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Abstract

Objective

The role of complement system in the pathogenesis of systemic sclerosis (SSc) has been

debated during the last decade but an evident implication in this disease has never been

found. We carried out an explorative study on SSc patients to evaluate the expression of

soluble and local C5b-9 complement complex and its relation with a complement regulator,

the Membrane Cofactor Protein (MCP, CD46) on skin vascular bed as target distinctive of

SSc disease. We also analyzed two polymorphic variants in the complement activation

gene cluster involving the MCP region.

Methods

C5b-9 plasma levels of SSc patients and healthy subjects were analyzed by ELISA assay.

Archival skin biopsies of SSc patients and controls were subjected to immunofluorescence

analysis to detect C5b-9 and MCP on vascular endothelial cells. The expression of MCP

was validated by immunoblot analysis with specific antibody. Polymorphic variants in the

MCP gene promoter were tested by a quantitative PCR technique-based allelic

discrimination method.

Results

Even though circulating levels of C5b-9 did not differ between SSc and controls, C5b-9 de-

position was detected in skin biopsies of SSc patients but not in healthy subjects. MCP was

significantly lower in skin vessels of SSc patients than in healthy controls and was associat-

ed with the over-expression of two polymorphic variants in the MCP gene promoter, which

has been related to more aggressive phenotypes in other immune-mediated diseases.
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Conclusions

Our results firsty document the local complement activation with an abnormal expression of

MCP in skin vessels of SSc patients, suggesting that a subset of SSc patients might be ex-

posed to more severe organ complications and clinical evolution due to abnormal local

complement activation.

Introduction
Systemic sclerosis (SSc) is an autoimmune disease characterized by microvascular dysfunction,
activation of the immune system and tissue fibrosis. Pathogenesis of SSc is complex and poorly
understood and it has been suggested that a genetic predisposition might contribute to the de-
velopment of the disease together with environmental agents, such as viruses or chemical
agents, which could activate both cellular and humoral immunity [1, 2]. According to the cur-
rent understanding, immune system leads to vascular injury with either release of pro-
inflammatory cytokine or production of auto-antibodies that damage endothelial cells (ECs),
resulting in promoted fibroblast proliferation [3–6].

So far the contribution of complement system to the pathogenesis of SSc has not been deep-
ly investigated, most likely because in clinical practice the main plasma complement proteins
(C3 and C4) are usually within the reference range. Nevertheless, hypocomplementemia has
been described in SSc patients with more severe disease [7, 8], while high plasma levels of com-
plement activation products have been correlated with clinical severity of SSc [9–12]. Recently,
Batal et al. found that small vessel C4d score was higher in SSc patients with renal crisis com-
pared with normotensive controls and that this score correlated with increased risk of unrecov-
ered renal function [13]. Furthermore, Arason outlined a deficiency of complement-dependent
prevention of immune precipitation in SSc [14] and Sprott et al. documented presence of the
C5b-9 complex and C5a receptor in microvessels of SSc skin sections both in early and in late
phases of the disease [15].

It is conceivable that activation of complement system in SSc might be due to immune com-
plexes [16, 17], but inadequate protection of the EC surface might also be involved. In fact, ECs
located at the interface between blood and tissues are natural targets of complement attack.
The classical functions of complement, such as opsonization, recruitment of inflammatory
cells, target cell lysis, immune complex clearance, and its capability to influence many other
pathways, such as coagulation cascade and angiogenesis, seem to be pivotal for the integrity of
ECs [18]. In normal conditions, complement attack is tightly regulated by fluid-phase and sur-
face-bound regulatory proteins which allow adequate immune surveillance while ensuring pro-
tection of host cells [19]. In different vascular diseases, overtly activated or poorly controlled
complement activation not only promotes EC damage and apoptosis, but also enhances the ex-
pression of vascular cell adhesion molecules and amplifies the local immune response [20].

Factor H (FH) is the main fluid-phase regulator of the alternative complement pathway
(AP). It acts on C3, the central component of the complement cascade by accelerating decay of
C3 convertase and acting as a cofactor of factor I (FI) in the inactivation of C3b. This plasma
regulator also contributes to human tissue protection allowing complement activation only to
foreign targets or altered self cells [21, 22]. In our previous study, we documented high FH lev-
els in sera of SSc and Sclerodermatous Graft Versus Host Disease (ScGVHD) patients, but only
in SSc subjects we found a defective capacity of FH to protect cellular surface from complement
mediated damage in in vitro experiments [23].
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On human ECs, other complement regulators participate in cell protection from activation
of both AP and classical complement pathway (CP). The group of membrane-bound comple-
ment regulators include the membrane cofactor protein (MCP or CD46), which is a cofactor of
FI in the proteolytic inactivation of C3b and C4b, and the decay accelerating factor (DAF or
CD55), which accelerates the breakdown of C3- and C5-convertases [24–26]. Recently, Venne-
ker et al. demonstrated an impaired expression of MCP and DAF in endothelium of the
lesional and non-lesional skin of SSc patients and in the skin of patients with morphea, in com-
parison to healthy controls and subjects affected by other autoimmune diseases, suggesting
that a defective endothelial protection might be mediated by reduced expression of the comple-
ment regulatory proteins [27, 28].

Since the mechanisms involved in SSc pathogenesis are still under investigation, we focused
our attention on local complement activation and regulation, using skin biopsies as an observa-
tional window of the EC damage related to SSc.

Materials and Methods

Patient selection
The initial study population consisted of 71 SSc patients and 29 age- and sex-matched healthy
volunteers (H). All SSc patients fulfilled the American College of Rheumatology criteria for the
classification of SSc. Distinction between limited cutaneous SSc (lcSSc) and diffuse cutaneous
SSc (dcSSc) was made according to the criteria of LeRoy et al [29]. Exclusion criteria for the
SSc patients were co-morbidities associated with complement activation due to a potential con-
founding effect [30–32]. On this basis ten patients were excluded, so 25 subjects with dcSSc
and 36 subjects with lcSSc were finally enrolled in the study.

All the enrolled patients underwent a detailed clinical examination and laboratory evalua-
tion, including analysis of antinuclear antibodies by indirect immunofluorescence on HEp-2
cells, anti-ENA antibodies by an ELISA method, CRP determination and standard direct and
indirect Coombs tests. Skin involvement was assessed modified Rodnan skin score (mRSS)
[33] by evaluating dermal thickening in seventeen anatomic sites, using a score from 0 to 3
(where 0 indicates normal). Skin lesions were subdivided on the basis of skin score into mild
(mRSS<14), moderate (mRSS between 15 and 29), high (mRSS between 30 and 39), and severe
(mRSS� 40) [34]. Moreover, all the patients underwent the following investigations: electro-
cardiogram, pulmonary function test with diffusing capacity for carbon monoxide adjusted to
haemoglobin (DLCO), Doppler echocardiogram, and chest high-resolution computed tomog-
raphy. Nailfold videocapillaroscopy (NVC) was assessed in 54 patients (25 with dcSSc and 29
with lcSSclcSSc) by a unique operator, who was unaware of the aims of the study. The micro-
vascular alterations were classified into 3 different patterns: early, active, and late [35].

Archival skin punch biopsies of 8 patients with SSc (4 lesional SSc skins from wrists and
4 non-lesional SSc skins from backs), were processed and compared with those of 4 patients
with ScGVHD (4 lesional GVHD skins from wrists, leg or forearm) and 8 healthy individuals
(4 non-lesional H skins from wrists and 4 non-lesional H skins from backs). The institutional
review board of the Verona Hospital approved the protocol (CE 1183/1570) and all patients
and healthy controls provided written informed consent before participating in the study.

Sample collection
Venous blood was drawn into 10 ml BD Vacutainer tubes and allowed to clot at room tempera-
ture for 1 hour. Venous blood (10 ml) was also collected in pre-cooled tubes containing
0.015 M sodium citrate and centrifuged immediately at 4°C. Serum or plasma was separated
from cells by centrifugation at 3000 × g for 15 min at 4°C followed by an additional similar
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centrifugation in order to remove cellular debris. Serum and plasma samples were then ali-
quoted in 1.5 mL Eppendorf tubes and stored at -80°C until use.

Enzyme-linked immunosorbent assay (ELISA)
Concentrations of FH in serum and SC5b-9 in plasma were assessed using the Human Com-
plement Factor H ELISA kit (Hycult Biotech, Uden, The Netherlands) and the MicroVue C5a
Plus EIA (QUIDEL), respectively, according to the manufacturers’ instructions. Serum samples
were assayed after a 1:8000 dilution, while plasma samples were assayed using a 1:10 dilution.

Concentrations were calculated using standard curves generated with specific standards
provided by the manufacturers. Optical density was measured by microtitre plate reader at
450 nm. Each sample was measured in duplicate.

FH-dependent hemolysis assay
The hemolysis test was performed as previously described [36]. Briefly, 100 μl of each serum
was diluted in 400 μl of alternative pathway activating buffer (AP buffer: 2.5 mM barbital,
1.5 mM sodium barbital, 100 mMNaCl, 7mMMgCl2, 10 mM EGTA pH 7.2–7.4). A duplicate
of each sample was prepared in the same buffer plus 50 mM EDTA and was used as blank.
200 μl of sheep erythrocytes (1x108 cells/ml in AP buffer) were added to both samples and
blanks. The mixtures were incubated at 37°C under mixing. After 15 min, samples were trans-
ferred to 0°C and the reaction was stopped with 1 ml of stop solution (2.5 mM barbital,
1.5 mM sodium barbital, 144 mMNaCl, 2 mM EDTA, pH 7.2–7.4). A sample with 400 μl of
AP buffer and 200 μl of sheep erythrocytes, incubated in the same conditions but stopped with
1 ml of stop solution plus 0.1% Triton X-100 was used as the “control of total lysis”.

The mixtures were centrifuged at 2600 × g for 15 min and hemolysis was determined by
measuring the absorbance at 414 nm in the supernatants. The percentage of lysis in each sam-
ple was calculated as percentage of the absorbance of the sample divided by that of the “control
of total lysis” (OD at 414 nm). Samples were considered positive when percentage of lysis was
higher than 12.5%; spontaneous lysis of sheep RBC in the presence of normal human serum
was 0.1–12.15%.

Western blotting
Proteins were extracted from skin specimens by Tri-Reagent method (Sigma) and quantified
using BCA assay (Pierce Company). Sixty micrograms of proteins were subjected to electro-
phoresis in SDS-(12%) polyacrylamide gel under reducing conditions and then blotted to a ni-
trocellulose membrane using the Mini Trans-Blot Cell (Bio-Rad). The membranes were
incubated with blocking buffer (3% w/v skimmed milk in Tris Buffered Saline and 0.1% v/v
Tween-20) and then probed with 1:5,000 primary rabbit anti-human MCP antibody (Abcam),
under shaking for 1 hour at 22°C. After the washing and the incubation with 1:15,000 horse-
radish peroxidase-conjugated anti-rabbit antibody (Abcam) for 1 hour at 22°C, the immuno-
complexes were detected by chemiluminescence using the ECL Plus Western Blotting
Detection Reagents (GE Healthcare Life Sciences). We developed the images on Kodak BioMax
XAR Films in the darkroom, adjusting the exposure time depending on the intensity of the pro-
tein bands. Blots were stripped by adding a Stripping Acid Solution (50 mM glycine, 1% w/v
SDS, 1% w/v Tween-20; pH 2.2 with HCl), shaking for 40 min at 37°C and reincubated with
mouse monoclonal anti-human ß-tubulin antibodies (1:1,000 dilution; Abcam) to confirm the
equal sample loading of the gels and the efficiency in electrophoretic transfer. Densitometric
analysis of the bands was performed using Quantity One software (Biorad).
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C5b-9 and MCP immunofluorescence assay
Paraffin-embedded tissue blocks were cut into 2–3 μm sections and mounted on adhesive mi-
croscope glass slides. After deparaffinization and rehydration the antigen retrieval was per-
formed in pre-warmed citrate buffer (pH 6 temp. 95°C) for 30 minutes. Sections were cooled to
room temperature and incubated with a protein blocking serum-free solution for 15 minutes at
22°C to block non-specific binding.

For immunofluorescence staining, sections were separately incubated with three different
antibodies: a monoclonal mouse anti-human CD31 antibody (Dako, JC70A, 1:50 dilution; a
marker for vascular endothelium), a monoclonal rabbit anti-human CD46 antibody (Abcam,
ab108307, 1:500 dilution), and a monoclonal murine anti-human SC5b-9 antibody (QUIDEL,
A239, 1:250 dilution). Slides were incubated 30 minutes at pH 6 with the corresponding Alexa
546-conjugated antibody (anti-mouse or anti-rabbit; INVITROGENMolecular Probe, diluted
1:1000). Reduction of the autofluorescence background was obtained by the incubation with
Sudan Black B 0.1% (Sigma-Aldrich). Nuclei were stained with Prolong Gold antifade reagent
with DAPI (INVITROGENMolecular Probe). Slides were analysed by a Olympus
BX61 microscope.

Genetic analysis
DNA was extracted from the blood buffy coat by automated Blood DNA purification kit on the
Maxwell 16 instrument (Promega), according to the manufacturer’s instructions. DNA prepa-
rates were stored at -80°C until the analyses were performed.

DNA samples of six SSc patients, which resulted positive to the hemolysis test, were sent to
Secugen Diagnostic (Madrid, Spain) for the genetic analyses. Exons and promoter regions of
genes for FH, FI and MCP were sequenced and compared to the published sequences in En-
semble, NCBI, and aHUS databases. Genotypes and haplotypes for common polymorphisms
(SNPs) in these genes were also analyzed. The two polymorphic variants ofMCP promoter re-
gion (-366A>G, rs2796268 and -652A>G, rs2796267), of those identified thereby, were as-
sessed with TaqMan allelic discrimination assays designed on demand (Applied Biosystems,
Foster City, CA, USA) on a 7500 Real Time PCR instrument (Applied Biosystems).

Statistical analysis
Differences in FH concentrations was evaluated by Kruskal Wallis test, as this variable pre-
sented a highly skewed distribution according to Skewness—Kurtosis test. The MannWitney
test was performed, adjusting for multiple comparisons by Bonferroni correction, if the Kruskal
Wallis test result was significant. The same analyses were performed for C5b-9 and CD46
vessel ratios.

The differences in categorical variables, including allele frequencies of each SNP, were evalu-
ated by the Fisher’s exact test. Significance was set at p<0.05.

Results

Demographic and clinical data of SSc patients
The main clinical characteristics of the SSc patients studied are listed in Table 1. Twenty SSc
patients presented anti-Scl70 antibodies, thirty-one subjects were positive for anti-centromere
antibodies, and ten patients presented antinuclear antibodies. The mRSS score documented the
presence of mild disease in 73.8% and of moderate disease in 24.6% of the cases. One patient
only had high skin involvement. Evidence of interstitial lung disease was found in seventeen
patients (27.9%).
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At videocapillaroscopic analysis, twelve subjects showed early microvascular alteration pat-
tern, while nineteen and twenty-three patients had respectively active and late nailfold micro-
vascular damage (Table 1).

In SSc, FH levels are increased in presence of normal soluble C5b-9
complement complex
Previously, we have reported that FH is increased in serum of the SSc patients [23]. Here,
we evaluated C5b-9 plasma concentrations as an index of systemic complement activation.
We found that C5b-9 plasma concentrations were similar in the SSc patients and healthy con-
trols (dcSSc 134 ng/ml, IQR 93–203; lcSSc141 ng/ml, IQR 89–202; H 124 ng/ml, IQR 82–159;
p = 0.49); whereas, the serum levels of FH were higher in SSc patients with both diffuse and
limited subsets (dcSSc patients 126 μg/ml, IQR 114–150, p = 0.0025; lcSSc patients 124 μg/ml,
IQR 108–152; p = 0.0054), compared to healthy controls (108 μg/ml, IQR 93–120 μg/ml), ac-
cording to the Bonferroni correction.

No correlation was observed between serum FH concentrations and CRP levels in the sam-
ples from the SSc patients (p = 0.93; data not shown), although CRP had been reported to cor-
relate with FH in patients with age-related macular degeneration (AMD) [37].

The function of FH is impaired in SSc patients
The presence of normal values of C5b-9 in the peripheral circulation of SSc patients with in-
creased levels of FH, made us to consider local activation of complement. To study the regula-
tory activity of FH on cell surfaces, we carried out a hemolysis assay in the presence of Mg-
EGTA, which selectively blocks CP and lectin pathway of complement (LP). As shown in
Table 2, the FH-dependent hemolysis test revealed that 40% and 16% samples of the dcSSc and

Table 1. Clinical data of SSc patients.

Age (years) 61.6±13.1

Sex§ men 11 (18.0%)

women 50 (82.0%)

Disease pattern§ dcSSc 25 (41.0%)

lcSSc 36 (59.0%)

Autoantibody pattern§ Anti-Scl70 20 (32.8%)

ACA 31 (50.8%)

ANA 10 (16.4%)

mRSS§ mild 45 (73.8%)

moderate 15 (24.6%)

severe 1 (1.6%)

NCV pattern§ early 12 (19.7%)

active 19 (31.1%)

late 23 (37.7%)

missing 7 (11.5%)

Pulmonary fibrosis§ present 17 (27.9%)

absent 44 (72.1%)

Anti-Scl70 = anti-Scl70 antibodies; ACA = anticentromere antibodies; ANA = antinuclear antibodies;

mRSS = modified Rodnan Skin Score; NVC = nailfold videocapillaroscopy.

§ values expressed as absolute number and percentages.

doi:10.1371/journal.pone.0114856.t001
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lcSSc groups were positive, respectively, whereas healthy controls were all negative (p<0.001.
In addition, we found that the serum hemolytic activity was higher in SSc patients with high
levels of FH (p = 0.012) (Table 2).

To exclude possible additional factors that might interfere with the hemolysis test (i.e. anti-
bodies against sheep red cells), we carried out the direct and the indirect Coombs tests, which
resulted negative in all the SSc patients studied (data not shown).

Serum hemolytic activity in SSc is mediated by the alternative and
classical complement pathways
Since the local complement activation could be mediated by any of the three complement path-
ways, we evaluated the serum hemolytic activity of SSc patients both in the presence and ab-
sence of Mg-EGTA. Interestingly, the hemolysis in the absence of Mg-EGTA was higher than
in presence of Mg-EGTA (Fig. 1), suggesting a possible concert action of both AP and CP/LP
in the complement dysregulation on the cell surface.

The endothelium of SSc patients is not protected from activated
complement
Considering that the vascular endothelial bed is involved in the early phase of SSc, we investi-
gated whether the ECs of SSc patients might be exposed to complement mediated damage, as
previously suggested by Sprott [15]. To study this we compared archival skin biopsies of 8 SSc
patients showing positive hemolysis test to those of 4 subjects with ScGVHD and 8 normal

Table 2. Serum hemolytic activity in healthy subjects and SSc patients.

Healthy controls SSc patients

Hemolysis test Negative [n = 29] Positive [n = 0] Negative [n = 45] Positive [n = 16]

FH serum level, mean (IQR) [μg/ml] 108 (93–120) - 122 (103–139) 151 (122–186)

doi:10.1371/journal.pone.0114856.t002

Fig 1. Serum hemolytic activity is increased in SSc patients. Sera from three different SSc patients
(SSc1-SSc3) and three different healthy subjects (H1–H3) were tested both in the presence and absence of
Mg-EGTA. Mg-EGTA was used to block the classical and lectin pathways of complement. Data are
expressed as percentage of full RBC lysis.

doi:10.1371/journal.pone.0114856.g001
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individuals. As shown in Fig. 2, C5b-9 was detected in vessels of SSc and ScGVHD skin, while
microvasculature of healthy subjects resulted completely negative (median proportion of posi-
tive vessels—H: 0.000; lesional SSc: 0.087; non-lesional SSc: 0.033; ScGVHD: 0.044). Pairwise
comparisons after Kruskal Wallis test documented a significant difference between the samples

Fig 2. Detection of the complement membrane attack complex (or C5b-9) on skin endothelial cells of SSc patients. Skin biopsies from 8 SSc patients
(4 lesional SSc skin and 4 non-lesional SSc skin), 8 healthy subjects and 4 patients with ScGVHD were immunostained for C5b-9 specific antibody (orange).
Anti-CD31 antibody (green) was used as marker of endothelial cells and DAPI to stain the nuclei of the cells. Data of the analysed fields (n = 20 for each slide)
are expressed as a ratio between C5b-9 positive vessels and total number of vessels.

doi:10.1371/journal.pone.0114856.g002
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from healthy skin and those from lesional SSc (p = 0.0002; Bonferroni-adjusted level for signifi-
cance = 0.0042) (Fig. 2).

This finding supported the local C5b-9 deposition around blood vessels of SSc skin. Thus, we
looked for the expression of MCP, which is normally expressed on ECs and acts as a local com-
plement regulator. The immunofluorescence staining revealed significantly reduced amount of
MCP in the endothelium of lesional SSc skin than in the healthy controls (median proportion of
positive vessels—H: 0.35; lesional SSc: 0.12; non-lesional SSc: 0.25; ScGVHD: 0.22; p value of
pairwise comparisons H vs lesional SSc = 0.0004; Bonferroni-adjusted level for significance =
0.0042) (Fig. 3). Immunoblot analysis provided additional evidence of low expression of MCP
in SSc skin sections (median proportion of CD46 H: 0.570; SSc: 0.258; p = 0.03 vsH) (Fig. 4).

SSc population has higher prevalence of SNPs polymorphic variants in
MCP promoter region
The sequencing analysis of FH, FI and MCP genes revealed one heterozygous mutation in FI
gene (c.1534+5G>T) in one of the six analyzed patients (patient n. 1), while no mutations were
found in FH and MCP genes. Homozygosis for non-prevailing SNPs of FH gene were found in
three subjects (patients n. 2, n. 3 and n. 6), instead homozygosis for uncommon SNPs of MCP
gene were detected in four patients (patient n. 1, n. 2, n. 3 and n. 4), as shown in S1 Table. Only
patient n. 5 did not present mutations or non-prevailing SNPs in the analyzed genes.

Since expression of MCP was different in SSc and healthy skin, we next analyzed prevalence
of the two allelic variants in the promoter region of theMCP gene (-366A>G and -652A>G
SNPs) in all the SSc patients and healthy subjects. These polymorphisms have been reported to
correlate with the disease severity of the atypical hemolytic uremic syndrome (aHUS) [38].

We found differences in the distribution of both the MCP polymorphisms between the SSc
patients and healthy controls despite the small size of our sample. In particular, in SSc the
allele frequency reached the statistical significance for -366G (0.42 vs 0.24; p = 0.021), whereas
for -652G the analysis were close to significance (0.42 vs 0.27; p = 0.071) compared to the con-
trols (Table 3).

Discussion
Here, we propose the endothelium-bound membrane attack complex of complement (MAC or
C5b-9) as a promising marker of active vascular damage in SSc despite its normal plasma lev-
els. Previous studies in other autoimmune diseases have found similar discrepancy between
plasma levels of complement activation products and local complement activation. In SLE, the
activation of complement system has been reported in different organs, such as lung and kid-
ney, without changes in serum levels of C3 and C4 [39]. In rheumatoid arthritis the presence of
complement activation fragments in joint fluid and the deposition of C5b-9 in synovial tissue
are common findings, too, although the plasma level of C5b-9 may not be altered [40].

In this study, we used erythrocytes as a model of cellular surface sharing common character-
istics with other cell types. The serum hemolytic activity of SSc patients does not, however, rep-
resent well complement activation and regulation on endothelium since red blood cells are
devoid of MCP. Thus, we studied SSc skin biopsies as an observational window of endothelial
damage in SSc. We found that the complement system is locally activated, as documented by
the abnormal deposition of MAC on the endothelium and, concordant with this, we found re-
duced MCP expression on vascular endothelial surface. This finding is in agreement with that
previously reported by Venneker on SSc skin [27]. Based on these results we propose that the
lack of the fine local regulation of complement activation on vascular endothelium might pro-
mote complement activation leading to sublethal MAC depositions which are known to cause

Complement System and Scleroderma

PLOSONE | DOI:10.1371/journal.pone.0114856 February 6, 2015 9 / 15



Fig 3. The local complement regulator MCP (CD46) is reduced on vascular endothelial cells of SSc skin biopsies. Skin sections from 8 SSc patients
(4 lesional SSc skin and 4 non-lesional SSc skin), 12 controls (8 healthy subjects and 4 ScGVHD patients) were immunostained with anti-CD46 (green)
specific antibody. Anti-CD31 antibody (orange) was used as a marker of endothelial cells. Data of the analysed fields (n = 20 for each slide) are expressed as
ratio between MCP (CD46) positive vessels and total number of vessels.

doi:10.1371/journal.pone.0114856.g003
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EC apoptosis. This could explain at least partially the initiation or propagation of tissue fibrosis
in SSc.

In other disorders characterized by abnormal complement regulation (i.e. aHUS and
AMD), it has been shown that mutations or uncommon SNPs of complement regulatory pro-
teins, such as FH and MCP, generate a state of haploinsufficiency unable to prevent comple-
ment mediated tissue damage [41–44]. As some SNPs are organized in specific haplotype
blocks within the regulator of complement activation gene cluster in human chromosome
1q32, we examined two SNPs in the MCP promoter region (-366 A>G, -652 A>G) showing a
strong linkage disequilibrium in the region of the MCP gene. It is of interest to note that the
polymorphic variants of these two SNPs have been related to a 25% lower transcriptional activ-
ity of the gene promoter and have been linked to enhanced severity of aHUS disease [38]. In
our SSc patients, the minor variants of the two SNPs were more usual than in healthy controls,
suggesting a possible role of these SNPs in the severity of SSc disease. It remains to be studied if

Fig 4. Immunoblot analysis of MCP (CD46) of skin biopsies from healthy controls and SSc patients.
Protein extract from skin biopsies of 8 SSc patients (4 lesional SSc skin and 4 non-lesional SSc skin) and 8
healthy subjects were analyzed by immunoblot using a specific antibody. Results of a representative
experiment of four are shown. Data are expressed as an optical density ratio of MCP (CD46) and β-tubulin.

doi:10.1371/journal.pone.0114856.g004

Table 3. Allele frequencies of two SNPs in MCP gene promoter.

SNPs NCBI id SSc patients Healthy controls P-values

Genotypes Allele
frequencies

Genotypes Allele
frequencies

1/1 1/2 2/2 1 2 1/1 1/2 2/2 1 2

-366A>G rs2796268 23 36 12 0.58 0.42 16 9 2 0.76 0.24 0.021

-652A>G rs2796267 22 38 11 0.58 0.42 15 9 3 0.72 0.28 0.071

The P-value is the result of a two-sided Fisher exact test for the comparison of the allelic frequencies of

each SNP between the SSc and control groups.

doi:10.1371/journal.pone.0114856.t003
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the SNP -366A>G in the MCP gene could be used as a predictive marker for more severe or
progressive disease.

Beside the clinical similarities between SSc and ScGVHD, we did not observe the prevalence
of the same polymorphic variants in the promoter region of MCP gene in ScGVHD patients
studied (data not shown). Moreover, the observation that in skin biopsies of ScGVHD patients
the local amount of C5b-9 was increased without significant differences in the MCP expression,
supports the hypothesis of additional mechanisms involved in complement activation on skin
endothelium in ScGVHD. The important role of complement system in transplant rejection re-
actions is supported by the encouraging results with the anti-C5 monoclonal antibody (Eculi-
zumab) that blocks the activation of the terminal complement cascade and formation of MAC
[45, 46].

We propose that several mechanisms known to be involved in SSc pathogenesis might be af-
fected by locally activated complement caused by impaired fine-tuning of this powerful innate
immune defense (Fig. 5). In fact, different pathways are likely to contribute to vascular dys-
function processes in SSc, such as direct vascular damage, pro-inflammatory response and

Fig 5. Schematic diagram of a possible role of activated complement in the pathogenesis of SSc. Beside its conventional role in the innate immunity,
recent evidence suggests that complement systemmodulates the acquired immunity and regulates the coagulation cascade activation. Locally, activated
complement products reduce neoangiogenesis and promote tissue fibrosis.

doi:10.1371/journal.pone.0114856.g005
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coagulation cascade activation. Studies in different diseases have shown functional connections
between activated complement molecules and these pathways [18, 47–49].

In aHUS dysregulated complement activation is clearly causing the endothelial cell injury,
hemolysis and microvascular thrombosis. In addition, in models of multifactorial disease (e.g.
antiphospholipid syndrome) a partial or complete loss of function of complement regulators
might play a relevant role in the pathogenesis, contributing to more severe organ damages and
clinical complications. The revision of the literature on these disorders confirms that pharma-
cological treatment with Eculizumab might ameliorate clinical manifestations in severe cases
[50, 51].

Future studies need to be carried out to better characterize the role of complement system
on vascular damage in SSc and to verify in a large number of SSc patients the possible beneficial
effects of a pharmacological treatment with inhibitors of complement system.
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