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The exploration of noble metal-free catalysts with efficient electrochemical performance

toward oxygen reduction reaction in the acid electrolyte is very important for the

development of fuel cells technology. Novel pyrolyzed heteroatom-doped Fe/N/C

catalysts have been regarded as the most efficient electrocatalytic materials for

ORR due to their tunable electronic structure, and distinctive chemical and physical

properties. Herein, nitrogen- and sulfur-doped (Fe/N/C and Fe/N/C-S) electrocatalysts

were synthesized using ferric chloride hexahydrate as the Fe precursor, N-rich polymer

as N precursor, and Ketjen Black EC-600 (KJ600) as the carbon supports. Among these

electrocatalysts, the as prepared S and N-doped Fe/N/C-S reveals the paramount ORR

activity with a positive half-wave potential value (E1/2) 0.82 at 0.80 V vs. RHE in 0.1 mol/L

H2SO4 solution, which is comparable to the commercial Pt/C (Pt 20 wt%) electrocatalyst.

The mass activity of the Fe/N/C-S catalyst can reach 45% (12.7A g−1 at 0.8 V) and 70%

(5.3 A g−1 at 0.95 V) of the Pt/C electrocatalyst in acidic and alkaline solutions. As result,

ORR activity of PGM-free electrocatalysts measured by the rotating-ring disk electrode

method increases in the following order: Fe/N/C<Fe/N/C-S, in both basic and acidic

medium. This scientific work offers a facile approach to design and synthesizes efficient

heteroatom-doped catalytic materials for electrochemical reactions in energy devices.

Keywords: heteroatoms doped catalysts, fuel cells, oxygen reduction reaction, acid solution, active sites

INTRODUCTION

The electrochemical oxygen reduction reaction is the most significant process at cathode in the
polymer electrolyte membrane fuel cell (PEMFC) and anion-exchange membrane alkaline fuel
cell (AEMFC). The high-cost platinum and other noble metals based electrocatalysts are still
commonly used for ORR because of their unique characteristics, such as low over-potential and
high current density (Marković et al., 2001; Chung et al., 2017; Gottesfeld et al., 2018). It is known
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that more electrocatalyst loading is needed (∼80% of the Pt) to
ameliorate the sluggish oxygen reduction process at cathode in
fuel cells (Wu and Zelenay, 2013). However, the large-scale fuel
cell applications are confined owing to high-cost, the fact they
are easily poisoning to CO and methanol, have limited supply
and long-term stability, low electrocatalytic selectivity, and also
due to the sluggish reaction kinetics of noble metal-doped (Pt,
Pd, Ru, etc.) catalysts for ORR (Rauf et al., 2018; Wang Y. et
al., 2018). To tackle these challenges, cost-effective noble metals-
free catalysts are an alternative and effective approach to develop
fuel cell technology (Lim et al., 2009). Therefore, it is urgent
to develop noble metals-free electrocatalytic nanomaterials with
superior activity and durability, in order to commercialize fuel
cell devices on a large-scale.

In the last decade, enormous efforts have been made for
developing high-performance and cost-effective noble metal-
free catalysts for ORR (Dai et al., 2015; Chung et al., 2017;
Gewirth et al., 2018; Li et al., 2018; Xue et al., 2018). These
electrocatalysts were based on various kinds of heteroatoms,
transition metals, nitrogen and carbon precursors, such as
carbon-supported nitrogen and transition metals-doped catalytic
materials (Bezerra et al., 2008; Jaouen et al., 2011; Higgins and
Chen, 2013; Rauf et al., 2016), dual heteroatom-doped carbon
nanotubes or graphene (Yao et al., 2012; Nyoni et al., 2015; Rauf
et al., 2017), metals-N4 macrocycles (Jasinski, 1964; Seo et al.,
2014), heteroatoms doped carbon nanomaterials (Zhang et al.,
2016; Liu et al., 2019; Wu et al., 2019), etc., which showed high
catalytic activity, stability, and high tolerance to small alcohol
molecules or CO poisoning (Qu et al., 2010). Among them,
carbon-supported nanomaterial with heteroatoms doping (e.g.,
Co, Fe, N, S, P, and halogens) were widely developed, and
they are promising non-precious electrocatalysts to substitute
Pt group metal (PGM)-free electrocatalysts for ORR (Gong
et al., 2009; Yang et al., 2012; Yao et al., 2012; Zhang and Dai,
2012; Jeon et al., 2013; Chen et al., 2017; You et al., 2018).
Sulfur and halogens (F and I) had been introduced as active
additives in Fe/N/C or Co/N/C electrocatalysts to improve the
electrocatalytic performance (Chen et al., 2015; Nyoni et al., 2015;
Wang Y.-C. et al., 2018; Zheng et al., 2019). The dual-doping
of non-precious metals (Fe, Co, etc.) and heteroatoms could
be attributed to the accessibility of reactants for ORR and an
increase in the charge transfer rate at the electrode/electrolyte
interface (Li et al., 2015). It is found that the different atomic size
and electronegativity of heteroatoms enhanced the ORR current
density by changing the charge distribution of contiguous carbon
atoms, and created the active sites center in electrocatalysts
(Wang et al., 2011; Choi et al., 2012). The heteroatom-doped
Fe/N/C electrocatalysts had shown higher ORR performance
in basic solution as compared to the acid solution, due to
different reaction mechanisms under different pH values of
electrolyte solution (Rauf et al., 2016; Gewirth et al., 2018). It is
reported that the presence of sulfur-based species can enhance
the ORR performance of Fe/N/C catalysts by decreasing the
generation of intermediate H2O2. However, there are a number
of reports which concentrate on the heteroatom-doped Fe/N/C
electrocatalysts, and most of them are investigating the ORR
performance in alkaline solutions (Hoque et al., 2018; You

et al., 2018; Wu et al., 2019; Zheng et al., 2019). Therefore, it
is necessary to develop heteroatom-doped catalysts with high
electrochemical performance in acidic medium, which so far is
more practical for fuel cells. Moreover, another challenge is the
uniform doping of heteroatoms in a facile and controllable way
in the electrocatalysts.

In this report, we synthesized heteroatom-doped Fe/N/C
electrocatalysts with the porous structure for ORR, to especially
improve the activity in acidic electrolyte. Among them, the
Fe/N/C-S catalyst with uniform potential catalytic active sites,
high surface areas (830 m2g−1) and porosity demonstrated best
electrochemical performance. The half-wave potential (E1/2)
reaches to 944mV (vs. RHE), that is 34mV more positive
(910mV vs. RHE) than a commercial Pt/C electrocatalyst
and high limiting current density of 5.5mA cm−2 at 0.43V
in 0.1M sodium hydroxide solution. While in 0.1M H2SO4

electrolyte solution, E1/2 potential of the Fe/N/C-S electrocatalyst
reaches 820mV (vs. RHE), which is only 64mV less than
Pt/C electrocatalyst. From the surface morphology analysis,
the Sulfur-doped Fe/N/C electrocatalyst looks mesoporous and
the Fe particles are preserved through graphitic layers. This
electrocatalyst showed highORR performance, lowH2O2% yield,
and followed the four-electron path selectivity due to uniform
doping of heteroatoms N, S and Fe metal.

EXPERIMENTAL SECTION

Reagents and Materials
Melamine (99%), Terethalaldehyde (98%), and dimethyl
sulphoxide (99%) were received from Aladdin reagents
(Shanghai) Co., LTD. Ferric chloride hexahydrate (FeCl3.6H2O),
99.0%), hydrochloric acid (36%), ethanol (99.7+%), Superpur
Sulfuric acid (96.0%), Calcium Hydride (CaH2) and sodium
hydroxide (98.0%) were obtained from China Chemical Reagent
Corporation Aladin and Macklin. The commercial Pt/C (Pt
20 wt%) and Nafion (5%) were purchased from Alfa Aesar.
The carbon black (Ketjenblack EC600J) was bought from Akzo
Nobel, Japan. The deionized water (18.2 M�) was used during
all experimental work.

Synthesis of Fe-N/C
The N-doped Fe-N/C electrocatalyst was prepared as in our
previous report (Rauf et al., 2016). In brief, the N-rich polymer
as nitrogen source was synthesized through the reaction between
melamine (5.0 mmol) and terephthalaldehyde (7.5 mmol) with
DMSO solvent (18mL) in 25ml Teflon lined autoclave reactor at
180◦C for 72 h. The formed N-rich polymer was in-situ coated
on KJ600 carbon black (ca. 0.5 g). The synthesized N-doped
carbon material (1 g) was mixed with ferric chloride (3 mmol)
through C2H5OH solvent by magnetic stirring. The ethanol was
evaporated through a vacuum rotary evaporator machine and
further dried at 50◦C for 10 h. The resulting dried carbonmaterial
was pyrolyzed at high temperature 800◦Cunder inert atmosphere
(Ar gas) for 1 h with the heating rate of 5◦C per min (HT1).
The pyrolyzed powder was dispersed in 0.1M super sulphuric
acid by stirring at 80◦C for 8 h (HT1-AL). The unstable and
inactive impurities were removed by centrifugation and washing
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with pure H2O several times. The washed product was dried at
85◦C for a whole night and then again pyrolyzed (HT2) at 800◦C
for another 3 h with a heating rate of 5◦C min−1 to get the final
Fe-N/C electrocatalyst (Figure 1).

Preparation of S-Doped Fe-N/C
To synthesize S-doped Fe-N/C, firstly, we prepared fresh
Fe(SCN)3 solution by mixing 1M FeCl3 with 1M KSCN in 1:3
ratio. Secondly, N-doped carbon (N/C: 0.5 g) was mixed with
freshly prepared Fe(SCN)3 solution by magnetic stirring and
dried at 80◦C overnight. The final S-doped Fe-N/C catalyst was
obtained after performing a heat treatment and acid leaching
process as like to the Fe/N/C electrocatalyst.

Physical Characterizations
The surface morphologies and microstructure of electrocatalysts
were analyzed by a field emission scanning electron microscope
(JEOL JSM-7800F) and a high-resolution transmission electron
microscopy (JEM-2100 and X-Max 80), respectively. The X-
ray diffraction testing was done by D8 Advance with Cu
Kα radiations. The surface chemical composition and active
species of the electrocatalytic materials were examined by X-ray
photoelectron spectroscopy (XPS) with an Ultra DLD using a
monochromic Al X-ray source. The Ar adsorption/desorption
isotherms were obtained by aMicromeritics (ASAP 2020) device.
The pore size distribution and specific surface areas data were
calculated by using the Brunauer-Emmett-Teller theory. The
Raman spectra were recorded by using a Renishaw/Invia Reflex
spectrometer coupled with a 633 nm laser.

Electrochemical Experiment Section
The electrochemical testing of electrocatalysts was evaluated by
using a CHI-760D bipotentiostat (China) and three electrodes
connected to an electrolytic cell at a constant temperature 30◦C.
The saturated calomel electrode (SCE) and mercury/mercury
oxide (Hg/HgO) were used as reference electrodes. A thin
graphite strip was used as a counter electrode. A glassy carbon
(diameter = 5.61) surrounded by a Pt-metal ring was used as a
substrate for the preparation of working electrode.

For the preparation of working electrode, the required
amount of catalyst (6–10mg) was ultrasonically dissolved in 1mL
solution (0.5mL C2H5OH, 50 µL 5% Nafion and 0.45mL H2O).

A total 25 µL of the catalyst solution was dropped on the glassy
carbon disk electrode after polishing by 0.3µm Al2O3, and dried
at room temperature. For comparison purposes, commercial
Pt/C (Pt 20 wt%) electrocatalyst ink was synthesized with a
similar method, by dissolving 1mg in 1mL C2H5OH solvent.
The cyclic voltamograms were measured by potential cycling
between 0.2 and 1.2V vs. RHE with 900 rpm at 10mV s−1

scan rate. The electrolytic solutions were saturated with O2 gas
for 30min before the measurements and ohmic drop value (iR
drop) was compensated. The CV curves also recorded in nitrogen
gas saturated electrolyte solution under similar conditions. The
current recorded in the O2-saturated electrolyte was revised by
the background capacitive current to obtain the ORR current.
The mass activity of the electrocatalyst was calculated by dividing
the kinetic current (Jk) to the catalyst loading. The Koutecky-
Levich’s (K-L) equation (Equation 1) applied to calculate the
kinetic current.

1

j
=

1

jk
+

1

jL
(1)

The H2O2 yield was determined through Pt ring at 1.3 V vs. RHE,
and the H2O2 percentage was determined by Equation 2.

H2O2 (%) = 200 ∗
Iring/N

Idisk + Iring/N
(2)

The collection efficiency of RRDE was experimentally measured
to be 0.386 in 5mM K4Fe(CN)6 and 1M Sr(NO3)2 solution. The
selectivity of the ORR process can be determined through H2O2

percentage by the Equation 3.

ne = 4 ∗
Idisk

Idisk +
Iring
N

(3)

RESULTS AND DISCUSSION

The structural properties of electrocatalysts were analyzed
through X-ray diffraction. The XRD pattern of electrocatalyst
showed characteristic reflections of crystalline iron carbide
(Fe3C) and other metal impurities after first heat treatment

FIGURE 1 | The summary of synthesis of dual-doped electrocatalysts.
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(HT1) in Figure 2A. Metal impurities formed after HT1 were
washed out by an acid leaching process (HT1-AL). The XRD
patterns showed broad and prominent peaks centering at the 2θ
angles of 26.2◦ and 43◦, which were assigned to the graphitic
carbon framework of (002) and (100) planes, respectively. These
strong peaks were formed due to the heteroatoms doping in
electrocatalysts, and showed that the graphitic layers increased
after the pyrolysis at high temperature. There is no prominent
peak of Fe metal in the XRD pattern of the Fe/N/C electrocatalyst
as compared to the Fe/N/C-S sample (Figure 2B). However, there
are some other confirmed characteristic peaks that correspond to
the Fe3C with PDF No. 23-0298 and Fe3O4 with PDF No. 03-
0863 in the Fe/N/C-S electrocatalyst. The XRD results proved
that the amount of iron is quite higher after the acid leaching
and second heat treatment, which indicates that Fe nanoparticles
were protected due to N-doped carbon nanoshells in the S-
doped electrocatalyst.

The transmission electron microscope images of heteroatom-
doped electrocatalysts are shown in Figure 3. The surface
morphology of the N-doped catalyst Fe/N/C seems like the
agglomeration of carbon nanoparticles, as can be seen in
Figure 3A where the size of the nanoparticles is ∼30 nm.
The Fe/N/C-S catalyst possessed a network-like mesoporous
structure, which is clearly seen in the TEM image of the
electrocatalyst (Figure 3B). In the Fe/N/C-S catalyst, N-rich

polymer-coated carbon black precursor engrossed with Fe and
S sources and sustained well-defined and smooth outer surfaces.
TEM results are indicating that the Fe and S doping were highly
dispersed in the pores of the carbon materials. For the Fe/N/C-
S catalyst, iron particles identified in amorphous and crystalline
form on the surface of the electrocatalyst. There are some Fe
particles covered by carbon nanoshells/graphitic layers which
even survived after the acid leaching and second heat treatment
process. Furthermore, covered Fe particles were confirmed by
HR-TEM analysis (inset image of Figure 3B). The SAED patterns
(inset of Figure 3B) justify the crystalline structure of covered
particle α-Fe (110) in Fe/N/C-S electrocatalyst. The heteroatoms
Fe, N, and S, might have been well-immersed and integrated into
the carbon framework in Fe/N/C-S, rather than agglomerating
on the surface like the Fe/N/C catalyst, which may result in
improved electrochemical performance.

The graphitic carbon content in catalysts was tested via
Raman spectroscopy. The characteristic D- (1350 cm−1) and G-
band (1594 cm−1) confirmed the presence of graphitic carbon
atoms structure in catalysts (Figure 4A), which is formed due
to pyrolysis at high temperature. The graphitization and the
defect density of carbon nanomaterials can be determined
from peak intensities ratio of D- and G-band (Yang et al.,
2019). While the intensity ratios ID/IG values were calculated
as 1.19 and 1.14 for Fe/N/C-S and Fe/N/C, respectively.

FIGURE 2 | XRD patterns of (A) the Fe/N/C electrocatalyst at different preparation stages, (B) the Fe/N/C and Fe/N/C-S electrocatalysts after HT2.

FIGURE 3 | Morphology characterization of dual heteroatom-doped electrocatalysts: (A) TEM image of the Fe/N/C, (B) TEM images of the Fe/N/C-S catalyst.

The insets are the HR-TEM image of covered Fe particle and corresponding SAED pattern.
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FIGURE 4 | (A) Raman spectra, (B) Ar adsorption and desorption isotherms, (C) mesopore size distribution, and (D) micropore size distribution of Fe/N/C-S

and Fe/N/C.

Raman spectra analysis reveals that the Fe/N/C-S electrocatalyst
has more defects as compared to the Fe/N/C, resulting in
more electrocatalytic active sites. The porous structure of
electrocatalysts was examined by Ar adsorption-desorption
isotherms (Figure 4B). It is observed from the literature that the
ORR activity also correlates with the Brunauer-Emmett-Teller
(BET) surface areas of the electrocatalysts (Yang et al., 2018).
The BET surface areas of Fe/N/C and Fe/N/C-S electrocatalysts
are 738 and 830 m2g−1, respectively. It is noticed that surface
areas of Fe/N/C-S electrocatalyst is significantly improved
due to the heteroatoms doping (Fe, S, and N) as compared
to the Fe/N/C electrocatalyst. With heteroatoms doping, the
Ar adsorption-desorption curves displayed a typical isotherm
type-IV and a capillary condensation phenomenon results
from a relative pressure value of 0.3–0.8, which indicates the
ordered mesoporous nanostructure. As comparison, S-doped
electrocatalyst showedmoremesoporosity andmesopore volume
than Fe/N/C catalyst but less microporosity, as shown in
Figures 4C,D. The doping of heteroatoms significantly improved
the mesoporosity. Fe plays an especially imperative function
in the formation of a mesoporous structure, increases the
value of BET-specific surface areas and the mesopore volume

of electrocatalysts. These structural features can accelerate the
ORR process.

XPS and EDS were performed to confirm the heteroatoms
doping in the prepared Fe/N/C-S electrocatalyst. Figure S1

shows the high-resolution S 2p spectra with three main peaks.
The former two peaks correlated to S 2p3/2 and S 2p1/2
at binding energy values of 163.5 and 164.8 eV, respectively,
which confirms the thiophene-like structure (C-S-C) in the
carbon framework. The third peak at 168.6 eV was associated
with the oxidized sulfur groups (C–SOx–C) at the surface of
electrocatalyst. The heteroatoms (S, N, and Fe) can change
the electronic structure and create new active centers in the
electrocatalyst, which benefits the ORR process. The high-
resolution N1s spectra of Fe/NC-S presents in Figure 5A. The
N1s spectra of S and N-doped electrocatalyst were categorized
into four different nitrogen peaks to get more insight into
the surface composition and relative percentage of active N
species. The different N-peaks are corresponding to N1 pyridinic
(398.3 eV), N2 pyrrolic (400 eV), N3 graphitic (401 eV), and N4
oxidized pyridine (403.5eV), respectively. The relative percentage
content of the N1, N2, N3, and N4 in the Fe/NC-S electrocatalyst
were determined to be 27.3%, 22.7%, 34.6%, and 15.4 wt%,
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FIGURE 5 | (A) The high-resolution N 1s spectrum, (B) ADF-STEM image, and (C–F) EDS elemental mapping of C, Fe, O and N, of Fe/N/C-S.

FIGURE 6 | ORR polarization curves of Fe/N/C electrocatalysts (A) electrocatalysts synthesized at different temperatures, (B) electrocatalysts at different synthesis

stages in O2-saturated 0.1M NaOH solution at a scan rate of 10mV s−1, 900 rpm.

respectively. Both the pyridinic N1 and graphitic N3 may take
part in the ORR process in alkaline solution (Wen et al., 2012).
Both these N active species’ (N1 and N3) percentage is 61.8% of
the total nitrogen content in Fe/NC-S. The ORR performance
of Fe/N/C-based electrocatalysts in acidic electrolyte is highly
dependent on the percentage of pyridinic N. According to XPS
analysis, the total weight contents of N, S, and Fe were calculated
to be 3, 0.24, and 1.6% for the Fe/N/C electrocatalyst, as well
as 6.3, 2.5, and 3.2% for the Fe/N/C-S catalyst, respectively. It
can be seen that Fe and N content significantly increased in the
Fe/N/C-S electrocatalyst in comparison with the Fe/N/C catalyst.
Obviously, the S-doping can make possible the maintenance

of Fe and N contents in S-doped electrocatalyst. Furthermore,
annular dark-field scanning transmission electron microscopy
(ADF-STEM) and EDS mapping analysis performed to see
the elemental distribution in the best catalyst Fe/NC-S. The
ADF-STEM and EDS mapping of C, Fe, O, and N were
presented in Figures 5B–F. The elements have been uniformly
distributed in the carbon framework, which may enhance the
ORR performance in acidic as well as basic solution.

The electrocatalytic performance of the Fe/N/C electrocatalyst
for oxygen reduction reaction was investigated by using a cyclic
voltammetry technique in the 0.1M NaOH electrolyte. The
electrolyte solution was saturated with O2 and N2 for 30min
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prior to electrochemical tests. For comparison, a commercial
Pt/C (20 wt% Pt) electrocatalyst was examined under similar
conditions. For optimizing the synthetic conditions and ORR
performance, we firstly determined the ORR activity of the
electrocatalysts as a function of the pyrolysis temperature in
the range of 700–900◦C. The pyrolysis at high temperature
played an important role in boosting the ORR activity for
non-precious metal-based electrocatalysts (Wu et al., 2011b).
The best ORR activity from the sample prepared at 800◦C
with high value of half-wave potential (944mV) and onset-
potential (110mV) was observed in Figure 6A. At this high
pyrolysis temperature, electrocatalysts may have high electron
conductivity, active site density, and specific surface areas (Liu
et al., 2010;Wu et al., 2011a; Ferrandon et al., 2012). It is reported
that the relative percentage of nitrogen-active species in N-doped
electrocatalysts significantly transformed between graphitic and
pyridinic nitrogen due to heat treatment at high temperature
(Li et al., 2009).

The function of cost-effective transition metals, such as Fe,
Ni, Co, Mn, Cu, and Cr have been investigated as metal-ion
centers for PGM-free electrocatalysts. Furthermore, the loading
and content of these low-cost metals in NPM catalysts have
also been subjected to investigation. The iron metal as dopant
play a very significant role in enhancing the ORR performance
in acidic and alkaline electrolyte solution, but the active sites

in Fe-based electrocatalysts are still under debate. A number
of studies have demonstrated that both Fe-metal and nitrogen
doping have synergistic effects on ORR activities (Wen et al.,
2012; Liu et al., 2013). It is noticed that electrocatalysts with and
without Fe-content showed a big difference with respect to half-
wave-potential value (1E1/2 = 144mV). Figure 6B presents the
ORR curves of Fe/N/C-catalyst at different synthesis steps (BHT-
HT2). The capacitive current of polarization curves recorded in
O2 and N2 has been subtracted to obtain the real current value
for ORR (Figure S2). The shift in E1/2 potential value indicates
that the oxygen reduction performance highly correlates with
metal content in catalyst and FeNx moieties considered as active
sites (Zagal et al., 2012; Tylus et al., 2014). Therefore, the Fe/N/C
electrocatalyst showed best ORR performance with Fe-content
at high pyrolyzing temperature 800◦C, and 0.1M H2SO4 acid
solution used for acid leaching (Figure S3).

The ORR activity of Fe/N/C and S-doped Fe/N/C-S
electrocatalysts was examined in alkaline and acidic electrolytes
by RRDE technique. Figure 7A shows ORR polarization curves
of Fe/N/C-S, Fe/N/C, and Pt/C electrocatalysts in O2-saturated
0.1M H2SO4 electrolyte, with 900 rpm at a scan rate of 10mV
s–1. Clearly, the ORR electrocatalytic performance of an S-
doped catalyst (Fe/N/C-S) in acid electrolyte is significantly
improved as compared to the Fe/N/C catalyst. In 0.1M H2SO4

acid solution, Fe/N/C-S performed the best ORR activity with

FIGURE 7 | ORR polarization curves of Fe/N/C, Fe/N/C-S and Pt/C catalysts: (A) in 0.1M H2SO4, (B) comparison of mass activity in alkaline media using Pt/C as

reference, (C) polarization curves in 0.1M NaOH, and (D) comparison of mass activity in acidic media using Pt/C as reference.
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an E1/2 potential value ca. 820mV (RHE), which is only 64mV
less than commercial Pt/C catalyst (884mV vs. RHE). The E1/2
potential of Fe/N/C-S is positively shifted by 30mV in the acidic
electrolyte. The shift of E1/2 shows that the ORR performance
in acidic medium is considerably improved due to heteroatoms
doping. The low activity of the Fe/N/C electrocatalyst may
be due to low density of Fe-Nx and protonation of active
sites in acid solution, such as pyridinic N (Jiang et al., 2016;
Rauf et al., 2016). The remarkable catalytic activity of the
heteroatoms doped Fe/N/C-S electrocatalyst arisen due to a
mesoporous nanostructure, high surface areas and the number
of potential active sites, as well heteroatoms, reduced the over-
potential by changing the charge distribution of adjoining
carbon atoms and created a new active sites center in the
catalyst (Wang et al., 2015; Shen et al., 2017). Even S-doped
catalyst had shown higher ORR performance in comparison
with recently published reports on dual doped (transition metals
and heteroatoms) electrocatalysts (in Tables S1, S2). Figure 7B
displays the comparative histogram of ORR mass activity of Fe-
doped electrocatalysts and Pt/C (as reference) in acidic electrolyte
solution at 0.80V. The ORRmass activity of Fe/N/C and Fe/N/C-
S electrocatalysts reached 15% and 45% to that of the Pt/C
electrocatalyst, respectively. In 0.1M NaOH solution, Fe/N/C-S
also showed a higher oxygen reduction activity with an onset-
potential of 1.10V (RHE) and an E1/2 potential of 0.944V,
exceeding the Pt/C catalyst performance (a half-wave potential
0.91V) in Figure 7C. Figure 7D demonstrates the comparison
histogram of the ORR mass activity of PGM-free electrocatalysts
with Pt/C as a reference catalyst in basic electrolyte at 0.95V. The
mass activity of Fe/N/C and S-doped Fe/N/C-S electrocatalysts
are 40 and 70%, respectively to that of the Pt/C catalyst. As a
result, the Fe/N/C-S electrocatalyst has greater current density
and overall better electrochemical performance due to doping of
heteroatoms (S and N), and a high mesoporous structure with a
large value of surface area.

We further investigated the ORR efficiency of the Fe/N/C-
S electrocatalyst and its corresponding reaction mechanism

by the hydrogen peroxide (H2O2) yield. The ORR selectivity
information mostly obtained from the H2O2 percentage. The
ORR process includes three possible routes: one is direct four
electrons transfer mechanism with high efficiency, and the others
two are indirect routes via H2O2 formation as intermediate with
low efficiency (Jaouen, 2009). The Fe/N/C-S catalyst exhibits
the lowest (≥2) H2O2 yield in 0.1M NaOH and 0.1M H2SO4

electrolytes, even less (≥1%) at a high potential value between
0.60 to 0.90V in Figure S4. The ne value shows that the ORR on
the Fe/N/C-S electrocatalyst followed the 4e-transfer process over
O2 molecule in both acidic as well as basic electrolytes, which
is owing to the synergistic effects caused by doping of S, N, and
Fe atoms.

The durability and resistance to the alcohol crossover effect are
important for effective utilization of PGM-free electrocatalysts
in fuel cells applications. The durability of the Fe/N/C-S and
Pt/C electrocatalysts were scrutinized at 0.8V in O2 saturated
0.1M NaOH solution. The Pt/C catalyst was degraded 29%
within 3 h while the Fe/N/C-S electrocatalyst lost only 5%
of its initial activity at the same time (Figure 8A). It is
evident that the decaying rate of the Fe/N/C-S electrocatalyst
is slower as compared to Pt/C under alkaline ORR conditions.
The methanol tolerance experiment was accomplished at
0.8 V. For comparison, the Pt/C electrocatalyst was tested
in similar conditions as shown in Figure 8B. There was
no effect on the surface of the Fe/N/C-S electrocatalyst
upon the injection of CH3OH into the electrolyte. But, the
current of Pt/C dramatically changed after the addition of
methanol due to the electrooxidation of methanol molecules,
and the carbon monoxide poisoning effect on the Pt/C
electrocatalyst. It is known that CO is formed as a reaction
intermediate during the methanol oxidation process, which
is firmly adsorbed on the Pt surface. However, the current
value was not constant in the case of the Pt/C catalyst as
compared to Fe/N/C-S. This result indicated that the Fe/N/C-S
electrocatalyst is a promising candidate for ORR in alkaline fuel
cell applications.

FIGURE 8 | (A) Stability test of Fe/N/C-S and Pt/C catalysts at constant potential 0.8 V for 10,000 s. (B) Methanol tolerance (0.5M conce.), in O2-saturated 0.1M

NaOH with Scan rate: 10mV s−1; Rotating rate: 900 rpm.
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CONCLUSIONS

In conclusion, we prepared heteroatoms doped Fe/N/C
electrocatalysts through high-temperature pyrolysis. As
prepared, the N, S and Fe-doped Fe/N/C catalyst had shown
outstanding ORR performances in both alkaline and acidic
electrolytes. The main objectives of this study—to improve the
ORR activity in acidic electrolyte—were achieved through the
doping of heteroatoms. The electrocatalysts have high BET
surface area with a mesoporous structure. The best catalyst
exhibited high durability, tolerance to methanol, low H2O2

percentage, and follows the 4e transfer process. The mass activity
of the Fe/N/C-S catalyst reached 45% in acidic medium and
70% in alkaline medium to that of reference Pt/C. The enhanced
performance of the Fe/N/C-S electrocatalyst is comparable
to Pt/C due to high surface area and active species, such
as thiophene-S, graphitic N, pyridinic N, and Fe-Nx. The dual
doping of transitionmetals (Fe, Co) and heteroatoms (S andN) in
non-noble catalysts can promote electrochemical performance.
The Fe/N/C-S electrocatalyst is a promising candidate to replace
conventional noble metal-based electrocatalysts in alkaline and
acidic solutions.
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