
Introduction

Risk stratification in advanced heart failure (HF) aims at identify-
ing patients who will rapidly progress to refractory myocardial
dysfunction or who are at high risk of sudden cardiac death. This
stratification is crucial for the individualization of therapeutic strat-
egy, in particular for the listing and prioritization of patients for
heart transplantation, and identification of patients for left ventric-
ular assist devices (LVAD). Prediction models have been mainly

developed for moderate HF [1, 2], some of them being applicable
to end-stage HF patients [3, 4]. However, because these models
have modest predictive capacity, outcome prediction still remains
to be improved in advanced HF.

It has already been shown that HF severity correlates with the
intensity of the cardiac remodelling process occurring during HF
progression [5]. This remodelling process is related to transcrip-
tomal alterations affecting numerous molecular pathways and
biological functions, modifying tissue and morphological charac-
teristics of the myocardium [6].

One tool that might lead to better outcome prediction is gene
expression profiling. We and others recently showed that gene
expression profiling could distinguish, even in advanced HF, sub-
groups of patients with specific cardiac molecular portraits [7–11].

Here we demonstrate that cardiac gene expression profiling
can distinguish among HF patients with different HF severity.
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Abstract

Risk stratification in advanced heart failure (HF) is crucial for the individualization of therapeutic strategy, in particular for heart trans-
plantation and ventricular assist device implantation. We tested the hypothesis that cardiac gene expression profiling can distinguish
between HF patients with different disease severity. We obtained tissue samples from both left (LV) and right (RV) ventricle of explanted
hearts of 44 patients undergoing cardiac transplantation or ventricular assist device placement. Gene expression profiles were obtained
using an in-house microarray containing 4217 muscular organ-relevant genes. Based on their clinical status, patients were classified
into three HF-severity groups: deteriorating (n � 12), intermediate (n � 19) and stable (n � 13). Two-class statistical analysis of gene
expression profiles of deteriorating and stable patients identified a 170-gene and a 129-gene predictor for LV and RV samples, respec-
tively. The LV molecular predictor identified patients with stable and deteriorating status with a sensitivity of 88% and 92%, and a speci-
ficity of 100% and 96%, respectively. The RV molecular predictor identified patients with stable and deteriorating status with a sensitivity
of 100% and 96%, and a specificity of 100% and 100%, respectively. The molecular prediction was reproducible across biological repli-
cates in LV and RV samples. Gene expression profiling has the potential to reproducibly detect HF patients with highest HF severity with
high sensitivity and specificity. In addition, not only LV but also RV samples could be used for molecular risk stratification with similar
predictive power.
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Methods

Cardiac samples

Cardiac tissue was obtained from explanted hearts of 44 patients with
advanced HF who underwent a cardiac transplantation or a total artificial
heart placement. Pre-transplant evaluation – including coronary artery
angiography and macroscopic and histological examination of the
explanted hearts – confirmed the diagnosis, aetiology and severity of the
disease for all patients. Extensive individual clinical information can be
found in Table S1.

Patients were classified into three severity groups based on their clini-
cal status at the time of transplantation. The individual clinical status was
defined based on the United Network for Organ Sharing (UNOS) medical
urgency status [12] and occurrence of hospitalizations for acute decom-
pensated heart failure (ADHF) during the 3 months prior to the surgical
procedure (‘recent ADHF’). UNOS medical urgency status determination is
based on several patient characteristics including necessity of mechanical
circulatory support, inotrope IV infusion or hospitalization in an intensive
care unit. Deteriorating patients were characterized by UNOS-1A status.
Stable patients were defined as UNOS-2 patients with no recent ADHF. The
remaining patients were classified as intermediate (UNOS-1B status or
UNOS-2 status with recent ADHF).

For each of the 44 explanted hearts, two spatially distinct transmural
samples were obtained from non-infracted zones of both left ventricle (LV)
and right ventricle (RV) immediately after cardiac explantation, leading to
a total of 176 distinct tissue samples.

Microarrays

Microarray preparation and hybridization, and expression data acquisition
and processing are described in the Supporting Information.

Data analysis

Unsupervised hierarchical clustering was applied to the entire data set
median-centred on genes, using the Pearson correlation as a similarity
metric and average linkage clustering. Results were displayed using
TreeView [13]. Gene clusters were selected using 10 and 0.6 as minimal
gene number and minimal correlation, respectively. GoMiner was used to
identify functional categories that were over- or underrepresented in spe-
cific clusters compared to the list of all analysed genes [14].

‘Predictors’ and ‘molecular severity score’

LV- and RV-specific data were separated into distinct data sets and
analysed separately using an identical strategy:

The ‘Predictor’ was defined as a list of genes differentially expressed
between stable and deteriorating patient groups. These genes were identi-
fied using ‘significance analysis of microarrays’ [15] with a maximum false
discovery rate of 1% .

LV and RV predictors were used to calculate a transcriptome-based
‘molecular severity score’ (MSS) for each sample. First, expression profiles
were mean-centred and standard deviation scaled on genes. The mean

profile was calculated for stable (Ms) and for deteriorating (Md) samples.
The MSS of a specific sample was defined as the normalized Euclidean
squared distance (ranging from 0 to 1) between the sample and the stable
mean profile and was calculated as described below:

MSS � Es
Es � Ed

where Es ��
n

i�1
[Xi � Msi ]

2 and Ed ��
n

i�1
[Xi � Mdi]

2 and X � the expression

profile of the specific analysed sample and i � an index of the n genes
included in the ‘predictors’. To define the significance level of the obtained
MSS, an unpredictable interval in between the stable and deteriorating pro-
files was calculated. The cut-offs for the unpredictable interval were
defined as the 2.5th and 97.5th percentiles of a random-MSS distribution
based on 104 random permutations of the expression profiles.

Leave-one-out cross-validation was performed on stable and deterio-
rating samples. For both LV and RV, 50 distinct data sets were produced.
Each data set was partitioned into a test set consisting of one sample and
a learning set consisting of the 49 other samples. The learning set was
used to calculate a MSS using the strategy described. The obtained MSS
was employed to predict the MSS value of the test sample. This process
was repeated so that the MSS value of each sample was predicted using
an MSS estimated from all 49 other samples in the data set.

To test the diagnostic power of our classification, we calculated the
sensitivity, the specificity and the positive and negative predictive values of
the molecular prediction of stable and deteriorating status using the cross-
validation results. We also analysed MSS values obtained from all samples
using receiver operating characteristic curves using the jrocfit procedure
available at www.jrocfit.org.

To test whether the obtained classification was independent of the
method used, we also classified stable and deteriorating samples using the
prediction analysis of microarrays method [16] using a previously pub-
lished strategy [10, 17] (see Supporting Information for detailed methods).

Reproducibility

We tested between-sample reproducibility of the MSS values of all biolog-
ical duplicates. Expression data from biological duplicates were separated
to generate two comparable data sets. MSS from the duplicate sets were
compared using the correlation coefficient. Analyses were performed sep-
arately on the LV- and RV-specific data sets.

Potential biases

We tested whether between-group variations in drug treatment could have
biased the predictor discovery. To avoid confounding factors, subgroups of
samples from the same chamber and the same severity group were
analysed separately. For each predictor, expression profiles of samples
positive and negative for a specific drug treatment were gene-by-gene
compared using a Student’s t-test with P � 0.01. We also tested the pre-
dictive power of our predictor in aetiology- and age-based subgroups of
patients using the same strategy.

Results

We profiled cardiac gene expression in a cohort of 44 advanced HF
patients using a 4217-oligonucleotide microarray containing
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genes selected for their involvement in muscular organ
(patho)physiology. Based on the analysis of clinical information
the 44 patients were classified into three HF-severity groups: dete-
riorating (n � 12), intermediate (n � 19) and stable (n � 13).
After raw data extraction and consolidation, 4035 genes were val-
idated for further analysis.

Hierarchical clustering and functional annotation

The 176 cardiac samples and the 4035 selected genes were clus-
tered according to their expression profiles using a hierarchical
clustering procedure (Fig. 1). Samples were grouped in two major
clusters mainly based on the expression profile of a 387-gene
cluster (white bar). This patient molecular clustering was not cor-
related with the clinical severity classification. However, within
each of the two major clusters, stable and deteriorating samples
were preferentially classified into distinct sub-clusters (P � 0.001
within each major cluster, �2 test).

Gene clusters were selected by automated analysis of the gene
classification. Functional annotation revealed enrichment of genes
involved in a specific biological process or tissue type for most of
the clusters. Clusters that were too small to obtain a statistically
significant annotation using GoMiner software (annotations ‘natri-
uretic peptides’ and ‘cell metabolism’) were functionally annotated
based on literature analysis.

Several of the clusters showed marked differential expression
between stable and deteriorating samples for LV and/or RV sam-
ples. ‘Cell metabolism’, ‘natriuretic peptides’ and ‘extracellular
matrix’ gene clusters displayed higher expression for deteriorating
samples than for stable samples in both LV and RV. ‘Cytoskeleton’
and ‘cell death’ gene clusters displayed higher expression for sta-
ble samples than for deteriorating samples in both LV and RV.
Interestingly, the ‘mitochondrion’ gene cluster displayed higher
expression for stable samples than for deteriorating samples in RV
but not LV.

Prediction of clinical status

Two-class statistical analysis of gene expression profiles of the 24
deteriorating and 26 stable samples resulted in the identification
of a 170-gene and 129-gene predictor for LV and RV, respectively
(Table S2). Sixty-six genes were present in both LV and RV predictors.

Figure 2 shows individual MSS values calculated for the stable
and deteriorating groups. The overall good classification rate was
95/100, whereas one stable LV sample was predicted as deterio-
rating and four LV samples were in the unpredictable interval. All
RV samples were correctly predicted.

We also used data from all samples to generate receiver oper-
ating characteristic curves for each predictor (Fig. S1). The LV and
RV molecular predictor could accurately identify patients with sta-
ble and deteriorating statuses (all area under curve �0.95).

A cross-validation strategy was also employed to account for
data over-fitting due to reclassification of the samples used to

define the predictors. The overall good classification rate was
94/100, whereas one stable sample was predicted as deteriorating
and five samples were in the unpredictable interval. The LV molec-
ular predictor identified patients with stable and deteriorating sta-
tus with a sensitivity of 88% and 92%, and a specificity of 100%
and 96%, respectively. The RV molecular predictor identified
patients with stable and deteriorating status with a sensitivity of
100% and 96%, and a specificity of 100% and 100%, respectively.
The difference in proportion of samples correctly classified for LV
(45/50) and RV (49/50) samples was not statistically significant
(P � 0.20, Fisher exact test). Equivalent prediction power results
were obtained when using the prediction analysis of microarrays
prediction method. (Table S3).

We also tested the predictive power of a single-gene predictor
based on NPPB gene expression levels (Fig. S2). Using this pre-
dictor, a high misclassification rate was observed for deteriorating
patients in both LV and RV samples.

We investigated whether a significant correlation exists
between the MSS and several clinical parameters. Only heart rate
correlated significantly with the MSS for both LV and RV data. Left
ventricle end-diastolic diameter and brain natriuretic peptide blood
level significantly correlated with LV data only, whereas Systolic
Arterial Pressure correlated significantly only with RV data.
Interestingly, left ventricle ejection fraction did not correlate 
with the MSS.

Intermediate group analysis

In agreement with the clinical classification, intermediate samples
– which were not used for the construction of the predictors –
were on average classified in-between the two other groups 
(Fig. 3). Progression of clinical severity for the LV samples was
associated with a gradual increase of the MSS mean values (P �

0.001 for overall and all pairwise comparisons, one-way analysis
of variance on ranks followed by Dunn test). Similar results were
observed for RV samples. In addition, we observed that 54 of the
76 intermediate samples (66%) exhibited MSS values outside the
unpredictable interval and could have been predicted as either sta-
ble or deteriorating.

Effects of potential biases

The three patient groups were comparable regarding sex, age, HF
aetiology and LV ejection fraction (Table 1). As expected, differ-
ences in severity levels were associated with significant inter-
group variations regarding treatment with adrenergic agonists,
phospho-diesterase inhibitors, 	-blockers and angiotensin con-
verting enzyme inhibitors/angiotensin receptor blockers.
Significant differences in expression related to these medications
were found for only 0–7.0% of the genes included in the LV and
RV predictors. Furthermore, significant differences in expression
related to age and HF aetiology were found for 1.2% to 2.9% and
for 0.6% to 2.3% of the genes, respectively. Removing these
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genes from the predictors did not modify the good classification
rates of the samples (data not shown). We also performed distinct
prediction analysis for ischemic and non-ischemic patients. The
results show that our classification can be accurately applied to
both ischemic and non-ischemic patients (Fig. S3).

Biological reproducibility

We aimed to test whether our classification was reproducible
across biological replicates. A significant correlation between MSS

values obtained for the duplicate sets was observed (Fig. 4), with
a better correlation for RV samples than for LV samples.

Discussion

We produced and analysed the largest set to date of transcrip-
tomal profiles of LV and RV samples from a cohort of 44 HF
patients. Ventricular samples were analysed using a dedicated

© 2009 The Authors
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Fig. 1 Two-way hierarchical clustering of gene expression data. Left: Classification tree of the samples. The dendrogram is based on similarity of the
gene expression profiles of the 176 analysed samples. Samples were separated into four main clusters (A1, A2 and B1, B2). Only clusters containing
at least 15 samples were considered as significant. Some samples (indicated *) were not included in any cluster. White, grey and black boxes on the
left side of the dendrogram denote stable, intermediate and deteriorating clinical status, respectively. Middle: Heat map of expression values for 176
samples and 4035 genes after hierarchical clustering of both genes and samples. Each column represents the 4035-gene expression profile for one
sample. Each row represents the 176-sample expression profile for one gene. Results are presented using a colour code. Green and red represent lower
and higher expression levels relative to the median expression level of the gene, respectively. Right: Selected gene clusters indicated by coloured bars
in the middle part of the figure. Intermediate samples were removed and remaining samples were ordered based on their origin (LV: left ventricle, RV:
right ventricle) and the clinical status of the patient (S: stable, D: deteriorating). On the right side, functional annotation of the clusters is shown. Some
genes representative of the functional annotation of the cluster are indicated using their HUGO gene nomenclature committee symbol.

Fig. 2 Prediction of HF sever-
ity based on gene expression
profiles. Top: Gene expres-
sion profiles of stable and
deteriorating samples for the
LV and RV severity predic-
tors. Each column represents
the gene expression profile
for one sample. Each row
represents the relative
expression level for one gene.
Colour code as in Fig. 1.
Bottom: patient classifica-
tions for the LV and RV sever-
ity predictors. Open and filled
circles correspond to stable
and deteriorating LV samples,
respectively. Open and filled
triangles correspond to stable
and deteriorating RV sam-
ples, respectively. Dashed
lines denote upper and lower
limits of the unpredictable
interval.
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microarray representing genes selected for their contribution to
muscular organ (patho)physiology. Replication at both the biolog-
ical and the technical level, and control of experimental variations
at the different steps of the study allowed detection of even subtle
expression changes. We identified a set of genes of which expres-
sion changes discriminated between patients with different clinical
severity levels and established that clinical deterioration of HF
patients was associated with a molecular deterioration expression
profile in both LV and RV. Therefore, our study confirms the poten-
tial of cardiac gene expression profiling to identify outcome pre-
dictors in patients with advanced HF.

Related findings in previous studies

It has previously been shown that gene expression profiling can
discriminate between cardiac patients with different clinical char-
acteristics [7–11, 18]. Aetiology-related gene expression profiles
have been identified in Chagas disease, and hypertrophic, dilated,
viral and ischemic cardiomyopathies [9, 10, 19]. In a recent study,
Heidecker et al. identified a transcriptomic signature that could
predict clinical outcome of new-onset idiopathic dilated cardiomy-
opathy patients [17]. Taken together, these findings offer valuable
information regarding the molecular basis of HF related to distinct
aetiologies and they could lead to individualized therapeutic strate-
gies in HF.

Other clinical characteristics such as age and sex have also
been shown to have an effect on the transcriptomal profile of HF
patients [20]. In our study, the molecular severity markers cor-
rectly classified HF patients independent of aetiology or age.
Because most of our patients were male, we could not validate our
classification in female HF patients. We also showed that our

results were unchanged when another prediction method was
used [10, 17].

Potential clinical significance of findings

Prognosis evaluation for advanced HF patients
The results of our study suggest that gene expression profiling
has the potential to detect HF patients with highest HF severity
with high sensitivity and specificity. Prognosis evaluation is funda-
mental for the indication of LVAD implantation and heart trans-
plantation in advanced HF patients. Patients depending on intra-
venous inotropic therapy have the worst prognosis and should
benefit from urgent or elective LVAD implantation or urgent trans-
plantation whenever possible [21]. However, risk stratification
remains particularly difficult for ambulatory advanced HF patients
not depending on intravenous inotropic therapy or prolonged hos-
pitalization, with major impairment of their functional capacities
and poor survival [22, 23]. Specific risk scores are not yet avail-
able for advanced HF patients but become mandatory in the con-
text of this growing cohort of patients [24, 25].

Our results showed that the LV and RV predictors lead to a better
prediction of clinical status than the NPPB predictor, in particular
regarding the prediction of the deteriorating status. It has previ-
ously been shown that the NPPB mRNA level in the LV and the BNP
peripheral blood level are correlated [26]. The B-type natriuretic
peptide (BNP) blood level is widely used as a clinical predictor for
HF patients. However the BNP blood level predictive value is still
controversial in the specific condition of end-stage HF [27, 28]. A
previous report showed that a lower natriuretic peptide blood level,
that usually implies a better outcome, may also imply poor out-
come in severe HF patients [28]. Similarly, our results show a low
NPPB mRNA level for patient in the deteriorating status group.

Our results provide a rational to develop prospective clinical
research studies using gene expression measurement techniques
in advanced HF. Although microarrays are a unique tool to screen
the largest number possible of potential biomarkers, which was
the aim of this study, other techniques such as quantitative RT-
PCR will be of greater interest to develop a clinically relevant out-
come predictor based on a set of selected biomarkers.

Transcriptomal remodelling of the right ventricle
Our results suggest that molecular prediction using samples taken
from RV may be as powerful as molecular prediction using sam-
ples taken from LV. Most of the patients with advanced HF have
severe LV dysfunction, whereas RV dysfunction intensity is vari-
able among these patients. In addition, transcriptome remodelling
of the RV in HF has been evaluated to a lesser extent than for the
LV. Our data show that most of the molecular processes disturbed
in the LV are also disturbed in the RV. In addition, sensitivity and
specificity of prediction of both stable and deteriorating statuses
using RV samples were at least equivalent to those obtained using
LV samples. These results are in agreement with a previous study
showing accurate prediction of clinical outcome of new-onset HF

© 2009 The Authors
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Fig. 3 Prediction of HF severity in all samples. Individual MSS values
obtained for the LV and RV predictors are presented for all 176 analysed
samples. Open and black-filled circles correspond to stable and deterio-
rating LV samples, respectively. Open and black-filled triangles corre-
spond to stable and deteriorating RV samples, respectively. Intermediate
samples are shown in grey. Dashed lines denote upper and lower limits
of the unpredictable interval.
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patients using a transcriptomic signature obtained from RV
endomyocardial biopsies [17].

For some specific clinical situations, such as arrythmogenic
RV dysplasia or severe LV infarction with unaffected RV, RV and
LV function/morphology may clearly differ. In our study, we could

not obtain samples for these very specific groups of patients.
Therefore, our results cannot be extended to these patients.
Although these clinical profiles represent a relatively moderate
percentage of advanced HF patients, our results can be applied to
a majority of patients in advanced HF.

© 2009 The Authors
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Stable Deteriorating Intermediate

n � 13 n � 12 n � 19 P-value

Male / female 12/1 10/2 16/3 0.747

Age, years 50 (15) 49 (9) 48 (12) 0.559

Initial cardiac disease, CAD / DCM / other 5 / 6 / 2 4 / 7 / 1 8 / 7 / 4 0.840

HF duration, months 32 (29) 24 (33) 29 (32) 0.459

Heart rate, per min. 69 (13) 100 (16) 76 (16) � 0.001*,‡

Systolic arterial pressure, mmHg 102 (17) 97 (9) 103 (12) 0.509

LVEF,% 24 (11) 22 (7) 24 (7) 0.829

LVEDD, mm 73 (13) 66 (7) 65 (10) 0.254

MPAP, mmHg 24 (12) 33 (10) 32 (10) 0.095

Blood urea nitrogen, mmol/l 9.1 (5.6) 9.8 (4.2) 9.0 (4.1) 0.884

Serum creatinine, 
mol/l 107 (26) 107 (22) 101 (36) 0.642

Medications,% of patients

ACEI / ARB 100 58 84 0.024*

	-Blockers 69 0 26 � 0.001*, †

Adrenergic agonists 0 100 42 � 0.001*, †, ‡

Phosphodiesterase inhibitors 0 67 0 � 0.001*, ‡

Aldosterone blockers 77 58 53 0.420

Statin 46 33 32 0.724

Digoxin / digitoxin 46 25 26 0.502

UNOS medical urgency status 2 1A 1B or 2

Number of recent ADHF episodes 0 1.8 (0.4) 1.7 (0.8)

Table 1 Clinical characteristics of HF severity patient groups

CAD: coronary artery disease; DCM: dilated cardiomyopathy; LVEF: left ventricle ejection fraction; LVEDD: left ventricle end diastolic diameter; MPAP:
mean pulmonary artery pressure, ACEI: angiotensin converting enzyme inhibitors; ARB: angiotensin receptor blockers; ADHF: acute decompensated
heart failure.

Data are presented as ‘mean (S.D.)’ when appropriate. P -value indicates the result of a comparison among the three patient groups using Fisher’s
exact test or Kruskal–Wallis rank sum test. If P � 0.05, groups were compared two-by-two. *P � 0.05 between deteriorating and stable; †P � 0.05
between intermediate and stable; ‡P � 0.05 between deteriorating and intermediate.

An ADHF episode was defined as recent if it occurred during the 3 months before the heart transplantation/total artificial heart placement. HF dura-
tion was defined as the delay between onset of HF symptoms and heart transplantation/total artificial heart placement. Values for LVEF, LVEDD, blood
urea nitrogen and serum creatinine corresponded to pre-operative measurements. All patients were treated with loop diuretics (furosemide and/or
bumetanide). Only medications related to HF therapy are presented. The clinical profile was determined based on the patients’ medical urgency sta-
tus in the UNOS classification and the occurrence of recent ADHF episodes.
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Prediction reproducibility
Measurement reproducibility is another crucial point when develop-
ing a predictor of HF severity. Relatively high variability of widely
used biomarkers like BNP or N-terminal proBNP blood levels may
be a problem for patient management [29]. Our results show that
gene expression profiling is reproducible among biological repli-
cates. Reproducibility was higher for RV samples, reinforcing the
interest of RV sample utilization to develop a molecular predictor in
advanced HF. A hypothesis is that regional tissue heterogeneity may
be higher in LV than in RV. One cause may be the presence of infarct
scars that preferentially affect the LV. However, ventricular samples
analysed in this study were obtained after careful dissection of the
ventricles excluding infarct scars. We also did not observe a higher
variability of MSS values obtained for LV samples in patients
affected by coronary artery disease compared to other patients.

Potential limitations

Complexity of myocardial remodelling
Although transcriptional remodelling is an important mechanism
of cardiac remodelling occurring in HF, post-translational modifi-
cations are also of crucial importance. Therefore, additional tech-
niques such as Western blot and possibly additional experiments
would be necessary to verify a mechanistic role for a single
gene/protein, which was not the scope of this study. This study
was designed to identify transcriptomic biomarkers that would
reveal to be useful for patient classification. We also showed that,
at the functional level, most of the identified biomarkers are
involved in molecular functions that are important for myocardial
remodelling associated with HF.

Effect of medication
Therapeutic interventions, in particular medications, may induce
modifications of the cardiac transcriptome [30]. We tested the

hypothesis that the patient classification may be modified by
angiotensin converting enzyme inhibitors/angiotensin receptor
blockers, 	-blockers and inotropic drugs. A very low number of
genes included in the distinct predictors displayed differential
expression associated with different drug intake. Removing these
genes from the predictors did not modify the patients’ classifica-
tion. Therefore, medications do not strongly modify the expres-
sion level of our predictors.

Clinical classification
We compared our molecular predictors to a two-parameter clini-
cal classification that has not been previously evaluated in
advanced HF. Because we used samples taken at the time of 
cardiac transplantation, it was not possible to compare our pre-
dictors to a relevant clinical end-point like mortality or hospital-
ization for ADHF. We suggested that the use of parameters meas-
ured at the time of transplantation would better reflect the clinical
phenotype at this time and decided to combine two established
predictors of HF severity to classify patients. The UNOS medical
urgency status has been specifically developed for advanced HF
patients listed for cardiac transplantation. The UNOS-1A status at
the time of listing is associated with a 1-month mortality �30%
whereas UNOS-2 patients have a 1-month mortality �10% [4].
The mortality rate on the UNOS waiting list is more than 4-fold
higher for UNOS-1A than for UNOS-2 patients [23]. To better
define our group of stable patients we combined the UNOS med-
ical urgency status with the occurrence of ADHF episodes.
Frequent rehospitalizations have been recognized as a strong pre-
dictor of HF patient mortality [24]. Other HF severity prediction
scores have been developed in advanced HF [3, 4]. Comparison
of one of these HF severity predictors to the UNOS medical
urgency status did not reveal a higher predictive power [4]. 
Other predictors included the measurement of peak oxygen con-
sumption that cannot be recorded in the most severely affected
patients [3].

© 2009 The Authors
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Fig. 4 Between-sample repro-
ducibility. Between-sample
reproducibility was assessed
using MSS values calculated
from biological replicates.
Subgroup analysis based on
the origin of the sample (LV or
RV) is shown. The correlation
coefficient was used as a
between-sample reproducibil-
ity index. Squares: LV sam-
ples; Triangles: RV samples.
Open symbols: stable sam-
ples; grey-filled symbols:
intermediate samples; black-
filled symbols: deteriorating
samples.
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We analysed expression profiles of patients with advanced HF
at the time of cardiac transplantation. Further clinical studies are
needed to determine whether gene expression profiling of cardiac
tissue provides sensitive prognostic information for advanced
ambulatory HF patients using clinical end-points like mortality or
hospitalization for HF.
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