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Despite impressive progress, a significant portion of patients still experience primary or
secondary resistance to chimeric antigen receptor (CAR) T-cell immunotherapy for relapsed/
refractory diffuse large B-cell lymphoma (r/r DLBCL). The mechanism of primary resistance
involves T-cell extrinsic and intrinsic dysfunction. In the present study, a total of 135 patients
of DLBCL treated with murine CD19/CD22 cocktail CAR T-therapy were assessed
retrospectively. Based on four criteria (maximal expansion of the transgene/CAR-positive
T-cell levels post-infusion [Cmax], initial persistence of the transgene by the CAR transgene
level at +3 months [Tlast], CD19+ B-cell levels [B-cell recovery], and the initial response to
CAR T-cell therapy), 48 patients were included in the research and divided into two groups
(a T-normal group [n=22] and a T-defect [n=26] group). According to univariate and
multivariate regression analyses, higher lactate dehydrogenase (LDH) levels before
leukapheresis (hazard ratio (HR) = 1.922; p = 0.045) and lower cytokine release
syndrome (CRS) grade after CAR T-cell infusion (HR = 0.150; p = 0.026) were
independent risk factors of T-cell dysfunction. Moreover, using whole-exon sequencing,
we found that germline variants in 47 genes were significantly enriched in the T-defect group
compared to the T-normal group (96% vs. 41%; p<0.0001), these genes consisted of CAR
structure genes (n=3), T-cell signal 1 to signal 3 genes (n=13), T cell immune regulation- and
checkpoint-related genes (n=9), cytokine- and chemokine-related genes (n=13), and T-cell
metabolism-related genes (n=9). Heterozygous germline UNC13D mutations had the
highest intergroup differences (26.9% vs. 0%; p=0.008). Compound heterozygous
CX3CR1I249/M280 variants, referred to as pathogenic and risk factors according to the
ClinVar database, were enriched in the T-defect group (3 of 26). In summary, the clinical
characteristics and T-cell immunodeficiency genetic features may help explain the
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underlying mechanism of treatment primary resistance and provide novel insights into CAR
T-cell immunotherapy.
Keywords: CAR-T cell immunotherapy, immune resistance, primary immunodeficiencies, T cell dysfunction,
germline alterations, LDH – lactate dehydrogenase, cytokine release syndrome (CRS), DLBCL - diffuse large B
cell lymphoma
INTRODUCTION

CAR T- cell immunotherapy has demonstrated unprecedented
efficacy in relapsed/refractory large B-cell lymphoma (1).
Previously, we reported the remarkable safety and efficacy of
CD19/22 CAR T-cell cocktail immunotherapy alone and
following autologous stem cell transplantation (ASCT) in the
treatment of adult patients with r/r B-cell malignancies (2–7).
However, a substantial number of patients treated with CAR T
cells may experience primary (no response, NR) or secondary
(initial response followed by relapse/escape) resistance.

Primary resistance occurs at significantly higher rates in
diffuse large B-cell lymphoma (DLBCL) (27% to 48%) than in
B-cell precursor acute lymphoblastic leukemia (B-ALL) (19%),
follicular lymphoma (14%), and mantle cell lymphoma (16%)
with tisagenlecleucel and lisocabtagene maraleucel (8). Several
studies reported that primary resistance was correlated with
weaker expansion (maximal expansion of transgene/CAR-
positive T-cell levels post-infusion [Cmax]) and shorter
persistence (CAR transgene level at +3 months [Tlast]) of CAR
T cells in r/r non-Hodgkin lymphoma (NHL) (9–11). In
addition, the potent antitumor activity of CD19 CAR T cells in
patients is associated with long-term B-cell aplasia (BCA) (12).
In this study, T-cell dysfunction-related primary resistance was
assessed by the expansion (Cmax) and the persistence (Tlast) of the
CAR transgene, CD19+B cell aplasia, and initial response after
CAR T-cell infusion. In contrast, the mechanisms of T-cell
dysfunction-related primary resistance remain poorly
understood, in which extrinsic and intrinsic factors might
play roles.
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Extrinsic factors might influence CAR T-cell function.
It has been reported that an immunosuppressive tumor
microenvironment (TME), such as CD4+CD25+ regulatory T
cells and myeloid-derived suppressor cells and their respective
proinflammatory factors, may generate resistance to CAR T cell
treatment (13). Disease burden can positively affect the degree of
cell expansion in B-ALL, which in turn might increase the risk
and severity of cytokine release syndrome (CRS) (14, 15). In
addition, a high tumor burden might trigger an aberrant immune
microenvironment and T cell exhaustion (16). However, Liu
et al. reported that no explicit significance was found in the
relationship between tumor burden and CAR T-cell expansions
and persistence in r/r DLBCL (17). Other risk factors, including
cytokines, inhibitory receptors, and competition for nutrients
within the TME, also contribute to CAR T cell dysfunction (18).
Moreover, the influence of meditation, such as corticosteroids,
tocilizumab, and bendamustine, is still controversial and needs to
be further studied.

T-cell dysfunction can also be driven by T cell-intrinsic
factors. The relevant studies have focused on three fields. First,
the inherent T cell memory phenotype abnormalities revealed by
flow cytometry showed that an elevated frequency of
CD27+CD45RO–CD8+ T cells was associated with sustained
remission (11). Second, characteristic transcriptomic profiling
indicated by RNA sequencing showed that T cell clusters with
higher expression of cytotoxicity (PRF1, GZMB, and GZMK)
and proliferation genes were corrected with good ability in
expansion and persistence (19). Third, next-generation
sequencing (NGS) studies suggested that transgenes integrated
into the TET2 locus may also occur in CAR T-cell therapy (20).
In addition to these alterations, inborn errors of immunity,
referred to as primary immunodeficiencies (PIDs), also
participate in the mechanism of intrinsic T-cell defects. PID is
caused by monogenic germline mutations that result in loss of
function (hypomorphic), or gain-of-function (hypermorphic) of
encoded protein (21). Currently studies on germline alterations
are limited in CAR T-cell immunotherapy.

Germline genetic aberrations may have indications for
targeted agents. For example, in the field of targeted
immunotherapy, microsatellite instability and mismatch repair
deficiency, which may arise from MLH1, MSH2, MSH6, and
PMS2 mutations, suggests potential vulnerability to PD-1
inhibitors (22). Olaparib, a poly polymerase inhibitor, is
approved as maintenance therapy for patients with advanced
pancreatic cancer and a germline BRCA1 or BRCA2 pathogenic
ovarian cancer (23). Genetic studies of DLBCLs in humans have
revealed an increasing number of potentially relevant germline
alterations (24). However, in the field of CAR T-cell
immunotherapy, it remains unclear whether germline
April 2022 | Volume 13 | Article 873789
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mutations affect cellular kinetic T-cell function. T cell germline
defects add another layer of complexity in understanding the
CAR T-cell therapy resistance mechanism and provide novel
insight into targeted drug developments.

In this study, we analyzed the clinical and genetic
characteristics of 48 r/r DLBCL patients receiving CD19/CD22
cocktail CAR T-cell therapy, aiming to characterize the
prognostic factors of T cell dysfunction related to the primary
resistance mechanism. This work may help explain the
underlying mechanisms of primary resistance to treatment and
provide novel insights into CAR T-cell immunotherapy.
MATERIALS AND METHODS

Patient Population
In our study, patients with DLBCL treated with murine CAR T-cell
cocktail therapy at Tongji Hospital between January 2019 and
August 2020 were enrolled according to a previous report (2, 7).
Two clinical trials (Trial A and Trial B) were included in the
analysis. Trial A involves a murine CAR19/22 T-cell “cocktail”
therapy, and Trial B involves an ASCT followed by CAR19/22 T-
cell “cocktail” therapy. The timeline of leukapheresis,
leukodepletion, chimeric antigen receptor therapy T-cell (CAR-T)
infusion, and the follow-up period are described in Figure S1.
Frontiers in Immunology | www.frontiersin.org 3
All the patients were followed up until they died, lost to
follow-up, or withdrew consent. A series of screening conditions
were set up to select patients with typical T-cell characteristics
(Figure 1). Patients were divided into 2 groups: a T-normal
group (n=22) and a T-defect group (n=26). Grouping was based
on four criteria (maximal expansion of transgene/CAR-positive
T-cell levels post-infusion [Cmax], initial persistence of transgene
by CAR transgene level at +3 months [Tlast], CD19

+ B-cell levels
[B-cell recovery], and initial response assessment after CAR-T
cell infusion). Patient characteristics and outcomes were
collected retrospectively. The raw data are shown in Table S1.

Further details regarding the study procedures are described
in the Supplementary Methods. This study was carried out
following the Declaration of Helsinki and approved by the
Medical Ethics Committee of the Department of Hematology,
Tongji Hospital, Tongji Medical College, Huazhong University
of Science and Technology (ChiCTR-OPN-16009847, ChiCTR-
OPN-16008526). Because of the retrospective nature of the study
and that the specimens used were the remaining samples of
clinical testing retrospectively, free of additional harm to the
patients, the need for informed consent was waived.

Bioanalytical Methods
Peripheral blood was collected from patients to evaluate post-
infusion CAR transgene levels via droplet digital PCR (ddPCR).
FIGURE 1 | Flow diagram summarizing patient recruitment, exclusion criteria, and patient groups. Patients were divided into a T-normal group (n=22) and T-defect
group (n=26) according to the criteria of CAR transgene expansion, persistence, BCA, and initial response to CAR T-cell therapy. BCA, B-cell aplasia; CR, complete
remission; CRS, cytokine release syndrome; CTCAE, common terminology criteria adverse events; ddPCR, droplet digital PCR; PET/CT, positron emission
tomography-computed tomography; PR, partial remission; SD, stable disease; PD, disease progression.
April 2022 | Volume 13 | Article 873789
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The details related to the analytical methods have been
previously published (2). CAR transgene was detected by
ddPCR measurements before lymphodepletion chemotherapy;
just after infusion; on days 4, 7, 11, 14, 17, 21, and 28; and at
months 2 and 3. Bone marrow collection occurred at screening,
day 28 if the patient was in complete response (CR), and at
month 3. Partitioning of the CAR transgene was assessed by the
ratio of bone marrow concentrations to peripheral blood levels.
Cellular kinetics exposure parameters included maximal
expansion of transgene/CAR-positive T-cell levels post-
infusion (Cmax) and persistence (duration transgene/CAR-T
cells are present in peripheral blood and tissues [Tlast]). The
results are reported as transgene copies/micrograms of genomic
DNA for ddPCR. CD19+ B-cell levels were evaluated pre-/post-
infusion to monitor B-cell aplasia via flow cytometry (25).

Staging and response assessments were defined according to
the National Comprehensive Cancer Network guidelines and
Lugano Treatment Response Criteria (26). CRS was graded
according to the scale proposed by Lee et al. (27). Risk factors
for the CRS grade included high marrow tumor burden,
lymphodepletion via cyclophosphamide and fludarabine,
higher CAR-T cel l dose , thrombocytopenia before
lymphodepletion, and manufacturing of CAR-T cells without
selection of CD8+ central memory T cells (28). CAR T cell-
related encephalopathy syndrome and other adverse events
(AEs) were evaluated according to Common Terminology
Criteria for Adverse Events (CTCAE) v.4.03 (29).

Tumor burden was approximated us ing lacta te
dehydrogenase (LDH) levels before leukapheresis or CAR-T
cell infusion, and maximum tumor diameter (MTD) was
measured on CT or positron emission tomography/computed
tomography (PET/CT) scans (30). Interphase fluorescence in
situ hybridization (FISH) was performed using commercially
available probes (Abbott Molecular, Downers, Grove, IL, USA).
LSI IGH/IGHV (14q32), LSI MYC (8q24) Dual Color, break-
apart rearrangement probes were used to detect the
rearrangement of BCL2, BCL6, and C-MYC, respectively. A
17p13.1 (P53) probe (Vysis, Downers, Grove, IL) was used to
detect 17p deletions. Sample preparations and hybridizations
were conducted following the manufacturer’s recommendations,
and 200 cells were analyzed for each probe as previously
reported (31).

Targeted Sequencing Analysis
Targeted high-throughput sequencing was applied for somatic
alterations. A total of 57 genes were selected in this study (listed
in Table S2). Most genes were frequently altered in DLBCL,
according to data from several previously published large-scale
DLBCL group studies (32–34). Using genome build hg19/
GRCh37 as a reference, a sequencing panel covering the
coding sequences within five intronic base pairs around exons
in 57 genes was designed online (Designstudio Sequencing,
Illumina, San Diego, USA). Sequencing libraries were prepared
with AmpliSeq™ Library PLUS for Illumina, using 20 ng of input
genomic DNA per sample. Library sequencing was performed to
2000X coverage on a NextSeq™ 550 system using an Illumina
Frontiers in Immunology | www.frontiersin.org 4
NextSeq™ 500/550 High Output v2 Kit (Illumina, San Diego,
USA). The alignment and variant calling were performed using a
DNA Amplicon workflow with default parameters on BaseSpace
Sequence Hub (Illumina). The generated variants were further
annotated using ANNOVAR (35). Further details are described
in the Supplementary Methods.

Whole-Exome Sequencing (WES) Analysis
We performed WES for germline alteration analysis. The T cell-
related gene panel included ten categories of CAR-T and T-cell
biology (I=CAR structure; II=TCR signal; III=T cell co-
stimulation signal; IV= interleukin 2 (IL-2) signal; V=Immune
dysregulation; VI=JAK-STAT signal; VII=Immune checkpoints;
VIII=cytokines; IX=chemokines; and X=Metabolism). A total of
124 genes were enrolled in the panel (listed in Table S3). In
addition, the gene panel of Human Inborn Errors of Immunity
was set up according to the 2019 update on the classification
from the International Union of Immunological Societies (IUIS)
Expert Committee, the gene number of which was 403 (listed in
Table S4) (21). Forty-nine genes (e.g., CD19, CD3D, TNFRSF9,
UNC13D, JAK3, IFNAR1, CSF3R, IL10) overlapped in the
two panels.

Genomic DNA was extracted from PBMCs with a QIAmp
DNA Blood Mini kit (Qiagen, Germany) according to the
manufacturer’s instructions. An Agilent SureSelect Human All
ExonV6 Kit (Agilent Technologies, Santa Clara, CA, USA) was
used for exome capture. The genomic DNA was sequenced by
Illumina NovaSeq following the manufacturer’s protocols. BWA
software aligned the raw data to the human genome (hg37). Public
databases (1000G_EAS, ExAC_EAS, and GenomAD_EAS) were
used to filter and remove common single-nucleotide
polymorphisms (SNPs). Rare variants with minor allele
frequency (MAF) ≤ 0.03 were included. The study strategies of
germline and somatic mutations are displayed in Figure S2.
Further details regarding the study procedures are described in
the Supplementary Methods.

Statistical Analysis
Patients’ baseline and clinical characteristics were described in
Tables 1, 2, using the means ± standard deviations for normally
distributed continuous variables (e.g., age), medians and
interquartile ranges (IQRs) for nonnormally distributed
continuous variables (e.g., lines prior to CAR-T, cycles prior to
CAR-T), and counts and percentages for categorical variables
(e.g., male sex, disease stage). Student’s t test, the Mann-Whitney
U test, and Pearson’s Chi-Squared test were applied to compare
the above results. After assigned values for statistically significant
variables (Table 3), the values included in the regression model
were: score of maximal tumor diameter (MTD), score of LDH/
upper limit of normal level before leukapheresis, score of CRS
grade. Univariate and multivariate forward stepwise regression
analyses were performed to identify the significant risk factors
for the T-cell dysfunction related to primary resistance in
Table 4. Statistical analysis was performed using GraphPad
Prism 8 and SPSS version 19 software. P < 0.05 (2-sided) was
considered statistically significant.
April 2022 | Volume 13 | Article 873789
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RESULTS

Baseline Characteristics
From January 2019 to August 2020, 135 patients with r/r DLBCL
were screened for eligibility, and all received murine CD19/CD22
CAR T-cell cocktail therapy. Forty-eight patients were
retrospectively enrolled in the present study (Figure 1): 21
patients who received CAR T-cell infusion and 27 patients
who received CAR T-cell therapy following ASCT. The
detailed timeline and process of CAR T-cell infusion are
shown in Figure S1.

The baseline characteristics are summarized in Tables 1 and
S1. There was no significant difference in age (median 49 vs. 43
years; p=0.081), international prognostic index (IPI) score (≥2
risk factors: 72.7% vs. 73.1%; p=0.978), disease stage (stage II, IV:
90.9% vs. 92.3%, p=0.312), or cell of origin (COO) (germinal
center B-cell type: 45.5% vs. 19.2%, p=0.165) (36). In addition,
the data in the two groups for lines (median 3 vs. 3; p=0.815) and
cycles (median 8 vs. 7; p=0.815) prior to CAR-T were not
significantly different. Besides, there was no difference in
bridging treatment between two groups (ASCT: 50.0% vs.
61.50%; p=0.422). Furthermore, the average dose of CAR-T
cells (>4 x 106/kg: 36.4% vs. 42.3%; p=0.675) also did not
significantly differ.

T-Cell Functionality-Related
Characteristics
Four T-cell functionality-related primary resistance factors were
analyzed between the two groups. The Cmax of CAR transgene
DNA (p<0.0001) and Tlast of transgene level at three months
(p<0.0001) were significantly lower in the T-defect group than in
Frontiers in Immunology | www.frontiersin.org 5
the T-normal group (Figures 2A, B). Within three months after
CAR T-cell infusion, B-cell recovery rates differed considerably
between the two groups (0% in the T-normal; 37.5% in the T-
defect; p=0.002) (Figure 2C). Moreover, the T-defect group had
a lower response (CR/PR at initial assessment after CAR T-cell
infusion) rate (33.3% vs. 100%, p<0.0001) than the T-normal
group did (Figure 2C). In summary, T-cell functionality differed
markedly between the two groups, which was the basis for
subsequent statistical analysis.

Univariate Analysis
Factors related to disease characteristics, leukapheresis, and CAR
T-cell infusion were explored (Table 2). The p53 deletion
incidence was 50.0% in the T-normal group and 43.8% in the
T-defect group (p=0.703). Although not statistically significant,
the bone marrow infection rate (40.0% vs. 18.2%; p=0.103),
double hit/triple-hit lymphoma incidence (21.1% vs. 0%;
p=0.163), TP53 mutation rates (50% vs. 26.3%; p= 0.129), and
bendamustine usage before leukapheresis (7.7% vs. 0%; p=0.189)
were higher in the T-defect group than in the T-normal group.
However, there was no significant difference in platinum-based,
cyclophosphamide, or lenalidomide drug use within three
months before leukapheresis (p>0.05). The median value of
MTD (4.90 vs. 3.40; p=0.010; Figure 2D) and the LDH level
before leukapheresis (307.0 vs. 222.0; p=0.020; Figure 2E) were
higher in the T-defect group than in the T-normal group. In
contrast, instant LDH (median: 472.0 vs. 244.0; p=0.153) and
maximum LDH levels (median: 795.0 vs. 365.0; p=0.102) before
CAR T-cell infusion were not significantly different between the
two groups. Moreover, the CRS grade was significantly lower in
the T-defect group (p=0.013) (Figure 2F).
TABLE 1 | Baseline characteristics of patients with and without T-cell defects after CAR-T therapy.

All Patients (n=48) T-normal (n=22) T-defect (n=26) P

Age in years 46.40 ± 11.52 49.52 ± 13.08 42.95 ± 8.57 0.081
Male sex 27 (56.3%) 12 (54.4%) 15 (57.7%) 0.827
IPI score 0.978
< 2 risk factors 13 (27.1%) 6 (27.3%) 7 (26.9%)
≥ 2 risk factors 35 (72.9%) 16 (72.7%) 19 (73.1%)

Disease stage 0.861
Stages I and II 4 (8.3%) 2 (9.1%) 2 (7.7%)
Stages III and IV 44 (91.7%) 20 (90.9%) 24 (92.3%)

B symptom 0.312
Yes 10 (20.8%) 6 (27.3%) 4 (15.4%)
No 38 (79.2%) 16 (72.7%) 22 (84.6%)

Cell of origin of cancer 0.165
Germinal center B-cell type 15 (31.3%) 10 (45.5%) 5 (19.2%)
Nongerminal center B-cell type 25 (52.1%) 11 (50.0%) 14 (53.8%)
Missing 8 (16.7%) 1 (4.5%) 7 (26.9%)

Lines prior to CAR-T 3 (3-4) 3 (3-4) 3 (2-4) 0.815
Cycles prior to CAR-T 8 (7-11) 8 (7.5-11) 7 (6-12) 0.354
CAR T-cell infusion regimen 0.422
Murine CAR-T 21 (43.7%) 11 (50.0%) 10 (38.5%)
Murine CAR-T following auto-HSCT 27 (56.3%) 11 (50.0%) 16 (61.5%)

Average dose of CAR T cells 0.675
≤ 4 x 106/kg 29 (60.4%) 14 (63.6%) 15 (57.7%)
> 4 x 106/kg 19 (39.6%) 8 (36.4%) 11 (42.3%)
A
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The values are presented as the means ± standard deviations or counts (percentages). IPI, International Prognostic Index; auto-HSCT, autologous hematopoietic stem cell transplantation.
73789

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Immunodeficiencies in CAR T-Cell Therapy
Univariate and Multivariate Logistic
Regression Analysis
Uni- and multivariate logistic regression analyses of overall
survival (OS) were performed by including broad groupings of
patient characteristics to define the clinical factors correlated
with T-cell dysfunction. The three risk factors above, namely,
MTD, LDH level before leukapheresis, and CRS grade after CAR
T-cell infusion, were included in the regression analysis. First,
values were assigned for these variables, as listed in Table 3.
Second, univariate logistic regression analysis revealed that these
factors were statistically significant risks (Table 4). Furthermore,
in the multivariable regression analysis, compared to T-normal
group, patients with T-cell dysfunction (T-defect group) were
associated with a significantly higher risk of LDH/ULN prior to
Frontiers in Immunology | www.frontiersin.org 6
leukapheresis (hazard ratio (HR) =1.922, 95% confidence
interval (95% CI) 1.015-3.641, p=0.045) and decreased risk of
CRS grade (HR=0.150, 95%CI 0.028-0.795, p=0.026) but no
increased risk in MTD (HR=1.346; 95% CI=0.737-2.456;
p=0.334). In summary, LDH/ULN before leukapheresis was
associated with a significantly higher risk of T-cell dysfunction,
and CRS grade was the only independent favorable factor.

Somatic Features of the Genetics of the
Two Groups
Targeted NGS was performed to investigate the somatic genetic
alterations. Among the 48 patients, 36 samples were obtained
from initial diagnosed formalin-fixed paraffin-embedded tissue
(n=29) or peripheral blood circulating tumor DNA (n=7), and
performed targeted NGS. A total of 259 somatic mutations (MAF
≤ 0.01) in 57 genes were identified, namely, 13 splice-site
mutations, 176 missense mutations, 24 truncated mutations, 27
frameshift insertions/deletions, and 19 non-frameshift
insertions/deletions (Table S5), exclusively in tumor cells
compared to peripheral blood mononuclear cells (PBMCs).
Forty-seven mutated genes were detected in the 36 “screened”
cases. The most frequently mutated genes included the tumor
suppressor factor gene TP53 (42%, 16 of 36), immunoglobulin
variable gene IGLL5 (36%, 13 of 36), and epigenetic regulator
gene KMT2D (28%, 10 of 36) (37). There was no significant
difference in somatic mutations between the two groups (p>0.05)
(Figure 2G). Somatic clonal evolution of three patients in the T-
defect group (Figure S3).
TABLE 2 | Univariate analysis of outcomes in patients treated with CAR-T cells.

All Patients (n=48) T-normal (n=22) T-defect (n=26) P

Characteristics of patients
HBV/HCV infection 18 (37.5%) 10 (45.5%) 8 (30.8%) 0.295
Bone marrow involvement 14 (29.8%) 4 (18.2%) 10 (40.0%) 0.103
P53 deletion detected by FISH 14 (46.7%) 7 (50.0%) 7 (43.8%) 0.703
Double-hit/triple-hit lymphoma 4 (21.1%) 0 (0.0%) 4 (21.1%) 0.164
TP53 mutation 15 (38.5%) 5 (26.3%) 10 (50.0%) 0.129
Tumor maximum diameter (cm) 4.30 (2.10-6.75) 3.40 (1.65-4.50) 4.90 (4.10-9.20) 0.010
Bendamustine 2 (4.2%) 0 (0.0%) 2 (7.7%) 0.189
Leukapheresis related factors
Days from initial diagnosis to leukapheresis 456.0 (295.5-770.75) 537.0 (327.5-827.0) 400.0 (221.0-683.0) 0.175
LDH level before leukapheresis 240.50 (198.5-787.3) 222.0 (190.0-329.5) 307.0 (210.00-559.0) 0.020
Platinum-based drugs (3 months) 22 (45.8%) 10 (45.5%) 11 (42.3%) 0.827
CTX (3 months) 15 (31.3%) 5 (22.7%) 10 (38.4%) 0.241
Lenalidomide (3 months) 3 (6.3%) 2 (9.1%) 1 (3.8%) 0.454

CAR T-cell infusion-related factors
Days from initial diagnosis to CAR T-cell infusion 463.0 (298.0-787.3) 554.0 (309.5-841.0) 420.0 (236.0-694.0) 0.247
LDH level before CAR T-cell infusion (IU/L) 356.0 (195.8-414.8) 244.0 (186.0-557.5) 472.0 (255.0-685.0) 0.153
Maximum LDH level prior to CAR T-cell infusion (IU/L) 520.0 (274.5-1208.0) 365.0 (243.0-1012.5) 795.0 (414.0-1590.0) 0.102
CRS 0.013
Grade 0 14.9 (29.2%) 2 (9.1%) 12 (46.2%)
Grade 1 19 (41.3%) 9 (40.9%) 10 (38.5%)
Grade 2 13 (28.3%) 9 (40.9%) 4 (15.4%)
Grade 3 2 (4.3%) 2 (9.1%) 0 (0.0%)
Grade 4 0 (0.0%) 0 (0.0%) 0 (0.0%)

Dexamethasone 12 (25%) 6 (27.3%) 6 (23.1%) 0.738
Apri
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Values in bold refer to P-value <0.05. CRS, cytokine release syndrome; CTX, cyclophosphamide; FISH, fluorescence in situ hybridization; HBV, hepatitis B virus; HCV, hepatitis C virus;
LDH, lactate dehydrogenase.
TABLE 3 | Scores of factors that are significant in the univariate analysis.

Variable Value Score

MTD (cm) <3 0
3-5 1
5-7.5 2
7.5-10 3
≥10 4

LDH level before leukapheresis N times higher than ULN N
CRS grade 0 0

1, 2 1
≥3 2
CRS, cytokine release syndrome; LDH, lactate dehydrogenase; MTD, maximal tumor
diameter; ULN, upper limit of normal.
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Germline Features of the Genetics of the
Two Groups
The inherent T cell phenotype of CAR T cells can affect post-
infusion CAR T-cell behavior (38). Intrinsic T-cell dysfunction
was linked to inborn T cell biology-related genes (21). Therefore,
WES of patient PBMCswas performed to explore germline genetic
features. A T-cell-related gene panel containing 124 genes was
constructed (Figure 3A). Patients in the T-defect group (counts
average: 6; IQR: 4-8) harbored significantly more germline
variants of the T-cell-related genes (counts average: 3; IQR: 2-6)
than those in the T-normal group (Table S6). Forty-seven genes
were presented in the factorized mutational heatmap by groups in
the order of the T cell-related gene panel (Figure 3A) that met one
of the following conditions: 1) the variants were presented only in
the T-defect group, 2) the percentage in the T-defect group was
more than two times than that in the T-normal group. The top 47
mutated genes that differed between the two groups were selected
for the waterfall plot (96% vs. 41%; p<0.0001). Genes were
arranged according to the order of the T cell-related gene panel
(Figure 3B). The chi-square tests indicated that gene variants of
CAR structure (p=0.016), T cell receptors (TCR) signaling
(p=0.036), co-stimulation signaling (p=0.020), immune
dysregulation (p=0.004), JAK/STAT signaling (p=0.016),
chemokines (p=0.036), and T-cell metabolism (p=0.002) were
higher in the T-defect group than in the T-normal group. The
IL-2 signal (p=0.184), immune checkpoint (p=0.100), and
cytokines (p=0.054) were not different between the two groups.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses of the 47 differentially expressed
genes enriched in the T-defect group indicated enrichment in
several T cell-related immunodeficiency pathways and JAK/STAT,
NF-kB, and HIF-1 signaling pathways (Figures 4A, B).

Heterozygous germline UNC13D mutations presented the
highest intergroup differences (26.9% vs. 0%; p=0.008). Six
heterozygous mutants were found in UNC13D. P11 and P39
shared the same missense mutation [c.1228A>C(p.Ile410Leu)].
P31 and P38 shared another frameshift deletion [c.3229_
3235del; p.Arg1077SerfsTer48]. Figure 4C shows the protein
structure of wild-type (WT) and heterozygous mutants in
UNC13D with PyMOL software, which included the following
variants: c.1228A>C(p.Ile410Leu), c.1280G>A(p.Arg427Gln),
c.2240G>A(p.Ser747Asn), and c.2588G>A(p.Gly863Asp).
Except for the five variants below, P11 harbored a missense
mutation [c.175G>A(p.Ala59Thr)] that was beyond the
modeling scope of PyMOL software. Compound heterozygous
CX3CR1 variants [c.841G>A(p.Val281Ile), and c.935C>T
Frontiers in Immunology | www.frontiersin.org 7
(p.Thr312Met)], were enriched in the T-defect group (3 of 26).
The ClinVar database indicated that these two compound
heterozygous mutations were CX3CR1 (dbSNP:rs3732378, and
dbSNP:rs3732379, https://www.ncbi.nlm.nih.gov/clinvar/
variation/8152/), whose clinical significance was defined as
pathogenic to human immunodeficiency virus type 1 infection
and as a risk factor for age-related macular degeneration 12.
Variants of WT and CX3CR1I249/M280 structures were analyzed
and displayed using PyMOL in Figure 4D.
DISCUSSION

The clinical characteristics and germline genetic framework for
DLBCL that we present here provide a new and evolving
understanding of the primary resistance of CAR T-cell
immunotherapy and the molecular attributes that may
influence therapeutic response. One key idea of this study is
that T-cell dysfunction-related primary resistance could be
measured by four parameters: CD19 CAR transgene
expansion, persistence, CD19+ B cell recovery, and therapeutic
response in CAR T-cell immunotherapy. Unlike previous
investigations showing that T-cell dysfunction-related primary
resistance to CART19 mainly focused on the T cell memory
phenotype, exhausted transcriptomic profiling, and acquired T
cell destruction (11, 19, 20, 39), our study revealed a novel model
that contributed to weak CAR T-cell expansion and persistence.
There are three overarching phases and implications of these
findings as follows: an intrinsic resistance response to T-cell
related heterozygous germline alterations (e.g., UNC13D,
CX3CR1 mutations), followed by an extrinsic high antigen-
driven T cell dysfunction measured by higher LDH level before
leukapheresis, finally with the manifestation of low CRS
severity (Figure 5).

A higher LDH level before leukapheresis was an independent
risk factor for T-cell dysfunction in this study. Elevated LDH at
the time of pre-infusion or pre-lymphodepletion was associated
with early therapeutic response, early relapse, shorter
progression-free survival (PFS), and shorter OS in B-NHL
patients receiving murine CD19 CAR T-cell therapies (40–43).
The presence of high lactate levels in the TME is usually
associated with an acidic extracellular pH (6.5) and a lower
number and activity of CD8+ T cells and natural killer (NK) cells
both in vitro and in vivo. High LDH levels have been shown to
suppress T-cell functions, including IL-2 secretion and TCR
activation (44). Together, these observations suggest that
TABLE 4 | Univariate and multivariate forward stepwise regression analysis.

Variable Univariate analysis Multivariable analysis

HR (95% CI) P- Value HR (95% CI) P-Value

Score of MTD 1.878 (1.117-3.159) 0.017 1.346 (0.737-2.456) 0.334
Score of LDH/ULN prior to leukapheresis 2.141 (1.224-3.744) 0.008 1.922 (1.015-3.641) 0.045
Score of CRS grade 0.113 (0.023-0.555) 0.007 0.150 (0.028-0.795) 0.026
April 2022 | Volume 13 | Articl
Values in bold refer to P-value <0.05. 95% CI, 95% confidence interval; CRS, cytokine release syndrome; HR, hazard ratio; LDH, lactate dehydrogenase; MTD, maximal tumor diameter;
ULN, upper limit of normal.
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proceeding with leukapheresis earlier when the TMB is low in
treatment may benefit patients more from CAR T-cell therapy.

CRS, the most common toxicity of cellular immunotherapy, is
triggered by the activation of T cells upon the engagement of
their TCRs or CARs with cognate antigens expressed by tumor
cells (29). Expansion of the CAR transgene was associated with
CRS severity in B-ALL and DLBCL, in accordance with our
Frontiers in Immunology | www.frontiersin.org 8
research (45). We suspect that CRS symptoms manifest T cell
cytotoxicity in vitro and help doctors estimate patients’ T-cell
function early and quickly. Since severe AEs were excluded from
our study, the influence of life-threatening CRS on cellular
kinetics warrants future research.

Pathogenic germline alterations provide evolving insights into
primary resistance mechanisms. Previously, our therapeutic
A B C

D

G

E F

FIGURE 2 | Typical characteristics of the two groups. (A, B) CAR T-cell expansion (Cmax) and persistence (Tlast at +3 months) in peripheral blood were greater in the
T-normal group than in the T-defect group (p<0.0001). (C) The initial response to CAR-T cell therapy was also considerably better in patients with T-normal function
than in those with T-defect function (p<0.0001). In addition, there were significant differences in B-cell recovery in the T-normal group compared with the T-defect
group (p=0.002). (D, E) MTD and LDH level in the T-normal and T-defect groups before leukapheresis demonstrate significant differences (p=0.01, and 0.02,
respectively) according to the Mann-Whitney Test. (F) The T-normal group showed higher CRS grades than the T-defect group according to a Pearson chi-square
test (p=0.01). (G) Recurrent somatic mutations in DLBCL. Shown is the prevalence of the indicated genetic abnormalities in 57 genes in the T-normal group (in blue)
and T-defect group (in red). The two numbers for each mutation represent the counts of individuals carrying the genetic alterations in the T-defect and T-normal
groups, respectively. The somatic origin of the mutations was confirmed by analysis of paired PBMC germline DNA. CAR, chimeric antigen receptor; CR, complete
remission; CRS, cytokine release syndrome; PD, disease progression; PR, partial remission; SD, stable disease; SNP, single nucleotide polymorphism; MTD,
maximal tumor diameter.
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center reported two patients who harbored germline mutations
and received murine monoclonal anti-CD19 and anti-CD22
CAR T-cell “cocktail” therapy (5, 46). A pathogenic PIM1
mutation (c.403G>A, p.Glu135Lys, heterozygous) was detected
in a MYC/BCL2/BCL6 triple-hit DLBCL patient, and a
pathogenic TP53 germline mutation (c.818G>A, p.R273H,
heterozygous) was found in another DLBCL patient (5, 46).
These two patients had weak Cmax and Tlast values (Cmax < 10,000
copies/mg, Tlast < 3 months), and the disease progressed, which
Frontiers in Immunology | www.frontiersin.org 9
met the criteria of “T-defect” group. So these two patients
were suspected of having T-cell dysfunction in CAR
T-cell immunotherapy. In the present study, the polygenic
inheritance pattern may play a role in T-cell dysfunction.

Some germline variants are too damaging to be compatible with
normal organism function, leading tomonogenic inherence disease.
In contrast, some germline variants may also remain asymptomatic
or lead to milder disease. Compared with healthy people, patients
who harbor germline mutations may be more prone to severe
A

B

FIGURE 3 | Targeted gene panel of T-cell functions and waterfall plot of germline mutations. (A) One hundred and twenty-six target genes, including ten T-cell and
CAR-T cell biology categories, were selected for the waterfall plot with T-cell grading information. Fifty genes were identical to primary genetic defects reported by
the IUIS/WHO committee. (B) The top 47 mutated genes that differed between the two groups, such as TNFSF9, CD19, CARD11, UNC13D, and CX3CR1, were
selected for the waterfall plot with T-cell group information. The genes were arranged according to the T cell-related gene panel in (A). Each column corresponds to
a sample, and cases are ordered by the lymphoma with T-defect on the left (red bar) and with T-normal (blue bar) on the right. The types of genetic alterations are
shown as different colors as shown in the legend in the upper-right corner. The counts of genetic alterations are shown as none, stars, and circles, representing
once, twice, and four times person-times, respectively. CAR, chimeric antigen receptor; JAK-STAT, Janus kinase-signal transducer and activator of transcription;
IL-2, interleukin-2; IUIS, International Union of Immunological Societies; TCR, T-cell receptor; WHO, World Health Organization.
April 2022 | Volume 13 | Article 873789

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Immunodeficiencies in CAR T-Cell Therapy
symptoms (47). A multistep pathogenesis for immune diseases has
been suggested, in which multiple variants, both inherited and
somatic ones, contribute to the emergence of disease (48). For
example, secondary hemophagocytic lymphohistiocytosis (HLH) is
a life-threatening hyperinflammatory disease that may have a
polygenic inheritance model. Heterozygous variants in the
various “polygenic” dual gene combinations were found in
various analyses (49). Not surprisingly, the genes implicated in
single-gene disorders have also been linked to polygenic disorders.
Polygenic inheritance patterns are likely to account for more
common systemic autoimmune diseases (50).

T cell biology- and CAR-T cell structure-relevant genes were
included in our analysis (n=124). Interestingly, there was
considerable overlap with PID genes (n=50). An effective T cell
response requires both signal one (TCR/CD3-z) and signal two
(costimulatory signals, such as CD28 or 4-1BB). In addition, IL-2
and JAK/STAT signals are also essential for T cell activation and
persistence through the activation of the JAK kinase and STAT3/5
transcription factor signaling pathways. Given the increased
Frontiers in Immunology | www.frontiersin.org 10
understanding of CAR-T cells, it is known that CAR T cells have
been modified to become fifth-generation CAR T cells. The fifth-
generation CAR contained a TCR signal-transduction moiety,
costimulatory domains (CD), an additional cytoplasmic domain
derived from IL-2Rb and a STAT3/5 binding motif, providing
antigen-dependent cytokine signaling (51). The role of
immunomodulatory genes, including UNC13D, LYST, PRF1,
DNMT3A, etc., is increasingly being recognized. Ishii et al.
reported that one patient who developed severe CRS associated
with HLH following CD19 CAR therapy for ALL was found to
carry a mutation in the perforin (PRF1) gene, which predisposes to
HLH (52). The HLH-phenotype in PRF1-deficient patients
included late expansion and/or persistence of activated CAR-T
cells. Deleting DNMT3A in CAR T cells prevents exhaustion and
enhances antitumor activity (53). Moreover, chemokines enhance
tumor T cell infiltration to enable cancer immunotherapy. Finally,
T-cell metabolism-related genes were included in the analysis panel.

In this study, based on previous research methods on tumor
somatic mutations, we focused on germline mutations in patients
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KEGG enrichment items of differentially expressed genes between the patient and two healthy donors. The x-axis represents the gene ratio, and the intensities of the
different colors represent the p-values. (C, D) UNC13D mutations and CX3CR1 compound heterozygous mutations were the most frequent germline alterations in
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(33, 54). The differential germline mutation analysis of the two
groups found that the enrichment of T cell-related germline gene
mutations appeared in patients with T cell defects during CAR-T
therapy (Figure 4B). Apart from universal CAR T-cell therapy,
autogenous CAR-T cells were harvested from patients’
lymphocytes for modification. T cell-related germline
alterations might lead to T-cell defects, which means a virtual
lack of functional T cells and immune function. Patients with T-
cell PID are generally categorized into the absence of T cells, the
presence of B cells (T−, B+), or the absence of both T and B cells
(T−, B−). However, normal T-cell numbers do not exclude the
possibility of T-cell defects. These findings suggest that further
investigations of T-cell function-related PID in CAR T-cell
immunotherapy are warranted.

We speculate that for patients with inborn errors of
immunity, autologous CAR-T cells may have expansion and
persistence barriers, weakening CAR-T cell efficacy and leading
to a poor prognosis. This new mechanism complements the
conventional CAR-T resistance mechanism. Germline genetic
characteristics remind us to consider germline mutation
screening before choosing CAR-T products. Universal CAR-T
cells, or fully or half-matched CAR-T cells from healthy relatives,
may give rise to improved therapeutic effects for patients with T-
cell immunodeficiency. Allogeneic hematopoietic stem cell
transplantation might be a curative method for PID (55).
Moreover, the recurrent differential mutations between the two
groups might explain the mechanism of T cell defects and
provide a new insight for future CAR-T transformation.
Significantly, alterations in the UNC13D and CX3CR1 genes
were enriched in the T cell defect group.

UNC13D, which encodes the Munc13-4 protein, was the most
frequently differentially mutated gene between the two groups.
Frontiers in Immunology | www.frontiersin.org 11
Activation of the TCR signaling pathway induces Munc13-4
expression in CD8+ T cells (56). Munc13-4 expression is
obligatory for exocytosis of lytic granules, facilitating cytotoxicity
by T cells and NK cells. To date, all reported pathogenic UNC13D
mutations evaluated for protein expression cause amarked reduction
in munc13-4 protein expression (57). Germline mutations of
UNC13D are associated with familial hemophagocytic
lymphohistiocytosis type 3 (FHL3, MIM 608898). UNC13D
deficiency-induced significantly less CD107a surface expression in
CD8+T cells and NK cells, resulting in T cell dysfunction in
degranulation (58). Lack of cytotoxicity and antigen stimulation
may be responsible for CAR-T cell defects in therapy.

The compound heterozygous CX3CR1I249/M280 variant had
specific intergroup differences, which led to the suppression of
CX3CR1 protein expression. Both missenses were defined as
pathogenic and risk factors by the ClinVar database. In addition,
various studies indicated that in CX3CR1-deficient CD8+T cells,
the coinhibitory tumor receptors such as PD-1, TIM3, LAG3, and
TIGIT exhibited significantly lower levels, production of effector
cytokines such as IL-2 demonstrated significantly higher levels,
and they also exhibited substantially lower cytotoxicity than their
CX3CR1-high counterparts did both in vivo and in vitro (59, 60).
The specific high expression of the chemokine CX3CL1 in DLBCL
was revealed by The Cancer Genome Atlas data, which provided a
solid foundation for increasing the homing ability of CX3CR1+

cells. Moreover, recent studies revealed that CX3CR1+CD8+T cell
subsets not only precisely predicted early response in anti-PD1
therapy, but also enhanced the anti-tumor efficacy in vitro (60, 61).
These results strongly suggest that the deficiency of CX3CR1
targeted on the CX3CR1/CX3CL1 axis may impair the CAR-T
therapeutic effect by inducing immune cell infiltration and CAR-T
cell homing in DLBCL. Furthermore, more works are needed in
FIGURE 5 | CAR-T cell therapy and T-cell dysfunction-related factors. CAR-T therapy involves separating a patient’s T cells via apheresis and then genetically
engineering the cells to produce receptors on their surfaces, called CARs. CARs are fusion proteins of an antigen-recognition domain from a monoclonal antibody
and one or more T-cell receptors. They allow T cells to recognize and attach to specific proteins, namely tumor antigens. T cells counts are expanded to hundreds of
millions, after which the cells are then infused back into the patient, selectively destroying chemotherapy-resistant cancer cells. Patients receiving CAR-T are at risk
for developing CRS, an inflammatory response that occurs secondary to cytokine release by infused CAR-T cells. CRS is characterized by fevers, hypotension,
tachycardia, elevated inflammatory marker levels, and end-organ damage, including acute kidney injury and neurotoxicity. In summary, tumor burden (LDH level
before leukapheresis), germline alterations (T cell-related PIDs), and CRS (CRS grade) were factors associated with CAR T-cell function. CAR, chimeric antigen
receptor; CRS, cytokine release syndrome; LDH, lactate dehydrogenase.
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the future to explore the underlying mechanism and to ultimately
improve the curative effect of immunotherapies for lymphoma.

Notably, though limited by sample size and the single-center
nature of our high-throughput sequencing study, the current
study lacks external data to support our theories further.
However, we aimed to validate our model in a larger-scale
multicentered study in future explorations. Considering the
PID genetic diversities among different human races, we
believe future research including multiple populations would
provide more consolidated evidence. Further validation of these
new findings and frequently mutated genes (e.g., UNC13D,
CX3CR1) is helpful for determining the pathogenesis of T cell
dysfunction and developing novel therapeutic strategies for CAR
modification in r/r DLBCL.

The results of our studies suggest that, in CD19 CAR T-cell
therapy, targeted characteristics in r/r DLBCL could be used to
evaluate the prognosis of T cell dysfunction related primary
resistance. First, higher LDH before leukapheresis is correlated
with poorer T-cell functionality. Freezing hemopoietic stem cells
in the state of low LDH burden will benefit patients. Second,
those who experienced high-grade CRS were more likely to have
more significant CAR transgene expansion and better T-cell
functionality. Third, inborn immunity errors of polygenic
heterozygous variants (e.g., T-cell signaling, T-cell cytotoxicity,
T-cell regulation) potentially offer clinically meaningful strata for
the early identification of high-risk individuals. Allogeneic or
universal CAR-T products might be an optimal treatment and
overcome this situation.

In summary, our analysis builds on the clinical examination
of primary resistance in cellular immunotherapy by the addition
of a T-cell-related germline genetic nosology that may inform
resistance mechanisms. Our investigation revealed a new
interrelationship between pathogenic germline alterations and
the dynamic characteristics of the CAR transgene. This work
may help explain the underlying mechanism of primary
resistance to treatment and provide novel insights into CAR T-
cell immunotherapy.
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infusion, and follow-up period. CAR-T therapy involves separating a patient’s T cells
via apheresis and then genetically engineering the cells to produce receptors on
their surfaces, called CARs. CARs are fusion proteins of an antigen-binding domain
from a monoclonal antibody and one or more T-cell receptors. T cell counts are
expanded to hundreds of millions, after which the cells are then infused back into
the patient, selectively destroying chemotherapy-resistant cancer cells. Before
CAR-T infusion, patients in Trial A received lymphodepleting chemotherapy in the
form of cyclophosphamide and fludarabine (usually 2-4 days before CAR-T
therapy), and the patients in Trial B were given a standard dose of the BEAM
regimen (300 mg/m2 bis-carmustine, −6 days; 200 mg/m2 etoposide, −5 to −2
days; 400mg/m2 cytarabine, −5 to −2days; and 140mg/m2 melphalan, −1 day) as
myeloablative chemotherapy, which promotes in vivo expansion of CAR-T cells and
improves their efficacy. ASCT, autologous hematopoietic stem cell transplantation;
CAR, chimeric antigen receptor (CAR)-T cell (CAR-T) therapy and its complications.

Supplementary Figure 2 | Study strategies of germline variants and somatic
mutations. WES, whole-exome sequencing; VAF, variant allele frequency; MAF,
minor allele frequency; 1000G_EAS,1000 Genome Project_East Asian; ExAC_EAS,
Exome Aggregation Consortium_East Asian; gnomeAD_EAS, genome Aggregation
Database_East Asian; dbsnp142, the database of SNP human build 14.

Supplementary Figure 3 | Somatic clonal evolution of three patients in the T-defect
group. Schematic models of evolutionary progression before and after CAR T cell
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infusion in three patients in the T-defect group. Primary dominant clones, secondary
dominant clones, and subclones are represented in blue, red, and yellow shapes.
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References and VAFs of germline and somatic mutations investigated by NGS. NGS,
next-generation sequencing; VAFs, variant allele frequency.
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