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Abstract

Viral lung infections increase susceptibility to subsequent bacterial infection. We questioned whether local lung
administration of recombinant adenoviral vectors in the sheep would alter the susceptibility of the lung to subsequent
challenge with bacterial lipopolysaccharide (LPS). We further questioned whether local lung expression of elafin, a locally
produced alarm anti-LPS/anti-bacterial molecule, would modulate the challenge response. We established that adenoviral
vector treatment primed the lung for an enhanced response to bacterial LPS. Whereas this local effect appeared to be
independent of the transgene used (Ad-o-elafin or Ad-GFP), Ad-o-elafin treated sheep demonstrated a more profound
lymphopenia in response to local lung administration of LPS. The local influence of elafin in modulating the response to LPS
was restricted to maintaining neutrophil myeloperoxidase activity, and levels of alveolar macrophage and neutrophil
phagocytosis at higher levels post-LPS. Adenoviral vector-bacterial synergism exists in the ovine lung and elafin expression
modulates such synergism both locally and systemically.
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Introduction

Evidence from past flu pandemics indicates that secondary

bacterial involvement frequently complicates primary viral lung

infections and can extend to fatally compromise lung function

[1,2]. Such viral-bacterial synergy is also observed in animals,

particularly in domestic ruminants [3,4], and in pigs [5,6] where

stress and viral respiratory infections commonly predispose

towards secondary bacterial pneumonia. The specific nature of

the mechanisms involved in enhancing the pathogenicity of what

are often commensal bacteria is slowly being unravelled. Such

mechanisms may include virus-induced epithelial damage expos-

ing hidden bacterial binding sites [7,8], viruses altering alveolar

macrophage [9–12] or polymorphonuclear [13,14] cell function,

decreasing NK-cell activity [15] and/or increasing the production

of either pro- or anti-inflammatory cytokines in a manner

inappropriate to the clearance of the secondary bacterial infection.

Whilst lung-directed viral gene therapy offers the potential to

treat or ameliorate a host of inflammatory, neoplastic and

inherited lung diseases [16–19] the presence, nature and extent

of any synergism that may exist between viruses and bacteria in

the respiratory tract may impact on the safety of viral vectors in

such a role. Whilst adenoviral vectors are commonly employed in

clinical trials concern does exist that adverse effects may

accompany their use [20–22]. Such effects may arise from the

enhanced susceptibility to subsequent bacteria or LPS exposure

[23]. Whilst this important phenomenon has been chiefly studied

systemically, our own group has extended such studies to address

whether potential exists for additive interactions between Ad-

vectors and bacterial products at the local lung level. In this regard

whilst we and others have shown no deleterious additive effect of

Ad vectors in the context of bacterial and/or bacterial LPS

instillation in murine lungs [24–27] the possible criticism, that

extrapolating from such studies directly to man represents a

tenuous assumption, drove us to consider the same issue in a large

animal model system of arguably more potential relevance for pre-

clinical validation of gene therapy protocols. We chose to evaluate

these potential interactions and effects using the sheep as a model

system. Our experience is that this system offers the advantage of

studying local lung responses in relation to concomitant events

elicited elsewhere in the lung and allows for the design of protocols

wherein each animal serves as its own control [28–30]. In

addition, the anatomy, physiology and immunological responsive-

ness of the respiratory system of sheep is more similar to humans
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than is that of rodents and the repertoire of Toll-like receptors

(TLR) in sheep, which are pivotal in the initiation of the innate

immune responses, show greater similarity to humans than do

those of rodents [31]. Prior experience within our group has also

demonstrated in mice that adenoviral expression of the anti-

protease elafin is capable of augmenting lung innate immune

responses to subsequent lipopolysaccharide (LPS)-mediated injury

[25,26]. As mice do not normally carry a gene for elafin we

considered the natural extension of such studies would be to

explore the relevance of such observations in the sheep where

elafin, in common with observations in people [32–36], behaves

like a local acute phase reactant [36]. We and others have shown

that this molecule is mainly produced at mucosal sites (including

the lung) and have pleiotropic anti-microbial/immune-modulating

properties in murine models of lung and intestinal inflammation

(see Verrier et al (2012) [37] for a recent review).

We therefore used our previously characterised Ad-o-elafin

vector [36] to address whether prior adenoviral mediated

expression of ovine elafin would modulate subsequent innate

immune responses to LPS.

Materials and Methods

All procedures were approved by the ethical review process of

the University of Edinburgh and complied with the United

Kingdom Animals (Scientific Procedures) Act 1986. The Ethical

Review Committee of the University of Edinburgh reviewed and

approved an application to the Home Office for a licence to carry

out this research under the Act.

Adenoviral Constructs
A recombinant adenovirus encoding for the FLAG epitope

tagged ovine elafin, (Trappin Ovine Molecule-1 (TOM-1)) cDNA

(Ad-ovine elafin) was constructed as detailed elsewhere [36]. Ad

expressing green fluorescent protein (Ad-GFP) was a kind gift from

F. Graham and R. Marr, Department of Biology, McMaster

University, Hamilton, Ontario, Canada. Both viruses were devoid

of detectable LPS contamination (data not shown) and had very

similar particles/plaque-forming unit (pfu) ratios (99 and 102,

respectively).

ELISAs
A bovine tumor necrosis factor alpha (TNF-a) Screening Set

(Endogen, Pierce Biotechnology, Inc., Rockford, IL, USA), used

according to the manufacturer’s instructions, established levels of

TNF-a in bronchoalveolar lavage fluid (BALF) samples. A

commercial ELISA kit for human pre-elafin/SKALP (Hycult

Biotechnology b.v., AA Uden, The Netherlands) was used

according to the manufacturer’s instructions to determine elafin

levels in BALF samples.

Production of Mannheimia haemolytica LPS
A 0.5 ml aliquot of M. haemolytica was inoculated into 50 ml of

Nutrient Broth and incubated at 37uC overnight. 30 ml of this

culture was then used to inoculate 3 litres of Nutrient Broth and

incubated at 37uC for 18 hours in an orbital shaker at 100 rpm.

The bacteria were then pelleted at 5000 g for 30 minutes and re-

suspended in 50 ml of sterile distilled water. This suspension was

then warmed to 68uC and an equal volume of 90% aqueous

phenol at 68uC was added. The resultant mixture was maintained

at 68uC for 10 minutes after which it was placed on ice to allow

phase separation. After centrifugation at 5000 g for 30 minutes at

4uC, the upper aqueous phase was collected and dialysed for

36 hours against several changes of distilled water using Spectra/

PorR dialysis tubing (3,500 molecular weight cut-off). The

resultant solution was then lyophilized and diluted in sterile water

to a final concentration of 150 mg/ml.

Animals
Sixteen commercially sourced crossbred sheep were used in this

study. Animals were treated with anthelminthic prior to entry into

the study. Freedom from unrelated pulmonary disease was

subsequently confirmed at necropsy.

The sheep were anaesthetised and placed in a whole body

plethysmograph as detailed elsewhere [29]. Briefly, each animal

received 20 mg/kg body weight thiopentone sodium (Intraval

sodium; Merial Animal Health Ltd., Harlow, Essex, UK) as a

bolus after which the animals were intubated and maintained in a

state of general anaesthesia by the use of 2–3% inhaled halothane

in oxygen and nitrous oxide. The sheep were then placed in sternal

recumbency in a plexiglass whole body negative pressure

ventilator and ventilated via the endotracheal tube which was

connected to the anaesthetic circuit via a junction in the wall of the

plethysmograph. Extracorporeal pressure was varied via a bellows

pump (Cuirass, Cape Road, Warwick, UK) allowing the mainte-

nance of a sinusoidal tidal respiratory pattern. Tidal volume and

end-tidal CO2 were maintained at 10 ml/kg body weight and 4.5–

5.5% respectively (CO2 was measured using an Oxicap Monitor

Model 4700, Ohmeda, Louisville).

Bronchoalveolar lavage
A flexible fibre-optic bronchoscope (5.3 mm OD)(Model FG-

16X; Pentax U.K. Ltd.) was wedged in selected segmental

bronchi. Two 20 ml aliquots of normal saline (0.9% NaCl

solution) were used to collect BALF from selected lung segments.

BALF samples were passed through sterile gauze into a sterile

Falcon tube and immediately placed on ice until subsequent

analysis.

BALF was spun at 400 g for seven minutes to separate out the

cellular fraction. The resultant pellet was re-suspended in sterile

phosphate-buffered saline (PBS) and the total cell number counted

before subsequent preparation of cytospins for differential

cytology. Supernatants were re-centrifuged at 1,0006g at 4uC
for 20 min and stored at 270uC. Cells were counted using a

Neubauer haemocytometer and values expressed per millilitre

BALF. Cyto-centrifuge slides were prepared and stained using Diff

Quick stain for differential counts on 500 cells. Cells were classified

as neutrophils, macrophages, eosinophils, lymphocytes or mast

cells according to standard morphological criteria.

Culture of BALF cells
Cells from BALF samples were plated out in 48 well tissue

culture plates at 50,000 cells per well in RPMI containing 10%

foetal calf serum (FCS), penicillin G (final concentration 100 U/

ml), streptomycin sulphate (final concentration 100 mg/ml), L-

glutamine (final concentration 2 mM) and amphotericin B (0.5%).

After 6 hours non-adherent cells were washed off the wells and the

adherent cells cultured for a further 7 days in fresh medium.

Supernatants were then collected, spun at 13,000 rpm for 1

minute to remove cellular contamination, and stored at 230uC.

Optimisation of transfection efficiency in cultured
alveolar macrophages

Adenovirus/calcium phosphate co-precipitates were formed by

incubating, with gentle intermittent agitation, the specific amount

of stock adenovirus solution (calculated to yield the requisite

plaque-forming units (pfu)) with 1 ml of the freshly made calcium

Adenoviral Vector-Bacterial Synergism in the Lung
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phosphate solution (2.14 ml 2.5 M CaCl2 added per ml EMEM

medium and vortexed well) at room temperature for 20 minutes

before dilution to 5 ml with sterile PBS.

Cells from BALF samples were cultured in 24 well plates at a

seeding density of 250,000 per well in RPMI containing 10% FCS,

penicillin G (final concentration 100 U/ml), streptomycin sulphate

(final concentration 100 ug/ml), L-glutamine (final concentration

2 uM) and amphotericin B (0.5%). After 6 hours non-adherent

cells were washed off the wells and fresh medium added to each

well.

Ad-GFP MOI (Multiplicity Of Infection = ratio of infectious

virus particles to cells) 100 with or without calcium phosphate co-

precipitation was applied to the cells for 20 minutes before

removal and replacement of medium. 24 hours later the

monolayers were photographed and infection efficiency assessed

by visualisation of GFP using UV-microscopy.

Additionally, Ad-o-elafin was employed to transfect these

cultures in a similar manner at MOIs of 100 and 200 both with

and without co-precipitation. In this latter instance culture

medium was collected after 4 days and elafin content assessed

using Western blot analysis (see below).

Western blot analysis of cell culture supernatants
25 ml of supernatant along with known amounts of purified

ovine elafin protein were reduced with 1% dithiothreitol and

loaded on 4–12% gradient polyacrylamide gel using the Invitrogen

NuPage gel system as recommended by the manufacturer. After

running the gel proteins were transferred to Hybond ECL

Nitrocellulose membrane (Amersham Pharmacia). Resultant

membranes were blocked in 5% skimmed milk powder in TPBS

(PBS and 0.1% Tween 20). Membranes were probed overnight at

4uC with Trab-2O monoclonal anti-elafin antibody (HyCult

Biotechnology, Uden, the Netherlands) diluted 1 in 500–1000 in

TPBS or anti-FLAG monoclonal antibody diluted 1 in 1000 in

TPBS. Membranes were then washed in PBS-T before the

secondary antibody was applied (Goat anti mouse IgG conjugated

to HRP). This was followed by final washing, addition of Western

LightningTM Chemiluminescent Reagent Plus (PerkinElmer Life

Sciences, Inc.), and exposure to X-omat radiograph-quality film

(Kodak).

Instillation of Adenovirus/calcium phosphate co-
precipitates into the lung

A fibre-optic endoscope (5.3 mm OD) (Model FG-16X; Pentax

U.K. Ltd.) was advanced and wedged in selected segmental

bronchi. The adenovirus was diluted from stock solution into 5 ml

sterile phosphate buffered saline (PBS) in order to achieve the

required number of active particles (pfu). This 5 ml volume was

then instilled into the segment, through a polyethylene catheter

passed via the giving port of the endoscope. In order to direct each

instillation towards the lung periphery the catheter (OD 1.6 mm)

was advanced to the point of obstruction and its position retracted

slightly before performing each instillation. Each instillation was

performed in a carefully controlled manner in order to avoid

flooding proximal to the tip of the endoscope and to facilitate

dispersion of the instillate into the periphery of the subtended

segment. Each instillation lasted approximately 30–60 seconds. At

the end of the instillation air was allowed to enter the giving port of

the endoscope to allow equilibration of pressures in the segment

and the endoscope thereafter carefully withdrawn. No reflux of the

adenovirus/PBS was observed.

Preliminary investigation of the use of adenoviral
constructs in the sheep lung

Because calcium phosphate has been shown in other systems

and mammals (mice, human) to improve Ad infections both in

vitro and in vivo [38–40] two preliminary studies were conducted

to firstly examine the benefits of this method with regards infection

efficiency in the sheep (protocol 1) and secondly examine the

duration of transgene expression following adenovirus-mediated

gene delivery to the lung (protocol 2).

Protocol 1: One animal (MN (male neutered); Bodyweight (BW)

44 kg) was anaesthetised and instilled in one lung segment with

16108 pfu Ad-GFP and in another lung segment with 16108 pfu

Ad-GFP co-precipitated with calcium phosphate. 48 hours after

this infection the sheep was killed and cryosections were prepared

from the two instilled segments and also a naive segment to allow

visualisation of GFP-positive cells as described below.

48 hours after lung segmental instillation of Ad-GFP the

animals were killed and the lungs removed and inflated for

2 hours with 4% paraformaldehyde at room temperature. The

lungs were then rinsed twice with sterile PBS and inflated with

30% sucrose overnight at 4uC. Small representative portions of

lung were carefully dissected and stored at 4uC in 30% sucrose.

Small pieces of these portions were then mounted in optimal

cutting temperature medium (OCT) and 10 mm sections cut and

mounted on lysine- coated slides. The residual OCT was rinsed off

with sterile PBS and then the slides were dipped in absolute

alcohol to remove salts. The slides were subsequently dipped into

1 mg/ml DAPI (4’,6-diamidino-2-phenylindole) in methanol for 2

seconds and then immediately dipped firstly into PBS and then

into absolute ethanol before being air-dried. Cover slips were then

affixed with DPX mounting fluid and GFP+ve cells counted by

direct visualisation with UV-microscopy.

Protocol 2: Seven sheep (3 MN, 4F; BW 50 kg (median), range

32–58) were anaesthetised and each animal instilled with 16108

pfu Ad-GFP with calcium phosphate (n = 7). After 3, 7 and 10 days

these animals were anaesthetised and bronchoalveolar lavage fluid

(BALF) collected from adenovirus instilled segments and also naı̈ve

segments in the contra-lateral lung to analyse alveolar macro-

phages for GFP expression.

Modulation of the local and systemic responses to
bacterial LPS by the segmental administration of
recombinant adenovirus

Three to four weeks prior to study commencement (Fig 1A),

BALF was collected from eight female sheep (BW 35 kg (median),

range 33–40) to confirm lung health status and provide baseline

parameters with respect to the variables under study. Thereafter

the sheep entered the experimental protocol as depicted in Fig 1

(B-D). The individual sheep were anaesthetised and each animal

instilled with either 16108 pfu Ad-GFP with calcium phosphate

(n = 4) or 16108 pfu Ad-o-elafin with calcium phosphate (n = 4).

Virus was administered into one discrete lung segment of each

animal. On day 10 after virus instillation M.haemolytica LPS

(3 ml of a sterile solution in water at 150 mg/ml) was instilled into

both a virus treated segment and a previously naı̈ve segment in the

contra-lateral lung. 6 hours after instillation of LPS the animals

were re-anaesthetised and BALF recovered from both the LPS

treated segments and also from a spatially distant ‘new’ naı̈ve

segment. The BALF samples were assessed for total and

differential cell counts, phagocytosis assay, TNF-a and elafin

content as detailed elsewhere.

Adenoviral Vector-Bacterial Synergism in the Lung
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Blood sampling
Jugular blood was collected by venepuncture into lithium

heparin coated vacutainers for the subsequent analysis of total and

differential cell counts by a haematology analyser (ABX Pentra 60;

Horiba ABX, Montpelier, France).

Phagocytosis Assays
Opsonising E. coli. Four millilitres tetramethylrhodamine

conjugated E. coli (E. coli (K-12 strain) BioParticlesR, Molecular

Probes, Invitrogen, Paisley, UK) (16107/ml) incubated with

400 ul heat inactivated serum at 37uC for 45 minutes, were spun

at 800G for 15 minutes to form loose pellets. They were washed

with RPMI, spun again twice and re-suspended in 4 ml serum-free

RPMI to obtain a stock of approximately 10,000/ml which was

kept on ice.

BALF Phagocytosis assay. 50,000 mobile cells were re-

suspended into 100 ml RPMI to which 500,000 tetramethylrho-

damine conjugated E. coli were added. Identical tubes were

incubated on ice and at 37uC. After 20 and 30 minutes each tube

was placed on ice and spun at 0uC for 5 minutes at 1300 rpm.

Pellets were re-suspended in 500 ml of FACS Lyse solution,

vigorously vortexed and incubated on ice for 10 minutes.

Following a second spin, pellets were placed on ice and 100 ml

trypan blue was added before a further spin and re-suspension in

300 ml RPMI for FACS analysis. Tubes incubated at 0uC served as

controls for the test samples incubated at 37uC.

BALF Myeloperoxidase (MPO) Assay
BALF was spun at 13,000 rpm for 2 minutes and 50 ml added to

a 96 well micro-titre assay plate. The MPO activity was

determined using a tetramethylbenzidine substrate kit (Immuno-

Pure, Pierce, Rockford, IL). 100 ml tetramethylbenzidine substrate

was added and the plate read by a plate reader at 405 nm with

background of 560 nm. The reading was repeated after 10

minutes and the difference between the 2 readings gave a measure

of MPO activity. MPO activity was related to the neutrophil count

of the BALF sample and the data presented as a percentage

change compared to pre-experimental data.

Statistical Analysis
Three to four weeks after initial baseline (Figure 1A) samples of

BALF were obtained; three separate segments of the same lung

were exposed to differing combinations of treatment regimes (no

treatment, direct exposure to LPS, and direct exposure to virus).

At a set interval after these treatments blood and BALF were again

collected for analysis (Figure 1D). Blood samples were obtained

prior to anaesthetic induction on Day 0 (baseline), Day 10 and on

Day 10+6 hours).

Systemic Effect. A linear mixed-effect model, where sheep-

specific responses were assumed a random effect, was used to

analyse the influence of Ad-o-elafin and Ad-GFP and subsequent

LPS instillation on blood parameters.

The time point (baseline, Day 10, Day 10+6 hours), treatment

(Ad-o-elafin, Ad-GFP) and the interaction between the two were

entered as fixed effects of interest. Lymphocyte data required log

transformation prior to analysis in order to normalise the residuals.

In all cases a P,0.05 was taken to indicate statistical significance.

Lung Effect. In addition to the obvious potential association

between locally occurring phenomena arising as a direct

consequence of locally administered treatments the potential also

existed for such treatments to mediate influence on a whole-organ

basis and this possibility was addressed through comparison with

data obtained at baseline, prior to any treatments being given. As

the data relating to the influence of Ad-o-elafin or Ad-GFP

expression on LPS-induced local lung inflammation was nested in

a hierarchical fashion the analysis was sub-divided into three

components (Figure 1):

[i] Samples from un-instilled ‘Remote lung’ segments of the

treated lung were compared to samples taken from segments at

baseline;

[ii] Samples from un-instilled ‘Remote lung’ segments of the

treated lung were compared to samples from lung segments that

had been directly exposed to LPS;

Figure 1. Experimental protocol for the examination of the
effect of local up-regulation of ovine elafin on the response to
bacterial LPS. A. Baseline sampling of BALF from a lung segment (3–4
weeks before the start of the experiment (day 0) B. Anaesthetised sheep
were instilled on day 0 with either Ad-o-elafin-FLAG or Ad-GFP (as a
control vector) co-precipitated with calcium phosphate in discrete lung
segments. C. Ten days later, bacterial LPS was instilled into the same
virus treated segments and also previously naı̈ve segments (Pre-
treatment blood samples were obtained immediately prior to
anaesthetic induction on Day 10). D. 6 hours after LPS instillation, BALF
was collected from these LPS treated segments and also a new ‘remote
lung’ segment. The sample categories ‘‘Baseline’’, ‘‘Remote lung
response’’, ‘‘LPS response’’ and ‘‘Virus + LPS response’’ correspond to
the x-axes labels on the boxplots drawn in figure 6. In this design four
samples of bronchoalveolar lavage fluid were derived, one sample
obtained before any treatment was administered to the lung (Baseline),
one sample derived from an area of the lung not subject to any direct
treatment (Remote lung response) but obtained after treatments had
been administered to other parts of the lung, and further samples from
two areas of the lung, the first subject to direct treatment with LPS only
(LPS response) and the second subject to treatment with LPS and
adenoviral vector (Virus + LPS response).
doi:10.1371/journal.pone.0107590.g001

Adenoviral Vector-Bacterial Synergism in the Lung
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[iii] Samples from treated lung segments that had been directly

exposed to LPS were compared to samples from segments that had

in addition previously been exposed to virus.

A generalised linear mixed-effect (GLME) model where the

influence of sheep-specific responses was considered as a random

effect was used as segments from the same sheep lung were being

compared and the influence of two viruses being considered. For

every component of the analysis, virus type, the particular analysis

component and the interaction between the two were entered as

fixed effects of interest. GLMEs with binomial errors were used for

the proportion of AM, PMN and lymphocytes in BALF data, with

standard GLMEs used for the other parameters. Total cell counts,

AM phagocytosis, BALF Elafin, BALF MPO activity, and BALF

TNF-a data required log transformation prior to analysis in order

to normalise the residuals. In all cases a P,0.05 was taken to

indicate statistical significance.

Results

Optimisation of transfection efficiency in cultured
alveolar macrophages

The results of the in vitro experiments demonstrated that

calcium phosphate up-regulates the infection efficiency of alveolar

macrophages’. Figures 2a and 2b show the increased infection

efficiency of alveolar macrophages by the incorporation of Ad-

GFP in a calcium phosphate precipitate. The use of calcium

phosphate increased both the number of macrophages infected

and the intensity of fluorescence per infected cell. Similarly,

figure 2c shows that the infection of alveolar macrophages with

Ad-o-elafin-FLAG in conjunction with calcium phosphate in-

creases the secretion of ovine elafin.

Preliminary investigation of the use of adenoviral
constructs in the sheep lung

In vivo instillation of Ad-GFP incorporated into a calcium

phosphate precipitate (see protocol 1, Materials and Methods) led

to the increased infection of both alveolar epithelial cells and

alveolar macrophages, 48 hrs later, when compared to the

instillation of Ad-GFP alone as seen in figure 3a and 3b.

This led us to use this calcium phosphate protocol for the kinetic

experiment: GFP positive alveolar macrophages recovered from

instilled segments 3, 7 and 10 days after Ad-GFP administration

decreased in number with time as shown in figure 4 (see protocol

2, Materials and methods). At no time point were any GFP+ve

cells recovered from any naı̈ve segments. Alveolar macrophages

Figure 2. Incorporation of adenovirus into calcium phosphate
precipitate increases the infection efficiency of alveolar
macrophages in vitro. Ovine alveolar macrophages were cultured
at a density of 250,000 per well in 48 well plates and were infected with
Ad-GFP and Ad-o-elafin-FLAG at MOI 100 or 200 either pre-complexed
with calcium phosphate or as virus alone. (a) – Ovine alveolar
macrophages 24 hours after infection with Ad-GFP MOI 100 alone. (b)
– Ovine alveolar macrophages 24 hours after infection withAd-GFP MOI
100/calcium phosphate co-precipitate. (c) – Western blot analysis of
ovine alveolar macrophage supernatant using Trab-2O antibody 4 days
after infection with Ad-o-elafin-FLAG at MOI 100 and 200 either with or
without coprecipitation with calcium phosphate. Uninfected alveolar
macrophage supernatant is included as a control.
doi:10.1371/journal.pone.0107590.g002

Figure 3. Incorporation of adenovirus into calcium phosphate
precipitate increases the infection efficiency of alveolar
macrophages and pulmonary respiratory epithelium in vivo.
Cryo-sections were prepared from lung tissue 48 hours after instillation
of vehicle, vehicle and calcium phosphate, 16108 pfu Ad-GFP in PBS or
16108 pfu Ad-GFP after pre-incubation with calcium phosphate. 24
random fields were counted at high power using UV light and the
number of GFP+ve cells recorded. (a) – The number of GFP+ve cells is
represented here as mean with error bars indicating standard deviation.
*, ** and *** indicate P,0.05, P,0.005 and P,0.0005 respectively either
comparing values to relevant control (i.e. vehicle alone or vehicle with
calcium phosphate) or comparing virus treatment with and without
calcium phosphate (indicated by a bar). Significance was calculated by
non-paired T Test. (b) – Representative fields from the Ad-GFP/calcium
phosphate segment showing infection of Type II epithelial cells (filled
arrows) and an alveolar macrophage in an airway (open arrow).
Counterstaining of nuclei is with DAPI.
doi:10.1371/journal.pone.0107590.g003

Adenoviral Vector-Bacterial Synergism in the Lung
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harvested at the same time points and sustained in culture for 7d

indicate expression of Ad-o-elafin up to 10 days after instillation

(data not shown).

Modulation of the local and systemic responses to
bacterial LPS by the segmental administration of
recombinant adenovirus

We, and others, have employed models whereby different

treatments are applied to separate lung segments in order to study

local lung responses. These models have hitherto proved valuable

in the context of defining, at functional, cellular and immune

levels, the local lung response to antigen challenge in both

experimental animals and in man. Wherein responses can be

considered local such an approach allows each animal to serve as

its own control, thus reducing the extent of inter-animal variability

associated with whole lung studies. Typically such studies have

been interpreted through paired (within-subject) or un-paired

comparisons between segments. The significant caveat to inter-

preting such studies arises when the possibility exists that a local

treatment could exert an influence across the whole organ, or

indeed systemically. In such circumstance, a simple comparison

between treated and control segments may fail to demonstrate an

effect, not because the treatment has no effect, but because the

same influence extends to affect both areas of the lung in the same

manner. The experimental design employed in this study (see

Fig 1) whereby the viral vector-primed influence on a subsequent

local lung response to LPS was the focus, carried this potential,

and for this reason we obtained baseline samples and incorporated

an overall ‘remote lung response’ effect as the first level of nesting

in the analysis. In this way we were able to separate any potential

whole-organ effects occurring as a consequence of locally instilled

lung treatments from true local effects.

An interval of 10 days elapsed between treatment with the viral

vectors and instillation of LPS. Our selection of this interval was

influenced by observations in relation to natural and experimen-

tally induced lung disease. Whilst shorter intervals have been

employed in sheep to experimentally induce lung disease 5d after

exposure to adenovirus [41], other experimental studies in

ruminants indicate that viral-bacterial synergism occurs over at

least 30-days [42] and naturally occurring outbreaks of pneumonic

pasteurellosis in sheep usually occur 10–14 days after a stress [43].

Systemic effect. There were statistically significant differ-

ences in total white blood cells between the time points (P = 0.011,

Fig. 5a). In sheep treated with Ad-o-elafin, relative to baseline

total white blood cell counts, statistically significant reductions in

total white blood cells occurred six hours after the administration

of LPS (Day10 +6 hours, P = 0.004, Fig. 5a). Total white blood

cell counts at this time point were also significantly lower than

counts at the Day10 time point measured just before the addition

of LPS (P = 0.027).

There was also a statistically significant interaction between

time point and which virus (Ad-GFP or Ad-o-elafin) had been used

(P = 0.030), with an observed reduction in total white blood cell

counts in response to LPS at Day 10+6 hours compared to Day 10

in Ad-o-elafin treated sheep, but an increase in sheep treated with

Ad-GFP (Fig. 5a).

There were also statistically significant differences in neutrophils

between timepoints (P = 0.008, Fig. 5b), with increases in

neutrophil numbers in response to LPS (Day 10+6 hours relative

to Day 10) apparent for both Ad-o-elafin and Ad-GFP treated

sheep (P = 0.042, 0.018, respectively, Fig. 5b). Day 10 neutrophil

levels in Ad-o-elafin were also significantly lower than pre-

treatment levels (P = 0.047, Fig. 5b).

Finally, statistically significant differences in lymphocyte num-

bers between time points occurred (P,0.001, Fig. 5c), with pre-

treatment levels higher than Day 10+6 hours in both Ad-o-elafin

(P,0.001) and Ad-GFP (P = 0.036) treated sheep (Fig. 5c). In

addition, Day 10 levels in Ad-o-elafin were higher than Day 10+
6 hours (P,0.001). There was also a statistically significant

interaction between time point and treatment (P = 0.017) with a

larger decline in lymphocyte numbers in response to LPS (Day

10+6 hours relative to Day 10) being apparent for sheep treated

with Ad-o-elafin than for Ad-GFP (Fig. 5c).

Lung Effect. The potential for the various treatments to have

a ‘global’ or ‘whole organ’ effect and thereby influence the

variables under study was assessed by comparing data from the

control ‘‘Remote lung response’’ segments of the treated lungs to

baseline data from separate segments obtained prior to any

treatments being administered. A statistically significant increase

in total cell counts (P = 0.025; Fig. 6a [i]) and MPO activity

(P = 0.040; Fig. 6h [i]) and decrease in the proportion of BALF

lymphocytes (P = 0.026; Fig. 6f [i]) occurred in Remote lung

response segments relative to baseline. No other statistically

significant differences in any other parameter occurred in Remote

lung response segments relative to baseline as a consequence of

treatment (P.0.070). The nature of the virus used (Ad-o-elafin or

Ad-GFP) had no statistically significant effect on any of the

parameters, whether in relation to absolute values (P.0.131), or

the magnitude of response occurring as a consequence of lung

treatment (P.0.069).

Relative to remote lung response segments - exposing segments

to LPS resulted in statistically significantly increased total cell

counts (P = 0.011; Fig. 6a [ii]), BALF elafin (P = 0.042; Fig. 6g
[ii]), and proportion of PMN (P,0.001; Fig. 6e [ii]), but

decreased AM phagocytosis (P = 0.002; Fig. 6b [ii]), BALF

MPO activity (P = 0.037; Fig. 6h [ii]) and proportion of AM

(P,0.001; Fig. 6d [ii]).

Exposing segments to LPS did not significantly influence PMN

phagocytosis, the proportion of lymphocytes or amount of TNF-a
present in BALF (P.0.070, Figs. 6c, 6f and 6i [ii]). The nature

of the virus used (Ad-o-elafin or Ad-GFP) had no statistically

significant effect on any of the parameters, whether in relation to

Figure 4. Transgene expression in alveolar macrophages is
restricted to the segment infected with adenoviral vector.
Alveolar macrophages were collected on day 3, 7 and 10 from sheep
infected on day 0 with Ad-GFP/calcium phosphate from both segments
infected with adenovirus and from naı̈ve segments and assessed for
GFP by UV microscopy after 24 hours in culture. Data is shown as
scatter plots with the horizontal bars indicating the median. Macro-
phages from Ad-GFP infected segments on day 14 were negative for
GFP. No GFP+ve macrophages were identified in BALF from any naı̈ve
segments at any time point (data not shown). NB Zero values are not
shown due to the use of a log scale.
doi:10.1371/journal.pone.0107590.g004
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absolute values (P.0.054), or the magnitude of response occurring

as a consequence of LPS treatment (P.0.060).

Exposing segments to virus statistically significantly altered the

response of those segments to subsequent administration of LPS.

This change took the form of increased total cell counts (P,0.001;

Fig. 6a [iii]), BALF elafin (P = 0.004; Fig. 6g [iii]), BALF TNF-a
(P,0.001; Fig. 6i [iii]) and proportion of PMN (P = 0.004;

Fig. 6e [iii]), but decreased BALF MPO activity (P = 0.036;

Fig. 6h [iii]) and proportion of AM (P = 0.003; Fig. 6d [iii]) as a

consequence of LPS exposure. Prior exposure of segments to virus

did not statistically significantly influence the extent of LPS-

induced reduction in AM phagocytosis, nor influenced the

observed lack of effect of LPS on PMN phagocytosis or the

proportion of lymphocytes in BALF (P.0.116; Figs. 6b, 6c and
6e [iii]).

The nature of the virus used did appear to significantly impact

on the response to LPS. The aforementioned virus-primed LPS-

induced decrease in BALF MPO activity resulted in levels that

Figure 5. Systemic haematological responses to intrapulmonary adenoviral vector and LPS administration. Heparinised blood was
collected by venepuncture at various time points throughout the experimental period (Pre-treatment (immediately prior to collection of baseline
BALF samples), d10 and d10+6h). This blood was analysed for total white blood cell numbers, neutrophil numbers and lymphocyte numbers as
indicated in a, b and c respectively. The boxplot tails reflect the range of data, the bottom and tops of the boxes the 25th and 75th percentiles
respectively, and the thick horizontal line the median values. A linear mixed-effect model, where sheep-specific responses were assumed a random
effect, was used to analyse the influence of Ad-o-elafin and Ad-GFP and subsequent LPS instillation on blood parameters. *, ** and *** represent P,
0.05 and P,0.01 and P,0.001 respectively.
doi:10.1371/journal.pone.0107590.g005
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were significantly greater for segments exposed to Ad-o-elafin

(P = 0.016, Fig. 6h) when compared to segments treated with Ad-

GFP.

In addition, whilst prior exposure of segments to virus did not

appear to significantly influence the extent of LPS-induced

reduction in AM phagocytosis nor influence the observed lack of

effect of LPS on PMN phagocytosis, levels of AM and PMN

phagocytosis after LPS were significantly increased in segments

exposed to Ad-o-elafin when compared to Ad-GFP (P,0.023;

Figs. 6b, c).

The nature of the virus used did not significantly impact on the

post-LPS levels of any of the other parameters under study (P.

0.053), and neither were there any other statistically significant

interaction demonstrable between virus type and the magnitude of

the LPS-induced response (P.0.100).

Discussion

Whilst the concept of prior exposure to virus priming the innate

immune response to subsequent bacterial products is widely

acknowledged [5,6] this is less well established in the specific case

of adenoviruses where the potential mechanisms involved in such

priming are largely open to speculation. Regardless of any

potential long-term influence, the short term effects of treatment

with adenoviral vectors are likely to include the induction of

inflammatory and immune responses. As well described

[20,44,45], innate mechanisms initiate from recognition of

Figure 6. Local lung response to the instillation of adenoviral vectors and/or LPS. Boxplots depicting the (a) log10 Total cell counts (cells/
ml); (b) Alveolar macrophage phagocytic activity (AMPh) (geometric mean fluorescence units); (c) neutrophil phagocytic activity activity (geometric
mean fluorescence units); (d) proportion of AM in BALF; (e) proportion of PMN in BALF; (f) proportion of lymphocytes in BALF; (g) log10 Elafin (pg/ml);
(h) log10 MPO activity (absorbance units (au)/PMN * 106); and (i) log10 TNF-a (pg/ml) data arising from analysis of BALF sampled from differentially
treated lung segments of sheep exposed to either Ad-o-elafin (Virus E) or Ad-GFP (Virus G). The boxplot tails reflect the range of data, the bottom and
tops of the boxes the 25th and 75th percentiles respectively, and the thick horizontal line the median values. The first pair of boxplots adjacent to the
Y-axis reflect baseline data collected before lungs were exposed to treatment (Baseline). The next adjacent pair of boxplots depict data collected from
non-treated control lung segments after other segments in the same lung had received different treatment regimes (Remote lung response). The
third pair of boxplots reflect data collected from lung segments exposed to LPS six hours previously (LPS response). The last pair of boxplots reflect
data collected from segments that had, in addition to LPS treatment six hours previously, been treated with adenoviral vectors ten days before, (Virus
+ LPS response). The results of statistical comparisons [i]-[iii] between these nested data sets are depicted by the interconnected horizontal lines
above and below each separate graph (NS = no significant difference, *, ** & *** = P,0.05, 0.01 and 0.001 respectively). The bold font is simply used
to emphasise the boxplot pairs across which the above statistical comparisons are directed. Whilst not explicitly annotated in this figure the virus-
primed LPS-induced decrease in BALF MPO activity (6h) resulted in levels that were significantly greater for segments exposed to Ad-o-elafin
(P = 0.016) when compared to segments treated with Ad-GFP, and levels of AM (6b) and PMN (6c) phagocytosis after LPS were significantly increased
in segments exposed to Ad-o-elafin when compared to Ad-GFP (P,0.023).
doi:10.1371/journal.pone.0107590.g006
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pathogen-associated molecular patterns leading to signalling

cascades and the expression of pro-inflammatory cytokines, type

I interferons and activation of innate and adaptive immunity.

Indeed, recent studies have shown that a critical aspect of the

murine immune response to adenoviral vectors was the expression

of adenoviral type I interferons with mechanisms of in vitro

induction mediated by either TLR9 in plasmacytoid dendritic cells

(DCs) or cytosolic detection of adenoviral DNA in non-plasma-

cytoid DCs [44]. Also, TLR-independent mechanisms of adeno-

virus recognition and type I interferon secretion have been

described in splenic myeloid DCs, following in vivo systemic Ad

administration [46]. Depending on the cell type, the signalling

cascades include the induction of MAPK pathways, NFkB and

ICAM-1 gene expression [20,44,45,47] as well as the SAPK/JNK

pathway [46]. As many of the intracellular pathways are also used

by key cytokines responding as part of the innate immune response

the opportunity exists for interplay and interaction within cells

responding to LPS and previous adenoviral exposure [48]. Indeed,

recently, Fejer et al have shown that systemically- administered Ad

vectors lead to LPS hypersensitivity via IFN-c and epigenetic

changes at the TNF-a promoter [46]. Whilst these observations

merit further study with respect to identifying whether organ-

specific mechanisms operate in murine systems we and others have

previously shown that such Ad vector-evoked hypersensitivity may

not operate in the context of lung bacterial infection or LPS

administration [24–26,49]. To address this issue in an animal

model more relevant to pre-clinical studies, we have chosen the

sheep, a model amenable to a lung segmental approach to

potentially differentiate between local and systemic effects.

Our data indicate that precipitating adenovirus with calcium

phosphate is, as in other systems described in the literature, an

effective method of optimising transfection efficiency in the sheep,

particularly in alveolar macrophages, but also in alveolar epithelial

cells (Figs. 2 and 3). That this optimisation strategy was not

associated with any increase in inflammation or cytotoxicity over

adenovirus alone was also confirmed (data not shown). We saw no

evidence for infection of airway epithelial cells (Fig. 3b). This

observation contrasts with those of Fasbender et al. [38] who

demonstrated that the incorporation of Ad into a calcium

phosphate precipitate markedly enhanced the efficiency of gene

transfer to airway epithelia both in vitro and in vivo, in mice.

Whether this contrast in targeting reflects delivery issues, or

species-specific promoter tropisms remains unknown.

Adenoviral dose selection in this study was based on previous

unpublished data (Brown, T.I. (2005) Anti-protease gene therapy

in the lung. PhD thesis. University of Edinburgh) which indicated

that at the dose used in this study (16108 pfu Ad co-precipitated

with calcium phosphate), only very local minor inflammation was

elicited (PMNs ,9% @ 48h) and was expected to resolve rapidly

such that no long-term overt inflammatory sequelae would impact

on the subsequent response to LPS in the treated segments ten

days later. Clearly however, such a strategy will be insensitive to

changes elicited at a molecular level and it would be naı̈ve to

assume that lack of influence at a phenotypic level would be a

robust indicator of true ‘lack of effect’.

Indeed, we establish here that previous exposure to an

adenoviral vector per se potentiates the local lung inflammatory

(TCC, PMN%, elafin & TNF-a levels) response to LPS (Figs. 6a,
6e, 6g and 6i [iii]). It should be noted, that although, the Trab-

2O anti-elafin antibody does not discriminate endogenous from

Ad-produced ovine elafin, we previously confirmed that lung Ad-

instillation induces very little inflammation per se at the dose used

in these experiments (data not shown). The increase in o-elafin

production between the ‘LPS response’ and the ‘Virus + LPS’

arms of the experiment likely reflects the influence of LPS on the

Ad-o-elafin construct and is in keeping with our reported findings

(see ref 25 herein) that LPS up-regulates Ad-derived transgenes

through up-regulating NF-kB (NF-kB responsive sequences are

present in the MCMV promoter).

In addition, the decline in the MPO/PMN ratio occurring as a

consequence of LPS treatment was more marked for segments

previously treated with virus (Fig. 6h [iii]). Whilst seemingly at

variance with the potentiated inflammatory response, it is

conceivable that reduced MPO levels relative to PMN numbers

may indicate the recruitment of immature neutrophil precursors

into the lung, functionally altered cells, or the accumulation of

degranulated but not yet apoptotic neutrophils.

Paralleling our observation, are the data showing that prior

infection with RSV resulted in higher bacterial burden in the lungs

of mice exposed a week later to Streptococcus pneumonia [13].

That this occurred in the face of a significantly greater influx of

inflammatory cells was potentially explained by the finding that

recruited neutrophils were functionally altered in containing less

myeloperoxidase [13].

Whilst the nature of the virus (Ad-GFP or Ad-o-elafin) used did

not significantly influence the PMN influx as a consequence of

LPS treatment it would appear that a trend did exist for a greater

influx in Ad-GFP treated sheep (Fig. 6e [ii]). Taken together with

the previous observation it is conceivable that this again reflects a

differential response with respect to neutrophil maturity. In that

context, the specific influence of Ad-o-elafin in relation to BALF

PMN MPO activity suggests that elafin is helping to maintain

enzyme activity in these cells after exposure to LPS (Fig. 6h [ii]).

Similarly, elafin also had a protective effect in relation to

alveolar macrophage phagocytic capacity that occurred as a

consequence of LPS exposure (Fig. 6b). The influence of LPS in

reducing the phagocytic capacity of alveolar macrophages was not

dependent on whether the segment had previously been treated

with virus. Whilst at variance with some reports suggesting that

LPS either fails to influence macrophage function or improves it

[50] our data is in agreement with the broader consensus that

sepsis leads to impaired alveolar macrophage function [51].

Lymphopenia (two-fold reduction) and neutrophilia (four-fold

increase) are commonly observed 6h after local lung instillation of

E.coli LPS in sheep (DDSC data not published). Whilst it was

anticipated that the low numbers of sheep involved in this study

would preclude demonstration of any significant effect in this

regard our data indicate a profound and significant five-fold

reduction in circulating lymphocytes in only the elafin-treated

animals. Indeed this reduction is the major influence behind the

significant reduction in total white blood cell numbers occurring in

response to local lung administration of LPS (Fig. 5). As blood

lymphocyte numbers are maintained by recirculation through

secondary lymphoid organs the possibility exists that local lung

expression of elafin enhances the sequestration of lymphocytes in

response to a local lung inflammation or recruits progenitors from

the bone marrow and induces their differentiation and recruit-

ment. These data, obtained in the sheep, potentially share a link

with our own data obtained in mice, where we showed that over-

expression of Ad-elafin in the lungs of mice had an adjuvant effect

in a vaccination protocol [52].

The marginal though significant increase in the total cell

number and reduced proportion of lymphocytes in BALF, and the

increased MPO activity in remote lung segments relative to

baseline (Figs. 6a, 6f and 6h [i]) indicate that systemic and/or

whole organ effects have arisen as a consequence of the treatment

regimes applied elsewhere in the lung. Certainly the aforemen-

tioned systemic lymphopenia parallels this observation and hints at
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the possibility that lymphocytes are being selectively sequestrated

elsewhere. Whether, and to what extent, the observed remote lung

response reflects systemic, whole organ, and/or spillover effects

cannot be definitively established in this analysis. However, if

spillover of LPS from treated to remote lung segments did occur

then it would be reasonable to expect the nature of the remote

lung response to be qualitatively similar to that seen in response to

LPS instillation. This is not the case, as LPS instillation caused a

significant decrease in BALF MPO activity, whereas the remote

response was associated with a significant increase in this variable

relative to baseline levels.

Taken together, in this sheep model, our results indicate that

infection with an adenoviral vector appears to potentiate the

inflammatory response to subsequent challenge with LPS.

Whilst the benefits of such augmentation in relation to handling

subsequent bacterial infection are unknown in this model the

suspicion is raised that adenoviral infection per se may have a

negative influence in this regard through interfering with

neutrophil function and phagocytic capacity. In contrast, Ad-o-

elafin treated sheep restored neutrophil MPO activity and levels of

AM and PMN phagocytosis at higher levels post LPS, compared

to Ad-control treated animals. This newly described opsonic

activity provides further evidence for the potential utility of elafin

both as a local anti-LPS/antibacterial agent at mucosal surfaces

and also as an influence in shaping adaptive immunity at a

systemic level, by mobilising lymphocytes into the general

circulation.

Lastly, our strategy of adopting a lung segmental approach to

study design and the careful adoption of rigorous statistical method

has demonstrated the feasibility of addressing relatively complex

issues using a limited number of experimental animals. Such

approaches, which are increasingly represented in the respiratory

literature, clearly uphold the principles of reduction and refine-

ment in research involving animals and indicate considerable

potential for future strategic application.

Supporting Information

Figure S1 ARRIVE (Animal Research: Reporting of In
Vivo Experiments) checklist.

(PDF)
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