participants, giving low statistical power for detecting differences and changes. The 

pathological pathways in cognitive frailty are unclear. As described above, contracting 

skeletal muscle is a major source of neurotrophic factors, including BDNF, which regulates 

synapses in the brain [10]. Thus, BDNF is a plausible candidate for the as-yet unidentified 

mechanism linking skeletal muscle and brain function. Furthermore, skeletal muscle activity 

has immune and redox effects that support brain function [70] and reduce muscle catabolism 

[71]. Muscle loss, muscle weakness, fat infiltration into muscle, and frailty, in turn, appear 

to be associated with systemic and central inflammation and have been linked with impaired 

synaptic neuroplasticity and cognitive decline [72].

Oral (or dental) frailty has emerged as an indicator on the relationship between oral status 

and overall health [73]. It is characterized by a reduction in oral activity combined with 

both musculoskeletal and cognitive impairments. Particularly during aging, musculoskeletal 

functions such as mastication, swallowing, occlusal force, and tongue pressure are 

compromised, contributing to declined overall health status and frailty [74, 75••]. Although 
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oral health has been extensively assessed in terms of neurodegeneration risk (e.g., 

periodontal pathogens and AD), further research on how oral frailty as a musculoskeletal 

syndrome may promote cognitive impairment is required [74, 75••].

Molecular and Cellular Mechanisms Underlying Musculoskeletal Deficits 

and Cognitive Impairment

As recent reviews [76–78] show, skeletal muscle and bone are dynamic tissues able to 

communicate both biomechanically and molecularly. In addition, molecular factors released 

from skeletal muscle and bone (myokines and osteokines, respectively) affect cognitive 

processes [76–78]. Since myokines and osteokines may be released in response to physical 

activity, it is reasonable to consider cellular and molecular crosstalk as potential mechanisms 

underpinning the relationship between the musculoskeletal system and cognition. Myokines, 

osteokines, and sex hormones are being studied in the hope of revealing avenues for 

development of therapies for cognitive detriments caused or aggravated by musculoskeletal 

deficits.

Myokines and Cognition

During contraction, skeletal muscle releases molecular factors that may affect cognitive 

function, such as BDNF, a neurotrophin required in adults for the maintenance of synaptic 

connections and adaptive neuronal plasticity, regulating cognitive processes such as learning 

and memory [79]. A study showed that after long-term voluntary exercise, adult male mice 

exhibited a lactate-dependent increase in hippocampal BDNF [80]. Interestingly, lactate (a 

metabolite released from muscle during exercise) was responsible for improvement in both 

learning and memory in these mice, and the induction of the hippocampal BDNF expression 

was found to be dependent on the sirtuin 1 (SIRT1)/peroxisome proliferator–activated 

receptor-γ coactivator 1-α (PGC1α)/fibronectin type III domain-containing 5 (FNDC5) 

pathway [80]. Furthermore, SIRT1 knockout male mice were found to be more anxious 

than wild-type mice and suffering cognitive impairment characterized by reduced learning 

abilities and memory [81]. In a rat model of AD, direct intervention in the hippocampus 

with the 42 amino acid form of amyloid β (Aβ1–42) resulted in cognitive impairment 

by suppressing PGC1α/FNDC5/BDNF signaling [82]. However, the cognitive impairment 

was partially reversed by moderate physical activity, revealing a recovered PGC1α/FNDC5/

BDNF pathway [82].

In addition, BDNF is released in response to muscle contraction [83], and percutaneous 

electrical stimulation of the hindlimb muscles in a rat model of spinal cord injury 

significantly increased BDNF levels in both the anterior tibialis and the vertebral column 

[84]. Importantly, deletion of BDNF in skeletal muscle in mice resulted in a fatigue-resistant 

muscle phenotype, migrating from fast to slow muscle fibers in glycolytic muscles tibialis 

anterior and extensor digitorum longus [85]. In contrast, BDNF overexpression increased 

the glycolytic and fast fiber phenotype of the muscles [85]. This is consistent with clinical 

findings, since BDNF levels in skeletal muscles induced by controlled physical activity were 

found to be correlated positively with muscle phenotypic changes favoring type II muscle 

fibers (fast and glycolytic) [86]. Moreover, serum BDNF was increased in sedentary subjects 
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1 h after training, but this was not found in trained young and adult patients, suggesting the 

relevance of physical conditioning when assessing the effect of training on BDNF induction 

[86]. In addition, the decrease of BDNF after training was correlated with improvement 

in cognitive processes such as visuospatial and verbal skills (measured using a before-and-

after Addenbrooke’s Cognitive Examination-Revised test) [86]. Consistent results have been 

obtained in experimental models, involving young and aged rats, suggesting a role of 

the PGC1α/FNDC5/BDNF pathway in the protection of cognition from a musculoskeletal 

health approach [87].

BDNF expression can also be affected by altered mastication. In growing mice receiving a 

soft diet, learning and memory processes were impaired, compared to mice eating standard 

chow, by the apparent decrease in masticatory function [88]. In addition, BDNF expression 

in the hippocampus of mice receiving soft chow was decreased compared to those fed 

with standard chow, whereas no changes on the BDNF receptor were found in either 

group [88]. Moreover, the reduced expression of BDNF was consistent with a decrease 

on the synapses, leading to degraded neuronal structure and therefore neural function 

[88]. These findings are consistent with those of a recent systematic review of animal 

studies that identified a relationship between altered mastication and cognitive impairment 

characterized by decreased expression of BDNF in the hippocampus, decreased synapses, 

low performance in behavioral evaluations, and diminished memory and spatial location 

[89••]. Interestingly, male rats fed with standard chow exhibited higher expression of 

BDNF hippocampus than those fed with either soft or hard chow [90]. This result poses 

the question of whether reduced and increased masticatory functions are risk factors for 

cognitive impairment, suggesting a focus on clinical conditions ranging from loss of teeth 

(and therefore decreased masticatory function) to masticatory muscle parafunction. Short-

term exposure of young adult male mice to a soft diet results in dysregulated expression 

neurodegenerative condition–related genes such as TREM2, DAP12, APOE, and CD33 in 

the microglia, suggesting that soft diet has an immunomodulatory role as a risk factor for 

cognitive impairment [91]. Also, mastication on one side only has been shown to affect 

BDNF gene expression in the hippocampus, with cognitive impairment evaluated using the 

Morris Water Maze test in young adult male mice [92•]. In addition, using the MWM 

test, it was determined that reduced physical activity and reduced masticatory function in 

adult and aged mice affected their memory and learning skills, but these were restored 

when normal mastication was enabled [93]. The reduction of the branches in the astrocytes 

of the group with reduced physical activity and masticatory function [93] is intriguing, 

suggesting the need for more research into the role of the mastication as a neuroprotective 

musculoskeletal activity. For instance, in humans, masticatory function has been evaluated 

as a neuroprotective activity based on its clinical correlation with increased brain blood 

perfusion [27].

Irisin is a myokine released in response to physical activity, downstream of PGC1α/FNDC5 

pathway activation, after FNDC5 cleavage [94, 95]. Irisin stimulates BDNF expression in 

the hippocampus [96], and is believed to mediate the effect of physical activity on BDNF 

expression [94, 95]. Continuous physical training increases BDNF and Irisin serum levels, 

with benefits for cognitive performance, measured as the working memory (part of short 

memory that is a cognitive ability that can hold the information in mind for executing 
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cognitive function tasks [97]) in adults aged 50 to 70 years [98]. In male mice, injection 

of Irisin to the hippocampus after physical restraint improved the cognitive response to 

memory tasks. However, female mice did not benefit from Irisin administration, suggesting 

a sex-dependent effect [99]. Additionally, in FNDC5 knockout mice, absence of Irisin 

diminished cognitive skills (spatial and learning memory) after voluntary physical activity 

when compared with wild-type animals [100]. Interestingly, the same study showed that 

systemically administered Irisin was able to cross the blood–brain barrier and partially 

rescue cognitive impairment in two AD mouse models [100]. The mechanism of Irisin 

action remains to be fully understood. However, the use of AD mouse models has revealed a 

potential role of Irisin in neuroinflammation control [100] and cognition improvement after 

physical activity, with increased levels of FDNC5, BDNF, and IL-6 [101]. These findings 

can be compared and contrasted with clinical data about the correlation between Irisin levels 

in serum [102] or cerebrospinal fluid [103] and neurodegenerative/inflammatory biomarkers 

in conditions that affect cognition [102, 103].

Osteokines and Cognition

Osteokines are molecules released by osteoblasts and osteocytes. Among them, the 

osteoblast-derived protein osteocalcin or bone γ-carboxyglutamic acid (Gla) protein has 

been proposed to impact cognition [76, 104, 105]. Compared to baseline measurements, 

serum levels of osteocalcin increase after intense controlled physical activity to a similar 

extent in women and men [106]. A correlation study in young men exposed to reduced 

physical activity followed by a single session of high intensity training found that serum 

levels of both BDNF and undercarboxylated osteocalcin—the hormonally active form of the 

protein—were increased [107]. Irisin serum levels were also elevated after the intervention 

[107]. However, whether there is a molecular link among these molecules remains to be 

determined.

Musculoskeletal Health and Alzheimer’s Disease, the Potential Connection

Epidemiological evidence indicated a bidirectional relationship between musculoskeletal 

health and Alzheimer’s disease (AD); however, the shared pathways underlying this 

relationship are unclear [40]. Beeri et al. (2021) conducted a longitudinal study in the 

USA to examine the association between sarcopenia and AD incidence [108]. At baseline, 

1175 men and women without dementia (mean age = 80.9 years) underwent cognitive 

testing and assessed sarcopenia parameters each year over a period of 5.6 years. Sarcopenia 

parameters included muscle mass measured by bioelectrical impedance analysis, muscle 

function by gait speed, and handgrip strength by a Jamar hydraulic hand dynamometer. Of 

note, commonly used sarcopenia definitions were not adopted in this study and, instead, 

cases with sarcopenia were identified using continuous measures of sarcopenia parameters 

by applying sex-specific binary classifications. Cognitive function was assessed globally 

(using MMSE and composite scores) and in five specific domains. Clinician-diagnosed 

dementia cases numbered 243 (78.6% women). This study reported that severe sarcopenia 

at baseline was associated with a higher risk of incident of AD and a steeper cognitive 

decline. Among the sarcopenia parameters, poor muscle function and low handgrip strength 

rather than low lean mass were identified as better risk indicators for AD. This study 
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considered demographic characteristics (e.g., age, sex, and education), seven chronic health 

conditions (e.g., diabetes, heart diseases, and stroke) and lifestyle factors (e.g., smoking) as 

confounders; however, no fundamental mechanisms were tested or reported in this study.

Data from the Framingham Offspring Cohort Study in the USA were used to examine 

the association between BMD and brain structure, and BMD and cognitive function [109]. 

This study included 1905 men and women (mean age =66 years). BMD of the hip was 

measured using DXA. Cognitive function was assessed using a series of comprehensive 

cognitive tests including a neuropsychological battery that included executive function, 

processing speed, verbal and visual memory, and IQ tests that included dimensions 

such as abstraction, reasoning, verbal comprehension, and categorization (Wechsler Adult 

intelligence Scales), and visuo-perceptual skills (Hooper Visual Organization test). Measures 

of total brain volume, hippocampal volume, and white matter hyperintensity volume were 

obtained by MRI. This study reported sex-specific associations between higher BMD and 

better cognitive performance and less white matter hyperintensity burden. The authors 

proposed cumulative estrogen exposure as the potential underlying mechanism [109]. A 

large-scale study using a neurobiological approach combining neuroimaging techniques with 

the biological mechanism is expected to be conducted in this area [44].

Animal models have also been used to determine whether there are associations between 

cognitive impairments and musculoskeletal deficits. For this, mouse expressing mutations 

reported in humans with AD have been studied. One of the models is the mouse expressing 

the Swedish mutation of the amyloid precursor protein, which exhibit bone loss and 

increased osteoclastogenesis in young but not old mice, suggesting the changes in bone 

are not explained by the deposit of β-amyloid in the brain, which occurs in old mice [110]. 

Another model in which both the APP and presinilin1 are mutated (APP/PS1) showed 

reduced bone mass, but in this case the appearance of the plaque precedes the bone defect 

[111, 112]. This evidence suggests a disconnection between the central nervous system and 

the skeletal phenotype. Consistent with this notion, we recently reported a bone and skeletal 

muscle phenotype in a mouse model in which the R47H variant of the triggering receptor 

expressed on myeloid cells 2 (TREM2) was globally expressed [113••]. TREM2 R47H is 

associated with increased risk of AD, frontotemporal dementia, and Parkinson’s disease in 

humans and mice [114–117]. The changes in musculoskeletal system were present even 

though the mice expressing TREM2 R47H do not show cognitive deficits and required the 

presence of additional mutation to increase the appearance of AD-like symptoms [113••]. 

These pieces of evidence suggest that the mechanisms of bone loss in AD patients might be 

independent of the central neuropathology

Future Directions

Future clinical studies could test lifestyle and/or pharmacological interventions that target 

musculoskeletal parameters associated with cognitive health to identify how particular 

interventions intended to improve musculoskeletal health in aging people might affect 

their cognitive status [118]. Further, brain imaging and neuro bio-techniques could be 

used to investigate the underlying mechanisms for concomitant changes in brain and 

musculoskeletal health in humans. In addition, studies on the associations between oral 
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health and cognitive impairment are needed in the context of the musculoskeletal deficits, 

particularly with aging.

Conclusion

Recognizing the interplay between musculoskeletal deficits and cognitive impairment 

may have important translational implications, particularly because musculoskeletal health 

is responsive to behavioral modification. The bi-directional nature of links between 

musculoskeletal health and cognitive function remains somewhat obscure and their 

elucidation could be central to informing clinical practice and shaping public health policies 

for improving/maintaining physical and cognitive health.
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Fig. 1. 
Schematic representation of the nervous-musculoskeletal systems crosstalk. The figure 

depicts some of the mechanisms by which this crosstalk occurs. The balance among 

factors produced by the brain, bone, and skeletal muscle is required not only for each 

tissue homeostasis, but also for the health of other tissues through the production of 

hormones, cytokines, and mechanical forces. Further research is needed to understand the 

physiological, cellular, and molecular mechanisms behind the link between the cognition 

and the musculoskeletal system in health and disease. BDNF, brain derived neurotrophic 

factor; BMD, bone mineral density
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