Int. J. Environ. Res. Public Health 2015, 12, 10235-10253; doi:10.3390/ijerph120910235

OPEN ACCESS

International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph

Review

Effect of Smoking Reduction Therapy on Smoking Cessation for Smokers without an Intention to Quit: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials

Lei Wu¹, Samio Sun², Yao He^{1,3,*} and Jing Zeng¹

- ¹ Department of Epidemiology, Institute of Geriatrics, Beijing Key Laboratory of Aging and Geriatrics, Chinese People's Liberation Army General Hospital, Beijing 100853, China; E-Mails: wlyg0118@163.com (L.W.); jingzeng1991@126.com (J.Z.)
- ² Department of Bioengineering, The University of Tokyo, 1138656, Japan;
 E-Mail: samio4762@gmail.com
- ³ State Key Laboratory of Kidney Disease, Chinese People's Liberation Army General Hospital, Beijing 100853, China
- * Author to whom correspondence should be addressed; E-Mail: yhe301@x263.net; Tel.: +86-10-668-76-411; Fax: +86-10-682-19-351.

Academic Editor: Paul B. Tchounwou

Received: 8 July 2015 / Accepted: 20 August 2015 / Published: 25 August 2015

Abstract: *Objective*: Effective strategies are needed to encourage smoking cessation for smokers without an intention to quit. We systematically reviewed the literature to investigate whether smoking reduction therapy can increase the long-term cessation rates of smokers without an intention to quit. *Methods*: PubMed, Embase, and CENTRAL (Cochrane Central Register of Controlled Trials) were searched for randomized controlled trials (RCTs) on the effect of smoking reduction therapy on long-term smoking cessation in smokers without an intention to quit. The primary outcome was the cessation rate at the longest follow-up period. A random effects model was used to calculate pooled relative risks (RRs) and 95% confidence intervals (CIs). *Results*: Fourteen trials with a total of 7981 smokers were included. The pooled analysis suggested that reduction support plus medication significantly increased the long-term cessation of smokers without an intention to quit placebo (RR, 1.97; 95% CI, 1.44–2.7; I², 52%) or no intervention (RR, 1.93; 95% CI, 1.41–2.64; I², 46%). In a subgroup of smokers who received varenicline or nicotine replacement therapy (NRT), the differences were also

statistically significant. This suggests the safety of using NRT. The percentage of smokers with serious adverse events who discontinued because of these events in the non-NRT group was slightly significantly different than in the control group. Insufficient evidence is available to test the efficacy of reduction behavioural support in promoting long-term cessation among this population. *Conclusions*: The present meta-analysis indicated the efficacy of NRT- and varenicline-assisted reduction to achieve complete cessation among smokers without an intention to quit. Further evidence is needed to assess the efficacy and safety of reduction behavioural support and bupropion.

Keywords: smoking reduction therapy; without quit intention; varenicline; nicotine replacement therapy; meta-analysis

1. Introduction

Smoking is still one of the largest preventable causes of death in the world. Although smoking cessation can reduce the chance of developing smoking-related diseases, 75.6% of Chinese smokers have no plan to quit smoking [1]. A similar phenomenon has been observed in other developed countries [2,3]. These results reveal the necessity for an effective strategy to encourage cessation in smokers without an intention to quit.

Smoking reduction therapy might increase the likelihood of complete cessation, and it has been recommended as a therapeutic choice for cigarette smokers without an intention to quit [4,5]. One of the biggest uncertainties with this method is the association between short-term reduction of daily cigarette consumption and long-term complete cessation. There has been some concern that future attempts to quit smoking might be undermined by short-term reduction; others have argued that the reduction might be an intermediate step before quitting completely [6].

Several reviews have assessed the efficacy of methods for helping smokers without an intention to quit [7–11]. Differences between the current meta-analysis and previous meta-analyses on the same topic should be noted. A meta-analysis by Hughes *et al.* included studies with different designs (such as cross-sectional, prospective studies and RCTs) [7]. Due to the heterogeneity of the methods and results, a qualitative review was performed instead of a meta-analysis [7]. Two meta-analyses examined only NRT-aided reduction [8,9]. Recently, several studies on this topic have advocated for the use of varenicline to reduce the daily consumption of cigarettes to achieve the goal of complete cessation. A Cochrane review by Stead *et al.* included smokers who were willing to quit smoking [10]. In a meta-analysis focusing on the same population (unwilling to quit smoking), Asfar *et al.* only included self-reported point prevalence of cessation at the end of follow-up. In addition, they did not consider the safety of using smoking cessation medication as an aid in reduction [11].

Considering the accumulating evidence, we conducted an updated systematic review and meta-analysis to assess the efficacy and safety of smoking reduction therapy for smokers without an intention to quit. In contrast with the above-discussed meta-analyses, we grouped samples into four categories according to different types of smoking reduction therapies. We also restricted our analysis to only randomized, controlled clinical trials and used the strictest available criteria (sustained, biochemically

validated and long follow-up). Moreover, we widely considered different categories according to different types of smoking reduction therapy.

2. Methods

2.1. Literature Search

This is a systematic review and meta-analysis of previously published randomized controlled trials (RCTs). We conducted and reported the current study in adherence with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [12]. We searched PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) for records to report the effect of smoking reduction therapy on smokers with no intention to quit. The search terms included "tobacco reduction", "cigarette * reduction", "reduce smoking", "smoking reduction", "unwilling to", "not willing", "no inten *", "not ready", "not interest *", "uninterest *", and "unmotivated". Details of the search strategy are shown in Supplementary 1. No language and data restriction were imposed. The last search was run on 24 April 2015. We manually searched the reference lists of relevant studies to identify other potentially eligible studies.

2.2. Selection Criteria

Two investigators (Lei Wu and Samio Sun) independently performed the initial search. Duplicate records were deleted; the titles and abstracts of each trial were screened. We identified each study as excluded or requiring further assessment.

We included studies that met the following criteria: (1) population: adult smokers who were not ready to quit, were unwilling to quit or had no intention to quit smoking (willing or unwilling to reduce their smoking intensity); (2) intervention: smoking cessation medications to assist with smoking reduction (such as gum, inhalable nicotine replacement therapy, varenicline or bupropion) or behavioural support/the provision of self-help materials to promote reduction; (3) comparison: placebo, no intervention, and other behavioural support (other support for smoking cessation with the exception of reduction support); (4) outcome: abstinence from smoking after at least six months of follow-up; and (5) design: randomized controlled trials (RCTs).

2.3. Data Extraction

Lei Wu and Samio Sun independently performed data extraction. The following data were extracted from each study: first author, date and place of publication, patient characteristics, number of patients enrolled (each arm and total), summary of intervention and control conditions, reported outcomes and risk of bias. The extracted data were entered into a standardized Excel (Microsoft Corporation, Seattle, WA, USA) file. Any disagreements were resolved by discussion between the two investigators. If a trial had multiple arms, we reused the control group in each comparison.

The primary outcome was the smoking cessation rate at the longest follow-up period (at least six months from the baseline intervention). In each trial, the strictest available criteria (sustained, biochemically validated, and longest follow-up) were used to define the quit rate. We collected data

measured during an intention-to-treat analysis. The secondary outcome included serious and nonserious adverse events that were reported in the included trials.

2.4. Quality Assessment

The Cochrane Collaboration tool was used to assess the risk of bias in each trial [13]. A value of "high", "low", or "unclear" risk of bias was assigned according to the following domains: random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias) and other biases. Disagreements were resolved by discussion with a third author (Yao He).

2.5. Data Synthesis

We calculated the relative risks (RRs) with 95% confidence intervals (CIs) for the dichotomous outcome data. Because the sample size, population characteristics, and other confounding factors were not consistent among studies, a random effects model was used to pool the outcome data, regardless of heterogeneity [14]. Heterogeneity was assessed using the I² statistic. Studies with an I² statistic >50% were indicated to have significant heterogeneity [15]. We further performed subgroup analysis according to the type of smoking cessation medication (nicotine replacement therapy, varenicline and bupropion). The influence of a single study on the overall pooled results was estimated by omitting one study at every turn. Sensitivity analyses were performed to explore the influence of various exclusion criteria on the overall pooled estimate.

The presence of publication bias was evaluated by using the Begg and Egger tests [16,17]. Results were considered as statistically significant for p value <0.05. We used Stata (version 12.0; StataCorp LP, College Station, Texas, USA) and Review Manager Software (version 5.2; The Nordic Cochrane Centre, Copenhagen, Denmark) for the statistical analyses.

3. Results

3.1. Study Identification and Selection

A detailed flow diagram of the trials included in the meta-analysis is shown in Figure 1. A total of 135 records were identified from the initial database search. Of these, 92 records were excluded for duplicates, and 47 records were excluded after reading the titles and abstracts. The remaining 45 full-text articles were assessed for eligibility. An additional study was identified from the references. Finally, 14 studies were included in the present meta-analysis [18–31].

3.2. Study Characteristics

Table 1 shows the main characteristics of the included trials, and Table 2 lists the outcome data of each included trial. These trials were published between 2000 and 2015. Seven of the included trials were conducted in the United States. The sample size ranged from 67 to 1410 (total 7981). The follow-up period ranged from 6 months to 60 months.

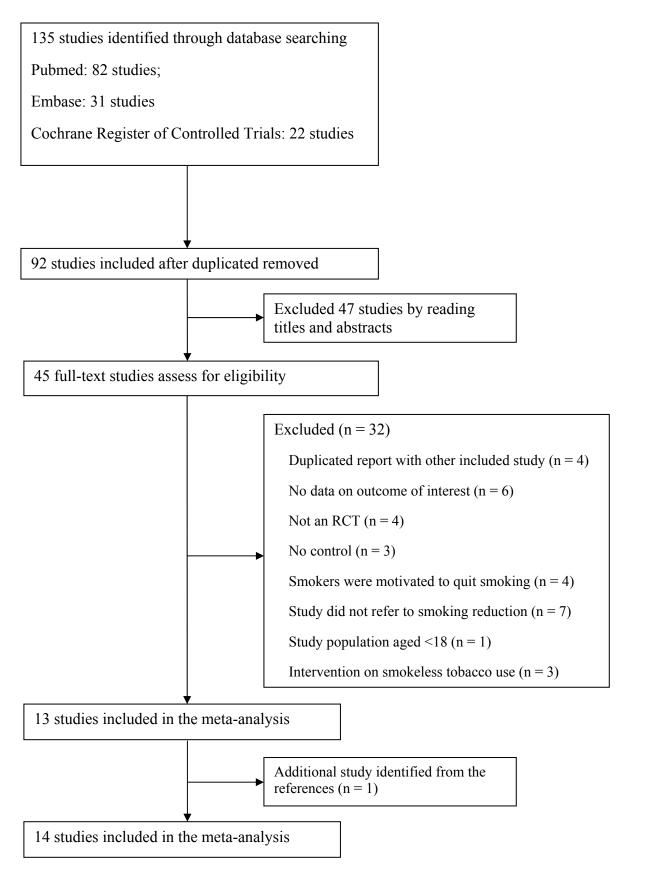


Figure 1. Flow diagram of trials included in the meta-analysis.

Ten of the included trials reported biochemically validated quit rates (confirmed by exhaled carbon monoxide). Among the primary outcomes, 7-day time point and continuous abstinence rates were

reported in 10 and four trials, respectively. Among the secondary outcomes, adverse events were reported in 11 trials.

The studies were grouped into four comparisons according to the following different types of smoking reduction therapy (Table 2): (a) reduction support (in the current study, reduction support was defined as behavioural interventions or self-help materials to increase reduction; smoking cessation medications were not incorporated in this definition) plus medication versus reduction support plus placebo, (b) reduction support plus medication versus no intervention, (c) reduction support plus medication versus other support plus medication, and (d) reduction support versus no intervention. Four trials had three arms [21–24]. We reused the above arm matching for each comparison (e.g., a trial by Carpenter, *et al.* had the following three arms: (1) telephone-based reduction support plus NRT plus brief advice group, (2) motivational advice plus NRT for quit attempt plus brief advice group, and (3) a group with no intervention. For consistency, we analysed the differences in the cessation rates between (1) and (2) and between (1) and (3).)

3.3. Quality Assessment

Supplementary Figure S1 summarizes the details of the risk-of-bias assessment. Eight trials had a detailed description of random sequence generation, and five trials reported appropriate allocation concealment. Five trials reported that the participants and personnel were blinded to the nature of the examined products (medication or placebo). All trials were judged to have low risks of incomplete outcome data, reporting bias and other bias.

3.4. Primary Outcome

3.4.1. Reduction Support Plus Medication vs. Reduction Support Plus Placebo

We estimated the pooled effect size of reduction support plus medication versus reduction support plus placebo based on nine trials (Figure 2). The pooled relative risk (RR) was 1.97, and the 95% confidence interval (CI) was 1.44 to 2.71, with evidence of significant heterogeneity ($I^2 = 52\%$). In the subgroup analysis, two of the nine trials were offered varenicline or placebo for smokers with no intention to quit, and the pooled RR was 2.66 and 95% CI was 2.10 to 3.36 with no evidence of significant heterogeneity ($I^2 = 0\%$). Six of the nine trials offered nicotine replacement treatment (NRT) or placebo, and the pooled RR was 1.94 and 95% CI was 1.26 to 3.00 with no evidence of significant heterogeneity ($I^2 = 45\%$). One study offered bupropion or placebo (RR, 1.27; 95% CI, 0.67–2.40). Two trials offered self-help materials rather than behavioural reduction support to assist in reduction [23,24].

3.4.2. Reduction Support Plus Medication vs. no Intervention

We included five trials to test the efficacy of reduction support combined with smoking cessation medication. As shown in Figure 3, compared with no intervention, those smokers who received reduction support plus medication had significantly increased smoking abstinence (RR, 1.93; 95% CI, 1.41-2.64; $I^2 = 46\%$).

Trial	Sample Size	Design	Setting	Initial Intention to Quit	Population		ale (%) Control	Age (Y Mean Treat Co	(SD)	Mea	ettes/Day n (SD) Control
Bolliger, 2000 [18]	400	multi-centre	Switzerland	willing to reduce their smoking but unable or unwilling to stop smoking immediately	healthy	104 (52.0)	86 (43.0)	45.8 (10.5)	46.4 (10.5)	30.3 (12.1)	28.2 (11.4)
Batra, 2005 [19]	364	multi-centre	Switzerland	willing to change their smoking behavior but unwilling to quit	healthy	101 (54.1)	117 (64.8)	42.6 (9.9)	43.5 (10.3)	27.9 (9.2)	29.6 (9.5)
Carpenter, 2003 [20]	67	single-centre	United States	no interest in quitting smoking in the next 30 days	healthy	26 (74.3)	20 (62.5)	43 (12)	44 (9)	24 (10)	23 (10)
Carpenter, 2004 [21]	616	single-centre	United States	did not wish to quit	healthy	144 (67.9)	123 (62.4) 139 (67.1)	38 (12)	39 (13) 41 (14)	23 (10)	21 (8) 22 (9)
Chan, 2011 [22]	1154	single-centre	Hong Kong	no intention to quit in the near future but interested in reducing smoking	healthy	748 (80.6)	198 (87.6)	41.9 (10.3)	42.5 (11.2)	19.9 (9.8)	19.2 (8.9)
Etter, 2002 [23]	923	single-centre	Switzerland	no intention to quit smoking in the next 6 months	healthy	143 (54.0)	132 (49.0) 171 (44.0)	43.2	41.7 42.9	29.8 (10.3)	29.4 (9.4) 30.2 (10.4)
Etter, 2007 [24]	923	single-centre	Switzerland	no intention of quitting smoking in the next 6 months	healthy	54 (20.4)	49 (18.2) 44 (11.3)	43.2	41.7 42.9	29.8 (10.3)	29.4 (9.4) 30.2 (10.4)
Ebbert, 2015 [25]	1410	multi-centre	10 countries	not willing or able to quit smoking within the next month but willing to reduce smoking and make a quit attempt within the next 3 months	healthy	425 (55.9)	426 (56.8)	44.7 (11.8)	44.4 (12.0)	20.6 (8.5)	20.8 (8.2)
Glasgow, 2009 [26]	320	single-centre	United States	not interested in quitting smoking at that time	healthy	44 (26.8)	44 (28.2)	54.8 (10.4)	56.0 (11.3)	21.2 (9.4)	20.1 (9.0)

 Table 1. Characteristics of the included trials.

Table 1. Cont.

Trial	Sample	Design	Setting	Initial Intention to Quit	Population	Male N (%)		Age (Yea Mean (S	,	Cigaret Mean (ttes/Day SD)
	Size	8	8		1	Treat Control		Treat Control		Treat Control	
Hatsukami, 2004 [27]	594	multi-centre	United States	motivated to reduce their cigarette usage, but who were unwilling or perceived themselves to be unable to quit smoking at the time of screening	healthy	169 (57.3)	158 (52.8)	42.5 (11.0)	42.0 (11.6)	29.0 (9.8)	28.5 (9.6)
Hughes, 2011 [28]	218	multi-centre	United States	interested in quitting but had no plans to quit in the next month	healthy	65 (60.7)	63 (56.8)	44 (14)	41 (15)	19 (9)	17 (7)
Joseph, 2008 [29]	152	multi-centre	United States	unwilling or uninterested in setting a stop smoking date in the next 30 days	cardiovascular patient	70 (89.7)	65 (87.8)	57.5 (8.6)	58.4 (9.6)	27.7 (12.5)	27.0 (11.0)
Rennard, 2006 [30]	429	multi-centre	United States	did not plan to quit smoking within the next 4 weeks, but want to reduce cigarette consumption	healthy	88 (40.9)	104 (48.6)	45.9 (12.3)	44.8 (12.1)	29.3 (10.1)	30.4 (9.9)
Wennike, 2002 [31]	411	single-centre	Denmark	unwilling or unable to quit smoking, but interested in reducing their smoking	healthy	72 (35.0)	85 (41.0)	45 (10)	44 (10)	24 (7)	24 (7)

SD, standard deviation.

	Table 2. Outcome	data of the included trials.
--	------------------	------------------------------

		Treatment	Follow-up	Carbon		Qui	it Rate
Trial	Treat vs. Control	Duration (Months)	(Months)	Monoxide- Confirmed	Outcome -	Treat/Total N (%)	Control/Total N (%)
Reduction support p	lus medication versus reduction su	upport plus p	lacebo				
Bolliger, 2000 [18]	nicotine inhaler plus reduction counseling vs. placebo inhaler plus reduction counseling	18	24	Yes	7-day point	21/200 (10.5)	17/200 (8.5)
Batra, 2005 [19]	4-mg nicotine gum plus reduction counseling <i>vs</i> . placebo gum plus reduction counseling	12	13	Yes	7-day point	20/184 (10.9)	7/180 (3.9)
Etter, 2002 [23]	NRT (gum, inhaler or patch) plus reduction booklet <i>vs.</i> placebo plus reduction booklet	6	6	No	sustained for 4 weeks	11/265 (4.2)	5/269 (1.9)
Etter, 2007 [24]	NRT (gum, inhaler or patch) plus self-help reduction material <i>vs</i> . matching placebo plus self-help reduction material	6	60	No	sustained for 60 months	19/265 (7.2)	17/269 (6.3)
Ebbert, 2015 [25]	Varenicline plus four brief reduction counseling vs. placebo plus four brief reduction counseling	6	12	Yes	sustained (week 21 to 52)	205/760 (27.0)	74/750 (9.9)
Hatsukami, 2004 [27]	bupropion plus reduction counseling vs. placebo plus reduction counseling	12	12	Yes	sustained (week 4 to 26)	20/295 (6.8)	16/299 (5.4)
Hughes, 2011 [28]	Varenicline plus four brief reduction counseling vs. placebo plus four brief reduction counseling	2 (4)	6	Yes	7-day point	15/107 (14.0)	8/111 (7.2)

						Carbon			Qui	t Rate
Trial	Treat vs. Con	trol Treatment Duration (Months)		Follow (Month		Monoxide- Confirmed		Outcome —	Treat/Total N (%)	Control/Total N (%)
Rennard, 2006 [30]	10-mg nicotin counseling	e inhaler plus reduction counseling vs. placebo inhaler plus reduction	¹ 12	1:	5	Yes		7-day point	17/215 (7.9)	3/214 (1.4)
Wennike, 2002 [31]	nicotine gum	plus reduction counseling vs. placebo gum plus reduction counseling	12	24	4	Yes		7-day point	19/205 (9.3)	7/206 (3.4)
Reduction sup	pport plus medio	cation versus no intervention								
Carpenter, 2004 [21]	telephone-bas intervention	ed reduction counseling plus NRT (gum or patch) plus brief advice vs	^{s. no} 6	6			No	7-day point	37/212 (17.5)	9/207 (4.3)
Chan, 2011 [22]	NRT plus 4 b	ief reduction counseling vs. simple advices	6	6			Yes	7-day point	74/928 (8.0)	10/226 (4.4)
Etter, 2002 [23]	NRT (gum, in	haler or patch) plus reduction booklet vs. no intervention	-				-	_	11/265 (4.2)	10/389 (2.6
Etter, 2007 [24]	NRT (gum, in	haler or patch) plus reduction material vs. no treatment	-	_			-	_	19/265 (7.2)	18/389 (4.6)
Joseph, 2008 [29]	NRT (gum or	patch) plus reduction counseling vs. no intervention	18	18	8		No	7-day point	9/78 (11.5)	9/74 (12.2)
		Reduction support plus medication	n versus otl	ier support pl	us medi	ication				
Carpenter, 2003 [20]	NRT (gum, in	haler or patch) plus reduction counseling vs. NRT plus brief advice	6	6			Yes	7-day point	6/35 (17.1)	3/32 (9.4)
Carpenter, 200	04 [21]	telephone-based reduction counseling plus NRT (gum or patch) plus brief advice vs. motivational advice plus NRT for – quit attempt plus brief advice		_	_	_	-	37/212 (17	46/	/197 (23.4)
Reduction sup	pport versus no	intervention								
Glasgow, 2009	9 [26]	behavioral reduction supports <i>vs.</i> no intervention 12		12	Yes	; 7	-day point	11/164 (6.	7) 7/1	56 (4.5)

	Experim	ental	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl
1.1.1 reduction sup	port plus va	reniclin	e vs. red	uction	support p	olus placebo	
Ebbert, 2015	205	760	74	750	21.1%	2.73 [2.14, 3.50]	-
Hughes, 2011	15	107	8	111	9.3%	1.95 [0.86, 4.40]	+
Subtotal (95% CI)		867		861	30.3%	2.66 [2.10, 3.36]	•
Total events	220		82				
Heterogeneity: Tau ² =	= 0.00; Chi² =	= 0.61, d	f = 1 (P =	0.43);	l² = 0%		
Test for overall effect	:: Z = 8.14 (P	9 < 0.000	01)				
1.1.2 reduction sup	port plus NF	RT vs. re	duction	suppo	rt plus pla	acebo	
Batra, 2005	20	184	7	180	9.0%	2.80 [1.21, 6.45]	-
Bolliger, 2000	21	200	17	200	12.7%	1.24 [0.67, 2.27]	
Etter, 2002	15	107	8	111	9.3%	1.95 [0.86, 4.40]	+
Etter, 2007	19	265	17	269	12.3%	1.13 [0.60, 2.13]	
Rennard, 2006	17	215	3	214	5.3%	5.64 [1.68, 18.97]	
Vennike, 2002	19	205	7	206	8.9%	2.73 [1.17, 6.35]	
Subtotal (95% CI)		1176		1180	57.5%	1.94 [1.26, 3.00]	\bullet
Fotal events	111		59				
Heterogeneity: Tau ² =	= 0.13; Chi² =	= 9.08, d	f = 5 (P =	0.11);	l² = 45%		
Test for overall effect	:: Z = 3.00 (P	9 = 0.003)				
1.1.3 reduction sup	port plus bu	propion	vs. redu	ction	support p	lus placebo	
Hatsukami, 2004	20	295	16	299	12.2%	1.27 [0.67, 2.40]	
Subtotal (95% CI)		295		299	12.2%	1.27 [0.67, 2.40]	•
otal events	20		16				
Heterogeneity: Not a	pplicable						
Test for overall effect	:: Z = 0.73 (P	9 = 0.47)					
Total (95% CI)		2338		2340	100.0%	1.97 [1.44, 2.71]	•
Total events	351		157				
Heterogeneity: Tau ² =	= 0.11; Chi² :	= 16.63,	df = 8 (P	= 0.03); l² = 52%		0.01 0.1 1 10 10
Test for overall effect	:: Z = 4.21 (P	< 0.000	1)			Γ.	
est for subaroup diff			,	P = 0.0	7), ² = 62	8%	avours [experimental] Favours [control]

Figure 2. Forest plot of comparison: reduction support plus medication *vs.* reduction support plus placebo.

	Experim	ental	Conti	ol		Risk Ratio		Ris	k Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, Fi	<u>xed, 959</u>	% CI	
Carpenter, 2004	37	212	9	207	15.9%	4.01 [1.99, 8.11]				-	
Chan, 2011	74	928	10	226	28.2%	1.80 [0.95, 3.43]					
Etter, 2002	11	265	10	389	14.2%	1.61 [0.70, 3.75]			+		
Etter, 2007	19	265	18	389	25.5%	1.55 [0.83, 2.90]			+		
Joseph, 2008	9	78	9	74	16.2%	0.95 [0.40, 2.26]		_	+		
Total (95% CI)		1748		1285	100.0%	1.93 [1.41, 2.64]					
Total events	150		56								
Heterogeneity: Chi ² =	7.43, df = 4	(P = 0.1	11); l² = 4	6%					<u> </u>		
Test for overall effect:	Z = 4.08 (F	P < 0.000	01)			F	0.01 avours [e	0.1 experimental	1] Favo	10 urs [cont	100 rol]

Figure 3. Forest plot of comparison: reduction support plus medication vs. no intervention.

3.4.3. Reduction Support Plus Medication vs. other Support Plus Medication

We identified two trials that examined comparisons between reduction support plus medication and other support plus medication. In an analysis combining two trials (Figure 4), there was no evidence of benefit from reduction support plus medication (RR, 0.93; 95% CI, 0.44–2.00; $I^2 = 40\%$).

3.4.4. Reduction Support vs. No Intervention

One study evaluated the effect of reduction support alone. Glasgow *et al.* reported that behavioural reduction support did not significantly increase smoking abstinence compared to no intervention (RR, 1.49; 95% CI, 0.56–3.93) [26].

	Experim	ental	Contr	ol		Risk Ratio			Risk Ratio)	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		М-Н,	Random,	95% CI	
Carpenter, 2003	6	35	3	32	25.0%	1.83 [0.50, 6.71]			•		
Carpenter, 2004	37	212	46	197	75.0%	0.75 [0.51, 1.10]					
Total (95% CI)		247		229	100.0%	0.93 [0.44, 2.00]			\blacklozenge		
Total events	43		49								
Heterogeneity: Tau ² =				= 0.20);	l² = 40%		0.01	0.1	 1	10	100
Test for overall effect:	Z = 0.17 (P	, = 0.86)				Fa	vours [experime	ntal] Fav	ours [con	trol]

Figure 4. Forest plot of comparison: reduction support plus medication *vs.* other support plus medication.

3.5. Secondary Outcomes

The secondary outcome of the current study was to compare adverse events (Figure 5). Overall, 11 of the included trials reported information on adverse events (one trial only reported information on deaths). Four deaths occurred in those randomized to NRT, and no deaths occurred in those randomized to non-NRT (varenicline and bupropion). There were no significant differences between treatment and control groups (RR, 1.80; 95% CI, 0.35–9.30) in death occurrence. Serious adverse events occurred in fewer than 8% of cases in both groups. No trials reported that serious adverse events were likely to have arisen from treatment. Discontinuation because of adverse events (RR, 1.34; 95% CI, 1.02–1.75) was significantly more common for the non-NRT group, which experienced more serious adverse events (RR, 1.87; 95% CI, 1.08–3.24), compared with the control group.

3.6. Sensitivity Analysis

Because of the small numbers of studies for comparisons, sensitivity analyses were performed for two comparisons: reduction support plus medication versus reduction support plus placebo and reduction support plus medication versus no intervention. Further exclusion of any single trial did not significantly alter the overall combined RR, which ranged from 1.78 (95% CI, 1.18–2.67) to 2.38 (95% CI, 1.46–3.88) and 1.53 (95% CI, 1.07–2.19) to 2.11 (95% CI, 1.50–2.97).

1000 Jack 1000 Land 1	Experime	Intal	Contr			Odds Ratio	Risk Ratio
Study or Subgroup					Weight	M-H, Random, 95% C	
Death							
NRT							
Batra, 2005	0	184	0	180		Not estimable	,
Bolliger, 2000	1	200	1	200	35.3%	1.00 [0.06, 15.88]	I — •
Carpenter, 2003	0	35	0	32		Not estimable	
Carpenter, 2004	0	212	0	207		Not estimable	
Etter, 2002	2	265	0	389	29.4%	7.33 [0.35, 152.09]	
Joseph, 2008	0	78	0	74		Not estimable	
Rennard, 2006	0	215	0	214	05.00/	Not estimable	+
Vennike, 2002 Subtotal (95% CI)	1	205 1394	1	206 1502	35.3% 100.0%	1.00 [0.06, 15.96] 1.80 [0.35, 9.30]	
Total events	4	1004	2	1002	100.070	1.00 [0.00, 0.00]	
Heterogeneity: Tau ² = 0 Test for overall effect: Z	0.00; Chi ² =			= 0.55);	l² = 0%		
rest for overall effect. Z	. – 0.70 (1	- 0.40)					
non-NRT							
Ebbert, 2015	0	760	0	750		Not estimable	
Hatsukami, 2004	0	295	0	299		Not estimable	
lughes, 2011	0	107	0	111		Not estimable	
Subtotal (95% CI)		1162		1160		Not estimable	
Total events	0		0				
Heterogeneity: Not appl Test for overall effect: N		ble					
Total (95% CI)		2556		2662	100.0%	1.80 [0.35, 9.30]	
Total events	4	2000	2	LUUL	100.070	1.00 [0.00, 0.00]	
Heterogeneity: Tau ² = 0		= 1.20. d		= 0.55):	l ² = 0%		
Test for overall effect: Z			- (.				
Test for subaroup differ			ble				
Serious adverse ev	rents						
NRT							
Batra, 2005	10	184	6	180	7.4%	1.63 [0.61, 4.39]	
Bolliger, 2000	32	200	21	200	27.5%	1.52 [0.91, 2.55]	
Carpenter, 2003	0	35	0	32		Not estimable	
Carpenter, 2004	1	212	0	207	0.7%	2.93 [0.12, 71.50]	
Joseph, 2008	15	78	13	74	16.1%	1.09 [0.56, 2.14]	
Rennard, 2006 Wennike, 2002	15 12	215 205	13 9	214 206	14.1% 10.2%	1.15 [0.56, 2.36] 1.34 [0.58, 3.11]	
Subtotal (95% CI)	12	1129	9	1113	76.0%	1.34 [0.98, 1.83]	•
Total events	85		62				
Heterogeneity: Tau ² = 0		= 1.15, d	f = 5 (P =	= 0.95);	$ ^2 = 0\%$		
Test for overall effect: 2	z = 1.86 (P	= 0.06)					
non-NRT							
Ebbert, 2015	28	760	16	750	19.8%	1.73 [0.94, 3.17]	
Hatsukami, 2004	8	295	3	299	4.2%	2.70 [0.72, 10.09]	
Hughes, 2011 Subtotal (95% CI)	0	107 1162	0	111 1160	24.0%	Not estimable 1.87 [1.08, 3.24]	•
Total events	36	1102	19	1100	24.070	1.07 [1.00, 0.24]	•
Heterogeneity: Tau ² = 0		= 0.37. d		= 0.54);	$l^2 = 0\%$		
Test for overall effect: 2							
Total (95% CI)		2204		2273	100.0%	1.45 [1.11, 1.90]	•
Total (95% CI)				2213	100.0%		
	101	2291	01			1.40[1.11, 1.00]	•
Total events	121 0.00: Chi² =		81 F = 7 (P =	0 021.	$1^2 = 0.0\%$	1.45 [1.11, 1.56]	•
Total events Heterogeneity: Tau ² = 0	0.00; Chi ² =	= 2.58, d	f = 7 (P =	= 0.92);	l ² = 0%	1.49 [1.11, 1.30]	•
Total events	0.00; Chi² = Z = 2.71 (P	= 2.58, d = 0.007	f = 7 (P =)				
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroup differ	0.00; Chi² = Z = 2.71 (P rences: Chi	= 2.58, d = 0.007 i ² = 1.05	f = 7 (P =) . df = 1 (l	P = 0.30			v
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroup differ	0.00; Chi² = Z = 2.71 (P rences: Chi	= 2.58, d = 0.007 i ² = 1.05	f = 7 (P =) . df = 1 (l	P = 0.30			v
Total events Heterogeneity: Tau ² = 0 Test for overall effect: 2 Test for subaroup differ Discontinued bec NRT	0.00; Chi² = Z = 2.71 (P rences: Chi	= 2.58, d = 0.007 i ² = 1.05	f = 7 (P =) . df = 1 (l	P = 0.30			·
Total events Heterogeneity: Tau ² = 0 Test for overall effect: 2 Test for suboroup differ Discontinued bec	0.00; Chi ² = Z = 2.71 (P rences: Chi ause of a	= 2.58, d = 0.007 i ² = 1.05 advers	f = 7 (P =) . df = 1 (l e even	P = 0.30		%	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroub differ Discontinued bec NRT Batra, 2005 Bolliger, 2000	0.00; Chi ² = Z = 2.71 (P rences: Chi ause of a	= 2.58, d = 0.007 i ² = 1.05 advers 184	f = 7 (P =) . df = 1 (l e even 0	P = 0.30 t 180	0). I ² = 5.1°	% Not estimable	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroup differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003	0.00; Chi ² = Z = 2.71 (P rences: Chi ause of a 0 2 0 0	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212	f = 7 (P =) df = 1 (l e even 0 3 0 0	P = 0.30 t 180 200 32 207	0). I ² = 5.1°	% 0.67 (0.11, 3.95] Not estimable Not estimable	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subarouo differ Discontinued bec NRT Baltra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008	0.00; Chi ² = Z = 2.71 (P rences: Chi ause of a 0 2 0 0 0 0	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78	f = 7 (P =) . df = 1 (l e even 3 0 0 0 0	P = 0.30 t 180 200 32 207 74	0). I² = 5.1° 2.1%	% 0.67 (0.11, 3.95) Not estimable Not estimable Not estimable	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroup differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006	0.00; Chi ² = Z = 2.71 (P rences: Chi ause of a 0 2 0 0 0 0 6	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215	f = 7 (P =) df = 1 (l e even 0 3 0 0 0 0 0 6	P = 0.30 t 180 200 32 207 74 214	0). I ² = 5.1 ⁴ 2.1% 5.3%	% Not estimable 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroub differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002	0.00; Chi ² = Z = 2.71 (P rences: Chi ause of a 0 2 0 0 0 0	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205	f = 7 (P =) . df = 1 (l e even 3 0 0 0 0	P = 0.30 t 180 200 32 207 74 214 206	0). I ² = 5.1 ⁴ 2.1% 5.3% 1.7%	% 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04] 1.00 [0.14, 7.07]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaround differ Discontinued becc NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI)	0.00; Chi ² = Z = 2.71 (P rences: Chi ause of a 0 2 0 0 0 6 2	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215	f = 7 (P =) df = 1 (l e even 0 3 0 0 0 0 6 2	P = 0.30 t 180 200 32 207 74 214	0). I ² = 5.1 ⁴ 2.1% 5.3%	% Not estimable 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subarouo differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events	0.00; Chi ² = Z = 2.71 (P rences: Chi ause of : 0 2 0 0 0 0 6 2 2 10	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129	f = 7 (P =) df = 1 (l e even 0 3 0 0 0 0 6 2 11	P = 0.30 t 180 200 32 207 74 214 206 1113	2.1% 2.3% 1.7% 9.1%	% 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04] 1.00 [0.14, 7.07]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroup differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (0.00; Chi ² = Z = 2.71 (P rences: Chi ause of : 0 2 0 0 0 0 6 2 2 0 0 0 0 0 0 0 0 0 0 0	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129 = 0.15, d	f = 7 (P =) df = 1 (l e even 0 3 0 0 0 0 6 2 11	P = 0.30 t 180 200 32 207 74 214 206 1113	2.1% 2.3% 1.7% 9.1%	% 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04] 1.00 [0.14, 7.07]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroup differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (0.00; Chi ² = Z = 2.71 (P rences: Chi ause of : 0 2 0 0 0 0 6 2 2 0 0 0 0 0 0 0 0 0 0 0	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129 = 0.15, d	f = 7 (P =) df = 1 (l e even 0 3 0 0 0 0 6 2 11	P = 0.30 t 180 200 32 207 74 214 206 1113	2.1% 2.3% 1.7% 9.1%	% 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04] 1.00 [0.14, 7.07]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subarouo differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Test for overall effect: 2 non-NRT	0.00; Chi ² = Z = 2.71 (P rences: Ch ause of : 0 0 0 0 6 2 10 0.00; Chi ² = Z = 0.22 (P	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129 = 0.15, d = 0.83)	f = 7 (P =) df = 1 (l e even 0 3 0 0 0 0 0 6 2 11 f = 2 (P =	P = 0.30 t 180 200 32 207 74 214 206 1113 = 0.93);	 D). ² = 5.1⁴ 2.1% 5.3% 1.7% 9.1% ² = 0% 	% Not estimable 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04] 1.00 [0.14, 7.07] 0.91 [0.39, 2.13]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroub differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Test for overall effect: 2 non-NRT Ebbert, 2015	0.00; Chi ² = Z = 2.71 (Prences: Ch ause of : 0 2 0 0 0 0 6 2 10 0.00; Chi ² = Z = 0.22 (P	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129 = 0.15, d = 0.83)	f = 7 (P =) df = 1 (l e even 0 3 0 0 0 6 2 11 f = 2 (P =	P = 0.30 t 180 200 32 207 74 214 206 1113 = 0.93); 750	 D). ² = 5.1⁴ 2.1% 5.3% 1.7% 9.1% ² = 0% 53.0% 	% Not estimable 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04] 1.00 [0.14, 7.07] 0.91 [0.39, 2.13]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroub differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Test for overall effect: 2 non-NRT Ebbert, 2015 Hatsukami, 2004	0.00; Chi ² = Z = 2.71 (P rences: Ch ause of : 0 2 0 0 0 0 6 2 2 10 0.00; Chi ² = Z = 0.22 (P 63 38	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129 = 0.15, d = 0.83) 760 295	f = 7 (P =). df = 1 (l e even 0 3 0 0 0 0 6 2 11 f = 2 (P = 52 22	P = 0.30 t 180 200 32 207 74 214 206 1113 = 0.93); 750 299	 2.1% 5.3% 1.7% 9.1% 1² = 0% 53.0% 26.4% 	% Not estimable 0.67 (0.11, 3.95] Not estimable Not estimable 1.00 (0.33, 3.04] 1.00 (0.14, 7.07] 0.91 [0.39, 2.13]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroub differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Test for overall effect: 2 non-NRT Ebbert, 2015 Hatsukami, 2004 Hughes, 2011	0.00; Chi ² = Z = 2.71 (P rences: Ch ause of : 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 0.00; Chi ² = Z = 0.22 (P	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129 = 0.15, d = 0.33) 760 295 107	f = 7 (P =) df = 1 (l e even 0 3 0 0 0 6 2 11 f = 2 (P =	P = 0.30 t 180 200 32 207 74 214 206 1113 = 0.93); 750 299 111	2.1% 2.1% 5.3% 1.7% 9.1% 1 ² = 0% 53.0% 26.4% 11.5%	% Not estimable 0.67 (0.11, 3.95] Not estimable Not estimable 1.00 (0.33, 3.04] 1.00 (0.14, 7.07] 0.91 [0.39, 2.13] 1.20 (0.84, 1.70] 1.75 [1.06, 2.89] 1.23 (0.57, 2.62]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subarouu differ Discontinued bec NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2003 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Test for overall effect: 2 non-NRT Ebbert, 2015 Hatsukami, 2004 Hughes, 2011 Subtotal (95% CI)	0.00; Chi ² = Z = 2.71 (Prences: Ch ause of : 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129 = 0.15, d = 0.83) 760 295	f = 7 (P = 0) of $df = 1 (l)$ of $df = 1 (l)$ of $df = 0$ of d	P = 0.30 t 180 200 32 207 74 214 206 1113 = 0.93); 750 299	 2.1% 5.3% 1.7% 9.1% 1² = 0% 53.0% 26.4% 	% Not estimable 0.67 (0.11, 3.95] Not estimable Not estimable 1.00 (0.33, 3.04] 1.00 (0.14, 7.07] 0.91 [0.39, 2.13]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for overall effect: 2 Test for subarouu differ Discontinued becc NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Test for overall effect: 2 non-NRT Ebbert, 2015 Hatsukami, 2004 Hughes, 2011 Subtotal (95% CI) Total events	0.00; Chi ² = Z = 2.71 (Prences: Ch ause of : 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129 = 0.15, d = 0.15, d 295 107 1162	f = 7 (P = df = 1 (l) e even 0 3 0 0 0 0 0 0 0 0 0 0 11 f = 2 (P = 52 22 11 85	P = 0.30 t 180 200 32 207 74 214 206 1113 = 0.93); 750 299 111 1160	 2.1% 5.3% 1.7% 9.1% 12 = 0% 53.0% 26.4% 11.5% 90.9% 	% Not estimable 0.67 (0.11, 3.95] Not estimable Not estimable 1.00 (0.33, 3.04] 1.00 (0.14, 7.07] 0.91 [0.39, 2.13] 1.20 (0.84, 1.70] 1.75 [1.06, 2.89] 1.23 (0.57, 2.62]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subarouu differ Discontinued becc NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Non-NRT Ebbert, 2015 Hatsukami, 2004 Hughes, 2011 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (0.00; $Chi^2 = 2.71$ (P rences: Ch ause of : 0 2 0 0 0 0 0 0 0 6 2 2 10 0.00; $Chi^2 = 2$ 2 2 0.00; $Chi^2 = 10.22$ (P 63 38 13 114 0.00; $Chi^2 = 10.22$ (P	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129 = 0.15, d = 0.83) 760 295 107 1162 = 1.55, d	f = 7 (P = df = 1 (l) e even 0 3 0 0 0 0 0 0 0 0 0 0 11 f = 2 (P = 52 22 11 85	P = 0.30 t 180 200 32 207 74 214 206 1113 = 0.93); 750 299 111 1160	 2.1% 5.3% 1.7% 9.1% 12 = 0% 53.0% 26.4% 11.5% 90.9% 	% Not estimable 0.67 (0.11, 3.95] Not estimable Not estimable 1.00 (0.33, 3.04] 1.00 (0.14, 7.07] 0.91 [0.39, 2.13] 1.20 (0.84, 1.70] 1.75 [1.06, 2.89] 1.23 (0.57, 2.62]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroub differ Discontinued becc NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Test for overall effect: 2 non-NRT Ebbert, 2015 Hatsukami, 2004 Hughes, 2011 Total events Heterogeneity: Tau ² = (Test for overall effect: 2	0.00; $Chi^2 = 2.71$ (P rences: Ch ause of : 0 2 0 0 0 0 0 0 0 6 2 2 10 0.00; $Chi^2 = 2$ 2 2 0.00; $Chi^2 = 10.22$ (P 63 38 13 114 0.00; $Chi^2 = 10.22$ (P	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 212 78 215 205 1129 = 0.15, d 295 107 1162 = = 1.55, d = = 0.03)	f = 7 (P = df = 1 (l) e even 0 3 0 0 0 0 0 0 0 0 0 0 11 f = 2 (P = 52 22 11 85	P = 0.30 t 1800 2000 32 20774 214 206 209 1113 = 0.93); 7500 2999 1111 1160 = 0.46);	 2.1% 2.1% 5.3% 1.7% 9.1% 12 = 0% 53.0% 26.4% 11.5% 90.9% 12 = 0% 	% Not estimable 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04] 1.00 [0.14, 7.07] 0.91 [0.39, 2.13] 1.20 [0.84, 1.70] 1.75 [1.06, 2.89] 1.23 [0.57, 2.62] 1.34 [1.02, 1.75]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroun differ Discontinued becc NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Total vents Heterogeneity: Tau ² = (Total vents Heterogeneity: Tau ² = (Total vents	0.00; $Chi^2 = 2.71$ (P rences: Ch ause of : 0 2 0 0 0 0 0 6 2 2 10 0.00; $Chi^2 = 2$ 2 0.00; $Chi^2 = 2$ 63 38 13 114 0.00; $Chi^2 = 2.13$ (P	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 212 78 215 205 1129 = 0.15, d = 0.83) 760 295 107 1162 = 1.55, d	f = 7 (P =) d f = 1 (l e even 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	P = 0.30 t 1800 2000 32 20774 214 206 1113 = 0.93); 7500 2999 111 1160 = 0.46);	 2.1% 5.3% 1.7% 9.1% 12 = 0% 53.0% 26.4% 11.5% 90.9% 	% Not estimable 0.67 (0.11, 3.95] Not estimable Not estimable 1.00 (0.33, 3.04] 1.00 (0.14, 7.07] 0.91 [0.39, 2.13] 1.20 (0.84, 1.70] 1.75 [1.06, 2.89] 1.23 (0.57, 2.62]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroud differ Discontinued becc NRT Batra, 2005 Bolliger, 2000 Carpenter, 2003 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Total revers Heterogeneity: Tau ² = (Total events Heterogeneity: Tau ² = (Total events	0.00; $Chi^2 = 2.71$ (P rences: Ch ause of 2 0 0 0 0 0 6 2 2 0 0 0 0 6 2 2 10 0.00; $Chi^2 = 2$ 2 2 0.00; $Chi^2 = 2$ 2 3 8 13 114 0.00; $Chi^2 = 2.13$ (P 124	= 2.58, d = 0.007 i ² = 1.05 advers 184 200 35 205 1129 = 0.15, d = 0.83) 760 295 107 1162 = 1.55, d = 0.03) 2291	f = 7 (P =) df = 1 (l df = 1 (l d	P = 0.30 t 1800 2000 32 207 74 206 1113 = 0.93); 7500 2999 111 1160 = 0.46); 2273	 2.1% 5.3% 1.7% 9.1% 1² = 0% 53.0% 26.4% 11.5% 90.9% 1² = 0% 100.0% 	% Not estimable 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04] 1.00 [0.14, 7.07] 0.91 [0.39, 2.13] 1.20 [0.84, 1.70] 1.75 [1.06, 2.89] 1.23 [0.57, 2.62] 1.34 [1.02, 1.75]	
Total events Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subaroun differ Discontinued becc NRT Batra, 2005 Bolliger, 2000 Carpenter, 2004 Joseph, 2008 Rennard, 2006 Wennike, 2002 Subtotal (95% CI) Total events Heterogeneity: Tau ² = (Total vents Heterogeneity: Tau ² = (Total vents Heterogeneity: Tau ² = (Total vents Heterogeneity: Tau ² = (Total vents	0.00; $Chi^2 = 2.71$ (P rences: Ch ause of : 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= 2.58, d = 0.007 i ² = 0.007 i ² = 1.05 212 78 215 205 1129 = 0.15, d = 0.03) 760 295 107 1162 = 1.55, d 0.03) 2291 2291	f = 7 (P =) df = 1 (l df = 1 (l d	P = 0.30 t 1800 2000 32 207 74 206 1113 = 0.93); 7500 2999 111 1160 = 0.46); 2273	 2.1% 5.3% 1.7% 9.1% 1² = 0% 53.0% 26.4% 11.5% 90.9% 1² = 0% 100.0% 	% Not estimable 0.67 [0.11, 3.95] Not estimable Not estimable 1.00 [0.33, 3.04] 1.00 [0.14, 7.07] 0.91 [0.39, 2.13] 1.20 [0.84, 1.70] 1.75 [1.06, 2.89] 1.23 [0.57, 2.62] 1.34 [1.02, 1.75]	

In addition, sensitivity analyses were performed to explore the influences of various exclusion criteria (Supplementary Table S1). If we only included the trials that had large sample sizes, were performed at multiple centres, included healthy populations, and reported carbon monoxide-confirmed quit rates, the results did not significantly affect the overall pooled estimate.

3.7. Publication Bias

Publication bias was assessed using Egger and Begg tests. For smoking reduction plus medication versus smoking reduction plus placebo, there was no potential publication bias among the nine included trials (Egger's test, p = 0.532; Begg's test, p = 0.490). Publication bias was not assessed for other comparisons, because the low power with less than five trials limited the interpretability of the finding.

4. Discussion

The present systematic review and meta-analysis identified 14 trials (a total of 7981 smokers) investigating the effects of different types of reduction therapies for assisting smoking reduction to achieve the goal of long-term cessation in smokers without an intention to quit. The results suggested that reduction support in combination with smoking cessation medication (varenicline or NRT) significantly increased the cessation rate among smokers without an intention to quit. Moreover, the percentages of smokers with serious adverse events were not significantly different between the treatment and control (NRT) groups. Measurements of varenicline and bupropion safety should be further explored. Insufficient evidence is available to test the efficacy of bupropion plus reduction support in promoting long-term cessation in this population.

According to the present meta-analysis, the combination of reduction support with varenicline significantly increased long-term and CO-confirmed (confirmed by exhaled carbon monoxide) smoking cessation rates by a factor of 2.66. The results suggested that varenicline is an effective treatment option for smokers without an intention to quit. The percentage of smokers with serious adverse events and discontinuation because of adverse events in the varenicline group was significantly different from the control group. However, because of the limited number of studies included in the current meta-analysis, further safety measurements are needed. Bupropion significantly increased short-term abstinence rates, but the rates were not sustained after bupropion was discontinued. [27] Future studies should evaluate the efficacy and safety of bupropion with a larger sample size.

We found that NRT was the most widely used reduction therapy for smokers with no intention to quit. Compared to placebo or no intervention, NRT significantly increased long-term cessation. Various inclusion criteria did not significantly affect the results. Regarding the effect of self-help reduction materials, we could not make a definitive conclusion because of the limited sample size [23,24]. Further trials should use stricter outcomes (sustained abstinence) rather than specific time points of abstinence in the future. In accordance with the previous meta-analyses, we confirmed that NRT-assisted reduction to stop smoking was an effective and safe strategy [8,9]. In a trial including patients with heart disease, Joseph et al. reported that unserious and serious adverse events were roughly distributed in the examined treatment groups [29]. Because concerns about cardiovascular and neuropsychiatric adverse events are a relatively new issue [32,33], many trials have not reported on cardiovascular and neuropsychiatric outcomes. Mathew et al. suggested that for patients receiving

NRT who continued to smoke, the sympathetic nervous system might be stimulated by high nicotine serum concentrations [34]. More evidence is needed to assess the cardiovascular and neuropsychiatric events that occur during pharmacology-assisted reduction among smokers without an intention to quit.

In the current meta-analysis, we found that the RRs for NRT versus placebo with reduction support were similar to that for NRT versus no support. This result suggests that reduction support is not necessary to achieve the effect of NRT. However, due to the limited number trials (only three trials were relative studies) included in the meta-analysis, strong and definitive recommendations cannot be made on the effect of reduction support [20,21,26]. It remains unclear whether the combination of reduction support and medication to increase reduction was better than other support plus medication. Furthermore, we still cannot make a conclusion about the efficacy of behavioural reduction support alone. To the best of our knowledge, there are at least three on-going RCTs on this topic (NCT02337400, NCT02370147, and NCT 01866722). In smokers with no immediate intention to quit, the results of these trials could provide further evidence of the efficacy of reduction support.

Our analysis did not include three pilot randomized trials because of their short follow-up periods (less than 6 months) [35–37]. These trials used new-style tobacco products (smokeless tobacco and very low-nicotine content cigarettes) as a substitute for smoking for smokers who were not interested in quitting. It is worth noting that the efficacy and safety of these new-style tobacco products assisted in smoking reduction and future long-term cessation.

The current meta-analysis has limitations. First, various definitions and time frames were used to define an intention to quit in the included trials. Future studies should follow the common definition of a "stage-of-change" model for smokers with no intention to quit [38,39]. Second, the treatment duration (ranging from two months to 18 months) and follow-up time (ranging from six months to 60 months) varied between the trials. The longer treatment duration might achieve more effective outcomes. We used the longest follow-up time of smoking abstinence, as used previously [40,41]. Third, most of the included trials reported the point prevalence rather than the sustained abstinence rates. The effectiveness might be overvalued because of the lack of sustained abstinence. Fourth, several trials did not report the frequency or intensity of baseline and follow-up behavioural counselling. It was reported that a more intensive counselling intervention was more effective than a less intensive one [42]. Further RCTs should report outcomes with details of baseline and follow-up interventions. Finally, 11 of the included trials recruited moderate or heavy smokers (at least 10 cigarettes per day). It remains unclear whether smoking reduction would be effective for lighter smokers.

5. Conclusions

In summary, the evidence suggests that a combination of reduction support and medication (NRT and varenicline) to increase reduction in achieving complete cessation is effective for smokers without an intention to quit. Further evidence is needed to assess the safety of varenicline and bupropion as well as the efficacy of reduction behavioural support and bupropion in reducing the daily consumption of cigarettes with the eventual goal of quitting smoking.

Author Contributions

Lei Wu and Yao He were responsible for the conception and design. Lei Wu, Samio Sun, Yao He and Jing Zeng took part in the acquisition, analysis and interpretation of data. All authors have read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest. This study was supported by research grants from the National Natural Science Foundation of China, 81373080; Beijing Municipal Science and Technology Commission, D121100004912003; Military Medicine Innovation Fund, 13CXZ029.

Abbreviations

CENTRAL, Cochrane Central Register of Controlled Trials; RCT, randomized controlled trial; RR, relative risk; 95% CI, 95% confidence interval; NRT, nicotine replacement therapy.

References

- 1. Jiang, Y.; Elton-Marshall, T.; Fong, G.T.; Li, Q. Quitting smoking in China: Findings from the ITC China Survey. *Tob. Control* **2010**, *19*, 12–17.
- Boyle, P.; Gandini, S.; Robertson, C. Characteristics of smokers' attitudes towards stopping: Survey of 10,295 smokers in representative samples from 17 European countries. *Eur. J. Public Health* 2000, 10, 5–14.
- Jamal, A.; Agaku, I.T.; O'Connor, E.; King, B.A.; Kenemer, J.B.; Neff, L. Current cigarette smoking among adults—United States, 2005–2013. *Morb. Mortal. Wkly. Rep.* 2014, 6, 1108– 1112.
- 4. Hughes, J.R.; Carpenter, M.J. The feasibility of smoking reduction: An update. *Addiction* **2005**, *100*, 1074–1089.
- 5. Abdullah, A.S. How far should we promote smoking reduction in order to promote smoking cessation? *Asian Pac. J. Cancer Prev.* **2005**, *6*, 231–234.
- 6. Glasgow, R.E.; Morray, K.; Lichtenstein, E. Controlled smoking *vs.* abstinence as a treatment goal: The hopes and fears may be unfounded. *Behav. Ther.* **1989**, *20*, 77–91.
- 7. Hughes, J.R.; Carpenter, M.J. Does smoking reduction increase future cessation and decrease disease risk? A qualitative review. *Nicotine Tob. Res.* **2006**, *8*, 739–749.
- 8. Moore, D.; Aveyard, P.; Connock, M.; Wang, D.; Fry-Smith, A.; Barton, P. Effectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: Systematic review and meta-analysis. *BMJ*. **2009**, doi:10.1136/bmj.b1024.
- 9. Wang, D.; Connock, M.; Barton, P.; Fry-Smith, A.; Aveyard, P.; Moore, D. "Cut down to quit" with nicotine replacement therapies in smoking cessation: A systematic review of effectiveness and economic analysis. *Health Technol. Assess.* **2008**, *12*, iii–iv, ix–xi, 1–135.
- 10. Stead, L.F.; Lancaster, T. Interventions to reduce harm from continued tobacco use. *Cochrane Database Syst. Rev.* **2007**, doi:10.1002/14651858.CD005231.pub2.

- 11. Asfar, T.; Ebbert, J.O.; Klesges, R.C.; Relyea, G.E. Do smoking reduction interventions promote cessation in smokers not ready to quit? *Addict. Behav.* **2011**, *7*, 764–768.
- 12. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *BMJ* **2009**, doi:10.1136/bmj.b2535.
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; *et al.* Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011, doi:10.1136/bmj.d5928.
- 14. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0 (updated March 2011). Available online: http://www.cochrane-handbook.org (accessed on 21 August 2015).
- 15. Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in metaanalyses. *BMJ* **2003**, *327*, 557–560.
- 16. Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. *Biometrics* **1994**, *50*, 1088–1101.
- 17. Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Biasin meta-analysis detected by a simple, graphical test. *BMJ* **1997**, *315*, 629–634.
- Bolliger, C.T.; Zellweger, J.P.; Danielsson, T.; van Biljon, X.; Robidou, A.; Westin, A.; Perruchoud, A.P.; Säwe, U. Smoking reduction with oral nicotine inhalers: Double blind, randomised clinical trial of efficacy and safety. *BMJ* 2000, *321*, 329–333.
- Batra, A.; Klingler, K.; Landfeldt, B.; Friederich, H.M.; Westin, A.; Danielsson, T. Smoking reduction treatment with 4-mg nicotine gum: A double-blind, randomized, placebo-controlled study. *Clin. Pharmacol. Ther.* 2005, 78, 689–696.
- 20. Carpenter, M.J.; Hughes, J.R.; Keely, J.P. Effect of smoking reduction on later cessation: A pilot experimental study. *Nicotine Tob. Res.* **2003**, *5*, 155–162.
- Carpenter, M.J.; Hughes, J.R.; Solomon, L.J.; Callas, P.W. Both smoking reduction with nicotine replacement therapy and motivational advice increase future cessation among smokers unmotivated to quit. J. Consult. Clin. Psychol. 2004, 72, 371–381.
- Chan, S.S.; Leung, D.Y.; Abdullah, A.S.; Wong, V.T.; Hedley, A.J.; Lam, T.H. A randomized controlled trial of a smoking reduction plus nicotine replacement therapy intervention for smokers not willing to quit smoking. *Addiction* 2011, *106*, 1155–1163.
- Etter, J.F.; Laszlo, E.; Zellweger, J.P.; Perrot, C.; Perneger, T.V. Nicotine replacement to reduce cigarette consumption in smokers who are unwilling to quit: A randomized trial. *J. Clin. Psychopharmacol.* 2002, *22*, 487–495.
- Etter, J.F.; Laszlo, E. Postintervention effect of nicotine replacement therapy for smoking reduction: A randomized trial with a 5-year follow-up. J. Clin. Psychopharmacol. 2007, 27, 151– 155.
- Ebbert, J.O.; Hughes, J.R.; West, R.J.; Rennard, S.I.; Russ, C.; McRae, T.D.; Treadow, J.; Yu, C.R.; Dutro, M.P.; Park, P.W.; *et al.* Effect of varenicline on smoking cessation through smoking reduction: A randomized clinical trial. *JAMA* 2015, *313*, 687–694.

- 26. Glasgow, R.E.; Gaglio, B.; Estabrooks, P.A.; Marcus, A.C.; Ritzwoller, D.P.; Smith, T.L.; Levinson, A.H.; Sukhanova, A.; O'Donnell, C.; Ferro, E.F.; *et al.* Long-term results of a smoking reduction program. *Med. Care* **2009**, *47*, 115–120.
- Hatsukami, D.K.; Rennard, S.; Patel, M.K.; Ktlyar, M.; Malcolm, R.; Nides, M.A.; Dozier, G.; Bars, M.P.; Jamerson, B.D. Efmn fects of sustained-release bupropion among persons interested in reducing but not quitting smoking. *Amer. J. Med.* 2004, *116*, 151–157.
- Hughes, J.R.; Rennard, S.I.; Fingar, J.R.; Talbot, S.K.; Callas, P.W.; Fagerstrom, K.O. Efficacy of varenicline to prompt quit attempts in smokers not currently trying to quit: A randomized placebo-controlled trial. *Nicotine Tob. Res.* 2011, *13*, 955–964.
- Joseph, A.M.; Hecht S.S.; Murphy S.E.; Lando, H.; Carmella, S.G.; Gross, M.; Bliss, R.; Le, C.T.; Hatsukami, D.K. Smoking reduction fails to improve clinical and biological markers of cardiac disease: A randomized controlled trial. *Nicotine Tob. Res.* 2008, 10, 471–481.
- Rennard, S.I.; Glover, E.D.; Leischow, S.; Daughton, D.M.; Glover, P.N.; Muramoto, M.; Franzon, M.; Danielsson, T.; Landfeldt, B.; Westin, A.; *et al.* Efficacy of the nicotine inhaler in smoking reduction: A double-blind, randomized trial. *Nicotine Tob. Res.* 2006, *8*, 555–564.
- Wennike, P.; Danielsson, T.; Landfeldt, B.; Westin, A.; Tønnesen, P. Smoking reduction promotes smoking cessation: Results from a double blind, randomized, placebo-controlled trial of nicotine gum with 2-year follow-up. *Addiction* 2003, *98*, 1395–1402.
- 32. Mills, E.J.; Thorlund, K.; Eapen, S.; Wu, P.; Prochaska, J.J. Cardiovascular events associated with smoking cessation pharmacotherapies: A network meta-analysis. *Circulation* **2014**, *129*, 28–41.
- Singh, S.; Loke, Y.K.; Spangler, J.G.; Furberg, C.D. Risk of serious adverse cardiovascular events associated with varenicline: A systematic review and meta-analysis. *CMAJ* 2011, 183, 1359–1366.
- 34. Mathew, T.P.; Herity, N.A. Acute myocardial infarction soon after nicotine replacement therapy. *QJM* **2001**, *94*, 503–504.
- Walker, N.; Fraser, T.; Howe, C.; Laugesen, M.; Truman, P, Parag, V.; Glover, M.; Bullen, C. Abrupt nicotine reduction as an end game policy: A randomised trial. *Tob. Control* 2014, doi:10.1136/tobaccocontrol-2014-051801.
- Burris, J.L.; Carpenter, M.J.; Wahlquist, A.E.; Cummings, K.M.; Gray, K.M. Brief, instructional smokeless tobacco use among cigarette smokers who do not intend to quit: A pilot randomized clinical trial. *Nicotine Tob. Res.* 2014, *16*, 397–405.
- Carpenter, M.J.; Gray, K.M. A pilot randomized study of smokeless tobacco use among smokers not interested in quitting: Changes in smoking behavior and readiness to quit. *Nicotine Tob. Res.* 2010, *12*, 136–143.
- 38. Prochaska, J.O.; Velicer, W.F.; di Clemente, C.C.; Fava, J. Measuring processes of change: Applications to the cessation of smoking. *J. Consult. Clin. Psychol.* **1988**, *56*, 520–528.
- 39. Prochaska, J.O.; Goldstein, M.G. Process of smoking cessation. Implications for clinicians. *Clin. Chest Med.* **1991**, *12*, 727–735.
- Mottillo, S.; Filion, K.B.; Bélisle, P.; Joseph, L.; Gervais, A.; O'Loughlin, J.; Paradis, G.; Pihl, R.; Pilote, L.; Rinfret, S.; *et al.* Behavioural interventions for smoking cessation: A meta-analysis of randomized controlled trials. *Eur. Heart J.* 2009, *30*, 718–730.

- 41. Lindson-Hawley, N.; Aveyard, P.; Hughes, J.R.; Lindson-Hawley, N.; Aveyard, P.; Hughes, J.R. Reduction *vs.* abrupt cessation in smokers who want to quit. *Cochrane Database Syst. Rev.* **2012**, doi:10.1002/14651858.CD008033.pub2.
- 42. Lancaster, T.; Stead, L.F. Individual behavioural counselling for smoking cessation. *Cochrane Database Syst. Rev.* 2005, doi:10.1002/14651858.CD001292.pub2.

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).