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Abstract
Vectors of emerging infectious diseases have expanded their distributional ranges in 
recent decades due to increased global travel, trade connectivity and climate change. 
Transboundary range shifts, arising from the continuous movement of humans and 
livestock across borders, are of particular disease control concern. Several tick-borne 
diseases are known to circulate between eastern Uganda and the western counties 
of Kenya, with one fatal case of Crimean-Congo haemorrhagic fever (CCHF) reported 
in 2000 in western Kenya. Recent reports of CCHF in Uganda have highlighted the 
risk of cross-border disease translocation and the importance of establishing inter-
epidemic, early warning systems to detect possible outbreaks. We therefore carried 
out surveillance of tick-borne zoonotic pathogens at livestock markets and slaughter-
houses in three counties of western Kenya that neighbour Uganda. Ticks and other 
ectoparasites were collected from livestock and identified using morphological keys. 
The two most frequently sampled tick species were Rhipicephalus decoloratus (35%) 
and Amblyomma variegatum (30%); Ctenocephalides felis fleas and Haematopinus suis 
lice were also present. In total, 486 ticks, lice and fleas were screened for patho-
gen presence using established molecular workflows incorporating high-resolution 
melting analysis and identified through sequencing of PCR products. We detected 
CCHF virus in Rh. decoloratus and Rhipicephalus sp. cattle ticks, and 82 of 96 pools 
of Am. variegatum were positive for Rickettsia africae. Apicomplexan protozoa and 
bacteria of veterinary importance, such as Theileria parva, Babesia bigemina and 
Anaplasma marginale, were primarily detected in rhipicephaline ticks. Our findings 
show the presence of several pathogens of public health and veterinary importance 
in ticks from livestock at livestock markets and slaughterhouses in western Kenya. 
Confirmation of CCHF virus, a Nairovirus that causes haemorrhagic fever with a high 
case fatality rate in humans, highlights the risk of under-diagnosed zoonotic diseases 
and calls for continuous surveillance and the development of preventative measures.
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1  | INTRODUC TION

Ticks are vectors of a range of viral, bacterial and protozoal 
pathogens that cause huge economic losses to livestock farm-
ing communities, while some are zoonotic and as a consequence 
present a public health burden (de la Fuente et al., 2008). Among 
the most prevalent livestock diseases in Kenya are babesio-
sis, theileriosis and anaplasmosis (Franck et al., 2015; Gachohi 
et al., 2012; Latib et al., 1995; Norval et al., 1984), while zoo-
notic rickettsiosis constitutes a serious emerging public health 
threat globally (Brown & Macaluso, 2016; Fournier et al., 2017; 
Jensenius et al., 2017; Maina et al., 2017; Ndip, Bouyer, 
et al., 2004; Ndip, Parola et al., 2013; Rutherford et al., 2004). 
In addition to Rickettsia, tick-borne bacteria such as Ehrlichia and 
Anaplasma and protozoa such as Babesia have been shown to in-
fect humans in the Americas and Europe (Doudier et al., 2010). 
Ticks also transmit nairoviruses, most of which cause a mild 
non-pathognomonic febrile illness in humans, but some, such as 
Crimean-Congo haemorrhagic fever (CCHF) and Dugbe viruses, 
can cause severe systemic illness and mortality, affirming the 
importance of ticks in the transmission of viral haemorrhagic fe-
vers (Papa et al., 2017). In livestock, Nairobi sheep disease virus, 
also a Nairovirus, is a constant threat to sheep production in East 
Africa and the Horn of Africa (Baron & Holzer, 2015).

With travel and trade thought to be major drivers of emerging 
pathogen spread (Kilpatrick & Randolph, 2012), the movement of 
livestock and people among East African countries could enhance 
the circulation of emerging pathogens, especially given that high 
arboviral activity has been reported across the region (Mossel 
et al., 2017; Nyaruaba et al., 2019). Smallholder livestock production 
in East Africa is associated with livestock movement across provincial 
and national borders to livestock markets in peri-urban areas (Fèvre 
et al., 2005) in which animals have been found to be heavily infested 
by ticks (Sang et al., 2006). Livestock movement plays a major role in 
the introduction of infective foci in naïve areas where they can then 
be disseminated by capable vectors (Fèvre et al., 2006). Indeed, live-
stock movements have been implicated in both past and recent Rift 
Valley fever (RVF) outbreaks in Kenya (Baba et al., 2016; Munyua 
et al., 2010; WHO, 2018).

Outbreaks of CCHF (Dunster et al., 2002) and RVF (WHO, 2018) 
have previously been reported in western Kenya, and there is se-
rological evidence of circulation of chikungunya, yellow fever, 
West Nile and RVF viruses (Cook, Grossi-Soyster, et al., 2017; 
Inziani et al., 2020; Mease et al., 2011; Nyaruaba et al., 2019). 
While reports on the occurrence of zoonotic vector-borne bac-
teria are scant, the high prevalence of malaria in western Kenya 
results in under-investigation of other causes of febrile illnesses. 
Ticks, fleas and lice may be both vectors and reservoirs of most 
pathogens they transmit, making them an important component 

in the transmission dynamics of vector-borne zoonoses (Raoult & 
Roux, 1997).

Several bacterial pathogens of zoonotic and veterinary potential 
in ticks have been reported in East Africa, including tick-borne spot-
ted fever group (SFG) rickettsiosis agents (Rickettsia africae, Rickettsia 
conorii and Rickettsia aeschlimanii) (Kumsa et al., 2015; Macaluso 
et al., 2003; Maina et al., 2014; Mwamuye et al., 2017; Nakao 
et al., 2013; Nakayima et al., 2014). A broad spectrum of bacteria and 
protozoa of veterinary and public health importance have also been 
detected, including Theileria parva, Ehrlichia ruminantium, Ehrlichia 
chaffeensis, Anaplasma marginale, Anaplasma phagocytophilum and 
Anaplasma platys (Mwamuye et al., 2017; Omondi et al., 2017; Oundo 
et al., 2020; Ringo et al., 2018; Teshale et al., 2015). Hyalomma, 
Amblyomma and Rhipicephalus ticks sampled from livestock in North 
Eastern Kenya were previously shown to be infected with CCHF, 
Bunyamwera, Dugbe, Ndumu, Semliki forest, Thogoto, Ngari, Dhori 
and West Nile viruses (Lutomiah et al., 2014; Lwande et al., 2013; Sang 
et al., 2006, 2011). These viruses are endemic in East Africa (Nyaruaba 
et al., 2019), and some, such as Semliki Forest, Wesselsbron, Ngari 
and Bunyamwera viruses, have only been isolated from mosquitoes 
(Ajamma et al., 2018; Lwande et al., 2013; Villinger et al., 2017). In 
most instances, ticks with arboviruses were collected from cattle at 
livestock markets and abattoirs, highlighting the need to carry out 
surveillance for arboviruses at such facilities.

Flea-borne rickettsioses, such as flea-borne spotted fever 
(Rickettsia felis) and murine typhus (Rickettsia typhi), both en-
demic in East Africa, are transmitted by Ctenocephalides felis and 
Xenopsylla cheopis fleas, respectively. Rickettsia felis and Rickettsia 
asembonensis sp. nov. have been detected not only in C. felis (Jiang 
et al., 2013; Maina et al., 2019), but also in several other flea spe-
cies (Luce-fedrow et al., 2015). Louse infestations result in severe 
pruritic mange in livestock, leading to production losses (Hornok 
et al., 2010), and epidemic typhus, caused by Rickettsia prowazekii, in 
humans, especially in overcrowded and poor social settings (Raoult 
& Roux, 1997). While the vectorial capacity of ticks is established, 
the role of lice and fleas in the epidemiology of vector-borne zoono-
ses is rarely investigated.

Active surveillance for zoonotic pathogens and their vectors 
generates information on their presence and prevalence and can 
identify novel vector–pathogen associations. Such information can 
facilitate early detection and quantification of pathogen burdens 
and thus is important for planning control strategies to reduce spill-
over infection from livestock to humans. Most of the diseases are 
characterized by non-specific febrile illness, which can be easily con-
fused with other fever-causing agents. Awareness of their presence 
improves clinical referral and diagnosis. Therefore, we carried out 
this study to investigate the disease risk posed by the movement of 
tick, flea and louse infested animals via livestock markets (LM)s and 
slaughterhouses (SHs) in the Lake Victoria basin of East Africa.

K E Y W O R D S
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2  | MATERIAL S AND METHODS

2.1 | Study site

The study was carried out in neighbouring counties, viz. Busia, 
Bungoma and Kakamega, in western Kenya. This region, part of 
which shares borders with Uganda, is representative of the larger 
Lake Victoria basin ecosystem and has the highest rural human and 
livestock population densities in East Africa. The predominant farm-
ing type is a mixed smallholder livestock production system, though 
husbandry practices are rapidly changing as production moves from 
largely subsistence to increasing intensification, with consequent 
impacts on disease emergence and transmission (Fèvre et al., 2017).

2.2 | Study design and sample collection

The study design and sampling collection are described in detail 
elsewhere (Falzon et al., 2019). Briefly, four LMs and neighbouring 
SHs were selected in each county (Figure 1), where each LM was 
closely associated with a ruminant or pig SH. At each LM, up to 
10 animals were selected via systematic random sampling. During 

each visit, we attempted to select six to seven cattle and three to 
four small ruminants, so as to proportionally represent the livestock 
species present at the LM; no pigs were present at the LMs. Signed 
consent was sought from the animal owners or traders accompany-
ing sampled animals, and a short questionnaire was administered to 
capture demographic and animal ownership details. Animals were 
then physically restrained and, after a general clinical examination, 
blood was drawn by a qualified veterinarian from the jugular vein 
using a vacutainer tube. Nasal swabs and faecal samples were also 
collected. Any external parasites present on the hide of the selected 
animals were removed with gloved hands and placed into falcon 
tubes containing 70% ethanol to preserve their morphology for 
identification purposes (Estrada-Peña et al., 2004).

At ruminant and pig SHs, we sampled all the animals brought for 
slaughter (if <10 animals were slaughtered), or a sub-sample of these 
(if >10 animals were slaughtered), on a given visit. A similar sampling 
procedure as at LMs was followed and, in addition to ticks, lice and 
fleas were also collected if present on sampled animals. The number 
of animals sampled per visit at each LM and SH was predetermined 
by the number of samples required for the entire integrated surveil-
lance study and logistical constraints (Falzon et al., 2019). Sample 
bottles and blood tubes were barcoded and transported to the field 

F I G U R E  1   Map of the three neighbouring counties of Busia, Bungoma and Kakamega showing the livestock markets and slaughterhouses 
from which arthropod samples were collected [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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laboratory in Busia in a cool box with ice packs. Arthropods were 
stored at −40°C at the International Livestock Research Institute 
(ILRI) Department of Veterinary Services laboratory in Busia before 
being shipped on dry ice to the Martin Lüscher Emerging Infectious 
Disease (ML-EID) laboratory at the International Centre of Insect 
Physiology and Ecology (icipe) where they were stored at −80°C for 
further identification and laboratory analysis.

2.3 | Morphological identification of ticks, 
lice, and fleas

Ticks, lice and fleas were morphologically identified to species 
level using a stereomicroscope (Zeiss) with the aid of identifica-
tion keys (Centers for Disease Control & Prevention, 2003; Pratt & 
Wiseman, 1962; Estrada-Peña et al., 2004). Excessively engorged 
tick specimens were excluded from the analysis due to difficulties 
in identifying them and the PCR inhibitory potential of their blood 
meals (Sparagano et al., 1999). For ticks and lice, the most important 
morphological features used for identification were body confor-
mation, mouthparts, scutum ornamentation and anal shields. Fleas 
were identified based on the shape of the head and the arrangement 
of pronotal and genal combs. Representative specimens were photo-
graphed using an Axio-cam ERc 5s digital camera (Zeiss) mounted on 
a stereomicroscope. Ticks, lice and fleas were pooled (1–3) according 
to developmental stage, sex, species and host from which they were 
sampled.

2.4 | Nucleic acid extraction from arthropods and 
selected livestock blood samples

Arthropod pools were homogenized before nucleic acid extraction. 
Each pool was placed in a 1.5-ml Eppendorf tube with pre-weighed 
scoops of 750 mg of 2.0-mm and 150 mg of 0.1-mm yttria-stabi-
lized zirconium oxide (zirconia/yttria) beads (Biospec), in which they 
were mechanically disrupted using a Mini-Beadbeater-16 (BioSpec) 
for 60–90 s. Phosphate-buffered saline (PBS) (360 µl) was added 
to each tube and vortexed, and 210 µl of the resulting homogen-
ate was transferred to a 96-well specimen processing cartridge. 
DNA and RNA were extracted using a MagNA 96 DNA and Viral NA 
Small Volume Kit (Roche Applied Science) in a MagNA Pure 96 robot 
(Roche Molecular Systems). A sindbis virus culture isolate was in-
cluded as a positive extraction control, and PBS was used as a nega-
tive extraction control in each run. Total nucleic acid was eluted in 
50 µl of RNAse-free water.

Animal blood samples associated with arthropod pools identified 
as positive for R. africae and CCHF virus were selected for pathogen 
screening. Nucleic acids from blood samples were extracted using 
the magnetic bead-based High Prep Viral DNA/RNA kit (MagBio 
Genomics). First, 200 µl of blood was added to 1.5-µl Eppendorf 
tubes containing 528 µl of a lysis master mix consisting of VDR lysis 
buffer, isopropanol and carrier RNA and vortexed. Then, 10 µl of 

proteinase K and 10 µl of MAG-S1 magnetic beads were added and 
mixed into solution by inversion. The subsequent steps were per-
formed according to the manufacturer's instructions.

2.5 | Molecular identification of ticks

While morphology alone was adequate for definitive identification 
of fleas and lice, we supplemented morphological identification 
of ticks with DNA sequence identification of 15 single specimens 
for which morphologic identification to species level was equivo-
cal. Using taxon-specific primers, we amplified three target genes: 
the internal transcribed spacer-2 (ITS2) (Chitimia et al., 2009), cy-
tochrome oxidase 1 (CO1) (Hebert et al., 2004) and 16S ribosomal 
(r)RNA (Brahma et al., 2014) (Table S1). The PCRs were performed 
in a SimpliAmp PCR Thermal Cycler (Applied Biosystems, Singapore) 
in 10-µl reactions that consisted of 2 µl of 5× HOT FIREPol® Blend 
Master Mix (Solis BioDyne), 2 µl of template and 0.5 µl of 10 µM 
primer. Molecular grade water was included as a negative control 
on each run. The cycling conditions have been described before in 
detail (Mwamuye et al., 2017), with the exception that the final ex-
tension step for the three fragments was seven minutes. Amplicons 
of the correct size were visualized alongside Quick-Load® 100-bp 
DNA Ladder (Biolabs) by electrophoresis on 1.6% ethidium bromide-
stained agarose gels under UV light. Bidirectional sequencing of 
amplicons purified by Exo 1-rSAP combination (Biolabs) was per-
formed by Macrogen. Sequence chromatograms were inspected, 
edited and aligned using Geneious Prime version 2019.0.4 software 
(Biomatters). The resulting sequence contigs were used in nucleo-
tide BLAST searches (Altschul et al., 1990) against the GenBank nr 
database (www.ncbi.nlm.nih.gov/blast) to identify tick species-spe-
cific sequence matches.

2.6 | Molecular detection of arboviral, bacterial, 
protozoan pathogens

2.6.1 | Detection of arboviruses

A previously described multiplex reverse transcription (RT)-PCR-
HRM test was initially utilized for the detection of arboviruses within 
the Flavivirus, Alphavirus, Nairovirus, Phlebovirus, Orthobunyavirus 
and Thogotovirus genera (Villinger et al., 2017) (Table S1). This was 
preceded by cDNA synthesis using the High Capacity cDNA Reverse 
Transcription (RT) kit (Applied Biosystems) in a 20-µl reaction mix-
ture that contained 10 µl nucleic acid extract, 1 U/μl RNase inhibitor, 
100 mM dNTPs, 1× RT buffer, 2.5 u/µl reverse transcriptase enzyme 
and 40 u/µl non-ribosomal random hexa-nucleotide primers (Endoh 
et al., 2005). The reactions were performed in a SimpliAmp ther-
mocycler (Applied Biosystems) using previously described thermal 
cycling conditions (Ajamma et al., 2018). The 10-µl reaction mix-
ture for the multiplex PCR-HRM contained 1 µl cDNA template, 
5 μl of 2× MyTaq HS Mix (Bioline) and 1 μl of 50 μM SYTO-9 (Life 

http://www.ncbi.nlm.nih.gov/blast
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Technologies). Multiplex PCR-HRM reactions were performed in a 
Rotor-Gene Q real-time PCR thermocycler (Qiagen) using touch-
down thermal cycling conditions described in detail elsewhere 
(Villinger et al., 2017). Each run included cDNA of the sindbis virus as 
a positive control and no-template extraction controls and molecu-
lar grade water as PCR negative controls. HRM profiles were visual-
ized with Rotor-Gene Q Series software 2.1.0. All positive samples 
were separately rerun using primer mixes for each of alphaviruses, 
flaviviruses and nairoviruses and the same conditions for the mul-
tiplex PCR-HRM runs (Villinger et al., 2017) (Table S1). Amplicons 
from singleplex runs were purified with an Exo 1-rSAP combination 
(Biolabs) and submitted for bidirectional sequencing to Macrogen. 
Larger fragments using a conventional PCR assay that targets the 
Nairovirus L-polymerase gene (Table S1) were also amplified, purified 
and sequenced as previously described (Honig et al., 2004).

2.6.2 | Detection of bacterial and 
protozoan pathogens

Tick, louse, flea and livestock blood samples were also screened for 
bacteria and protozoa using a combination of PCR-HRM and conven-
tional PCR. Previously developed primers that target the 16S rRNA 
gene of Anaplasma (Mwamuye et al., 2017), Ehrlichia (Mwamuye 
et al., 2017) and Rickettsia (Nijhof et al., 2007), as well as primers 
that target the 18S ribosomal gene of Theileria and Babesia para-
sites (Georges et al., 2001), were used for initial screening (Table S1). 
Ten-microlitre reactions that consisted of 2 µl template, 2 µl 5× HOT 
FIREPol® EvaGreen HRM Mix (Solis BioDyne) and 0.5 µl of each 
primer at 10 µM concentrations. Cycling was carried out in a Rotor-
Gene Q real-time PCR thermocycler (Qiagen) as described before 
(Mwamuye et al., 2017). Positive controls for Anaplasma (A. margin-
ale) and Rickettsia (R. africae) (previously detected in icipe's ML-EID 
lab from Amblyomma spp. ticks) were included in the runs. Resultant 
HRM profiles were visually inspected with Rotor-Gene Q Series 
software 2.1.0, and representative amplicons with unique HRM pro-
files were purified using an Exo 1-rSAP combination (Biolabs) and 
sequenced at Macrogen.

Positive Ehrlichia and Anaplasma samples were further amplified 
with a semi-nested PCR to generate a longer fragment of the 16S 
rRNA gene (1,030 bp) by combining the Anaplasmataceae-specific 
forward primer, EHR16SD (Parola et al., 2001) with universal reverse 
primers pH1522 (Edwards et al., 1989) and pH1492 (Reysenbach 
et al., 1992) for first and second round amplification, respectively 
(Table S1). Primary amplifications were performed using a hot-start 
activation step of 95°C for 15 min followed by 1 cycle of 95°C for 
20 s, 63°C for 30 s, and 72°C for 90 s, 2 cycles of 95°C for 20 s, 62°C 
for 30 s, and 72°C for 90 s, 2 cycles of 95°C for 20 s, 61°C for 30 s 
and 72°C for 90 s, followed with 35 cycles of 95°C for 20 s, 60°C for 
30 s and 72°C for 80 s, and a final extension at 72°C for 10 min. The 
secondary 20-µl amplification reactions utilized 2 µl of PCR products 
from primary reactions as templates. The cycling profile consisted 
of: 95°C for 15 min; 3 cycles of 95°C for 20 s, 61°C for 30 s, and 

72°C for 90 s; 37 cycles of 95°C for 20 s, 60°C for 30 s and 72°C for 
80 s, and a final extension at 72°C for 10 min. To minimize the risk of 
contamination, we set up the second reaction in a PCR enclosure and 
opened only one tube at a time. Products were visualized after gel 
electrophoresis to confirm the presence of the expected product at 
1,030 bp. For Rickettsia, all samples with positive HRM profiles were 
further amplified with Rick-ompB primers (Roux & Raoult, 2000) tar-
geting a 856-bp region of the outer membrane protein B gene of all 
Rickettsia species (Table S1). Positive samples were prepared for se-
quencing using the QuickClean II Gel Extraction Kit (GenScript) and 
submitted to Macrogen for bidirectional sequencing.

2.7 | Phylogenetic analysis

All sequences were edited and aligned using Geneious align-
ment in Geneious Prime version 2019.0.4 software (Biomatters). 
Homologous sequences of reference and sequence entries closely 
related with each of the individual sequences generated in this 
study were identified through BLAST nucleotide searches against 
the GenBank nr database (Altschul et al., 1990). Each of the data-
sets compiled in this manner were aligned, and the terminal regions 
corresponding to the primer sequences were removed prior to phy-
logenetic analysis. Maximum likelihood phylogenies were inferred 
for each gene using PhyML version 3.0., employing the Akaike in-
formation criterion for automatic selection for appropriate model of 
evolution (Guindon et al., 2010). Trees were visualized and edited in 
Figtree 1.4 (Rambaut, 2014).

2.8 | Estimation of individual-level pathogen 
prevalences from pooled samples

Individual-level prevalences of pathogens detected in pooled sam-
ples were estimated by a maximum likelihood approach in a frequen-
tist model. True prevalence estimates within vector populations 
assumed 100% sensitivity and specificity of pooled-sample results 
and took into account the number of individuals in each pool tested 
(Cowling et al., 1999; Williams & Moffitt, 2001). The computations 
were performed online using Epitools an epidemiological calculator 
accessed from https://epito ols.ausvet.com.au/ppvar iable poolsize 
(Sergeant, 2018).

3  | RESULTS

3.1 | Vectors sampled

A total of 456 ticks (434 adults and 22 nymphs), 28 lice 
(Haematopinus suis) and two fleas (Ct. felis) collected from cattle, 
goats, sheep and pigs at LMs and SHs were analysed in this study. 
Over 80% of the vectors collected at LMs and SHs came from 
cattle (Table S2). This was partially due to the fact that 60% of 

https://epitools.ausvet.com.au/ppvariablepoolsize
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the animals sampled at each of these locations were cattle, which 
were generally more tick-infested than goats, sheep or pigs. The 
lice were primarily collected from pigs at SHs, and the fleas were 
collected from cattle.

Representative specimens of Rhipicephalus evertsi (one adult), 
Rhipicephalus appendiculatus (one adult, one nymph), Amblyomma 
gemma (one adult), Amblyomma variegatum (one adult, one nymph), 
Haemaphysalis sp. (one adult), Rhipicephalus decoloratus (one adult) 
and Rhipicephalus sp. (six adults, one nymph), identified morpho-
logically (Figure S1), were selected for molecular tick identification 
(Table 1). Molecular identifications concurred with morphological 
identifications for Rh. appendiculatus (T16), Rh. decoloratus (T134) 
and Am. variegatum (T199). However, we resolved a tick specimen 
(T105) that we morphologically identified as Rh. decoloratus to be 
Rhipicephalus microplus based on its 16S rRNA sequence homology. 
The ITS2 sequence of an Am. gemma (T222) had highest homology 
with Amblyomma hebraeum, as there was no other Am. gemma ITS2 
reference in the GenBank database. Seven out of nine specimens 
of Rhipicephalus, Haemaphysalis and Amblyomma spp. that could not 
be identified to species level by morphology alone were identified 
based on sequence homologies of at least two of the markers. The 
most commonly sampled tick species were Rh. decoloratus (35%) and 
Am. variegatum (30%).

3.2 | Pathogens detected

We detected Anaplasma and Rickettsia bacteria, Babesia, Theileria, 
Hepatozoon protozoa and CCHF virus (Figure 2) in ticks and lice col-
lected from 13 LMs and 13 SHs across the three sampled counties 
(Table 2). Out of the 333 pools tested (Table S2), one Rh. decoloratus 
and one Rhipicephalus sp. were positive for CCHF virus (deposited 
GenBank accessions MN267048, MN267049) (0.62% estimated 
true prevalence). These ticks were removed from cattle at two SHs. 
The CCHF virus isolates identified fall into the genotype II clade, 
which includes isolates from Uganda and the Democratic Republic 
of Congo (DRC) (Figure 3). Their nucleotide sequence identity was 
highest (98.6%) to the Nakiwogo (GenBank accession KX013483) 
strain isolated from Uganda (Simpson et al., 1967).

Eighty-two out of 96 pools of Am. variegatum, three pools of 
Rh. decoloratus, four pools of Rhipicephalus sp., one pool of Rh. ap-
pendiculatus, one pool of Am. gemma and one pool of H. suis were 
positive for R. africae (deposited GenBank accessions MN294740–
MN294749) (Table 2). These R. africae-positive ectoparasites were 
removed from cattle, sheep, goats and pigs. Two of the R. africae se-
quences from this study were identical to those previously detected 
in Am. variegatum ticks in Asembo in Kenya (GenBank accession 
KF660534) and another to a strain detected in a patient diagnosed 
with African tick bite fever in Tanzania (unpublished; GenBank ac-
cession KU721071). Rickettsia africae variants in this study were 
characterized by base substitutions in several positions and pos-
sessed a four-base insertion that is absent from most Kenyan iso-
lates (Figure S2).

We detected A. platys (deposited GenBank accessions 
MN266939–MN266941) in five pools of Rh. decoloratus, two 
pools of Rhipicephalus sp. and three pools of Rh. appendiculatus, 
all obtained from cattle (Table S3). Anaplasma marginale (depos-
ited GenBank accessions MN266931–MN266935) was detected 
in four pools of Rh. decoloratus and two pools of Rhipicephalus 
sp. Anaplasma ovis (deposited GenBank accessions MN266936–
MN266938) was detected in two pools of Rh. decoloratus, three 
pools of Rhipicephalus sp. and one pool of Rh. evertsi from goats 
and cattle.

Only one Rhipicephalus sp. tick pool was positive for T. parva 
(GenBank accession MN294730) (Table 2). Twelve out of 108 
pools of Rh. decoloratus were positive for Theileria mutans (depos-
ited GenBank accessions MN294725–MN294729), while two pools 
were positive for Theileria taurotragi (deposited GenBank accessions 
MN294731–MN294732). In Rhipicephalus sp., six pools were posi-
tive for T. mutans, three for T. taurotragi and one for Theileria velifera 
(deposited GenBank accessions MN294733–MN294734). Theileria 
mutans was also detected in one Rh. appendiculatus and one A. varie-
gatum pool. All Theileria spp. positive ticks were removed from cattle 
(Table S3). We detected Babesia caballi (deposited GenBank acces-
sions MN294721–MN294723) exclusively in eight Am. variegatum 
tick pools. Single pools each of Rh. decoloratus, Rh. appendiculatus 
and Am. variegatum were positive for Babesia bigemina (depos-
ited GenBank accession MN294720). One pool of Rh. decoloratus 
was positive for Hepatozoon canis (deposited GenBank accession 
MN294724). The phylogenetic relationships of the apicomplexan 
parasite sequences identified in this study with homologous patho-
gen sequences are shown in Figure 4.

In addition to these pathogens, we detected Coxiella endosym-
bionts (deposited GenBank accessions MN262071–MN262076, 
MN266922–MN266928, MN266946–MN266948), which are 
phylogenetically close to, but distinct from, Coxiella burnetii, the 
pathogen responsible for Q fever, in all the genera of ticks except 
in Haemaphysalis. The Coxiella endosymbionts characterized in this 
study fell into the group B and C clades of previously detected tick 
Coxiella endosymbionts of ticks (Figure 5).

No DNA/RNA of the pathogens evaluated in this study was de-
tected in the flea specimens. All of the 33 selected associated live-
stock blood samples were negative for R. africae and CCHF virus. 
Thirty-one of these blood samples were from animals (28 cattle and 
three pigs) from which R. africae-positive Am. variegatum ticks were 
collected, while the other two were from the cattle from which the 
two CCHF virus-positive Rhipicephalus spp. were obtained.

4  | DISCUSSION

4.1 | CCHF virus detection in ticks

We detected CCHF virus in ticks removed from cattle destined for 
slaughter at two SHs. This is the first description of CCHF virus 
in Rh. decoloratus ticks in Kenya, with previous studies reporting 

info:refseq/MN267048
info:refseq/MN267049
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detection only in hyalommid ticks from the North Eastern region 
(Sang et al., 2011). This suggests that other tick species besides 
Hyalomma spp. may be supporting the local transmission of the virus. 
As the infected Rhipicephalus spp. ticks in this study were blood-fed 
and collected from livestock, we also tested the blood of the livestock 
from which they came from for CCHF virus, but they were negative. 
Association between infected ticks and seropositivity is common; 
however, ticks can also be found on seronegative animals and vice 
versa (Spengler et al., 2016). Domestic animals, especially sheep, 
have been shown to be asymptomatic carriers of the virus (Spengler 
et al., 2016), acting as reservoirs of infection (via ticks) to humans, 
who suffer significant morbidity (Ergönül, 2006). While Hyalomma 
ticks are the natural vector and reservoir of CCHF virus, other tick 
genera, such as Rhipicephalus, have been found infected with the 
virus (Nabeth et al., 2004; Fakoorziba et al., 2015; Hoogstraal, 1979). 
Rhipicephalus spp. have also transmitted CCHF virus in laboratory 
settings and have been implicated in the transmission of CCHF virus 
(Balinandi et al., 2018; Ergönül, 2006). Therefore, Rhipicephalus spp. 
ticks may support transmission of the virus in areas where Hyalomma 
spp. are absent. However, confirmation of this requires comprehen-
sive competency studies, and an understanding of the landscape 
epidemiology of this virus and its transmission is in its early stages.

In Africa, there are three distinct clades of CCHF virus and 
the close phylogenetic relationship between our isolates and the 
Nakiwogo strain isolated in Uganda is not surprising (Ergönül, 2006; 
Lukashev et al., 2016) given the geographical proximity of our study 
site to Uganda and the extensive trade in live animals between the 
two countries. This finding supports the circulation of a single strain 
of virus between the two countries, which may be facilitated through 
cross-border movement of infected livestock. At-risk groups for CCHF 
virus infection include farmers, veterinarians and abattoir and health-
care workers (Cook, De Glanville, et al., 2017; Ergönül, 2006). CCHF 
outbreaks have not been reported in Kenya since the year 2000 when 

a fatal case in western Kenya showed the possibility of the virus circu-
lating in the region. However, Lwande et al. (2012) found a 23% human 
seroprevalence of IgG antibodies to CCHF virus in North Eastern 
Kenya, and infection has been reported after skin contact with live-
stock, blood spatters during slaughtering, tick bites and when health-
care workers take care of haemorrhaging patients (Ergönül, 2006). Our 
findings therefore highlight the potential for human exposure to CCHF 
virus at these and other LMs and SHs, and at public health facilities, 
and emphasize the need for routine surveillance for this pathogen and 
adopting a One Health approach. Other LM/SH-based surveillance 
studies in Kenya have described the occurrence of other arboviruses 
in ticks, which indicates the importance of ticks in their epidemiology 
(Lwande et al., 2013; Sang et al., 2006, 2011). While most of these 
studies targeted pastoralist regions, our findings demonstrate that 
the risk of human exposure to tick-borne arboviruses is also present in 
tropical smallholder systems in East Africa.

While Hyalomma spp. ticks are the chief vectors of CCHF virus, 
other species may also be important to transmission ecologies due to 
cofeeding transmission between infected and non-infected ticks, even 
in the absence of viraemia in the host. An infected tick may transmit 
a virus to a non-infected cofeeding tick without the host having de-
tectable virus in its blood (Kazimírová et al., 2017). Such non-viraemic 
transmission is presumed to contribute to amplification of CCHF virus 
in nature because the virus can be transmitted among ticks even with-
out detectable viraemia in the host (Bente et al., 2013).

4.2 | Rickettsia africae in ticks and lice

We demonstrated a high prevalence (78.95%; estimated true preva-
lence) of R. africae, the agent of African tick bite fever (ATBF, also 
known as African tick typhus) in humans, in Am. variegatum ticks 
collected mostly from cattle. Ever since the first description in 

F I G U R E  2   Melt rate profiles. (a) CCHF 
virus RdRp amplicons, (b) Theileria/Babesia 
18S rRNA amplicons, (c) Anaplasma 
16SrRNA amplicons and (d) Rickettsia/
Coxiella 16S rRNA amplicons. PC, positive 
control; Ra, Rh. appendiculatus; Rd, 
Rh. decoloratus [Colour figure can be 
viewed at wileyonlinelibrary.com]
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Kenya of R. africae in Amblyomma ticks from the Maasai Mara region 
(Macaluso et al., 2003), high infection rates in Amblyomma ticks have 
been reported at SHs in Mombasa and Nairobi (Mutai et al., 2013), 
Siaya County, which borders Busia County (Maina et al., 2014), pas-
toral communities in North Eastern Kenya (Koka et al., 2017), the 
Shimba Hills National Reserve (Mwamuye et al., 2017), Baringo 
County (Omondi et al., 2017) and the Maasai Mara National Reserve 
(Oundo et al., 2020). Rickettsia africae has similarly been reported 
in Amblyomma ticks from Cameroon (Ndip, Fokam, et al., 2004), 

Zimbabwe (Beati et al., 1995), Senegal (Kelly et al., 2010) and the 
Central African Republic (CAR) (Dupont et al., 1995). We also de-
tected R. africae at much lower prevalence in rhipicephaline ticks, 
and for the first time, we are aware of in H. suis lice. However, this 
novel finding is not surprising as lice are known vectors of other SFG 
rickettsiae (Hornok et al., 2010), but there is a paucity of studies 
that have surveyed rickettsiae in lice in Africa. The two fleas, which 
were negative for pathogen DNA/RNA, may have been an acciden-
tal finding on cattle. However, Ct. felis is not as host-restricted as 

F I G U R E  3   Maximum likelihood phylogeny of Crimean-Congo haemorrhagic fever virus strains inferred from 34 aligned 434-nt segments 
of the L-segment (RdRp gene). GenBank accession numbers and country of origin are indicated for each sequence. Accession numbers for 
sequences from this from this study are in bold. Isolation sources in applicable sequences are also highlighted. Bootstrap values at the major 
nodes are of percentage agreement among 1,000 replicates. The branch length scale represents substitutions per site. The gaps indicated 
in the branches to the Nairobi sheep disease out-group represent 0.8 substitutions per site. The sequences from this study fall into African 
genotype II as indicated by the vertical bars

0.2

FJ562095 CCHF virus (ex Hy. asiaticum)-China

DQ211614 CCHF virus (ex Hy. truncatum)-Senegal

GU477492 CCHF virus (ex rodent)-China

HQ378183 CCHF (ex human)-Sudan

MN267049 CCHF virus (ex Rh. decoloratus)-Kenya

DQ076412 CCHF virus (ex human)-Uganda

AY675240 CCHF virus (ex Hy. marginatum)-Russia

MH791449 Nairobi sheep disease virus (outgroup)-China

KJ682804 CCHF virus (ex human)-South Africa

DQ099335 CCHF virus-DRC

KJ682797 CCHF virus (ex human)-South Africa

AY947891 CCHF virus-Nigeria

MN267048 CCHF virus (ex Rhipicephalus sp.)-Kenya

DQ211615 CCHF virus (ex Hy. marginatum)-Mauritania

KX056053 CCHF virus (ex human)-Russia
KX056050 CCHF virus (ex human)-Russia

KY484046 CCHF virus (ex human)-DRC

GQ337055 CCHF virus (ex human)-Turkey

AY422208 CCHF virus-Pakistan

DQ211616 CCHF virus (ex sheep)-China

KJ682801 CCHF virus (ex human)-South Africa

KX013483 CCHF virus (ex human)-Uganda

HM452307 CCHF virus (ex human)-Afghanistan

DQ211623 CCHF virus (ex human)-Turkey

KJ682795 CCHF virus (ex human)-South Africa

JN627865 CCHF virus (ex human)-India

HQ378183 CCHF (ex human)-Sudan

KX056059 CCHF virus (ex human)-Russia

AY947890  CCHF virus (ex human)-Iraq

KJ682802 CCHF virus (ex human)-South Africa

AY720893 CCHF virus (ex Hyalomma marginatum)-Tajikstan

DQ211624 CCHF virus (ex human)-DRC

KJ682800 CCHF virus (ex human)-South Africa

DQ211613 CCHF virus (ex Hy. truncatum)-Senegal

99

74

91
61

67

82

84

93

99

91

68

  83

91

63

69

96

92

75

95

85

67

99

II

III

V

IV



     |  2439CHIUYA et Al.

Ctenocephalides canis and has been found infesting a wide range of 
host other than felines (Singh et al., 2011).

Our finding that all 34 livestock blood samples, from which the 
R. africae-positive ticks were obtained, were negative for the patho-
gen reinforces the notion that Amblyomma ticks are the major res-
ervoir of the pathogen, but also indicates a low transmissibility to 
livestock. Since these ticks mostly parasitize large ruminants, it is 
evident that cattle play an important role in the epidemiology of 
ATBF by providing an abundant blood-meal source, as described 
previously for R. conorii by Kelly et al. (1991).

In travel medicine, ATBF, which is characterized by headaches, in-
oculation eschar, rash and myalgia (Jensenius et al., 2003), is believed 
to be only second to malaria as the cause of febrile illness in travel-
lers to sub-Saharan Africa (SSA). Most acute cases have been reported 
in tourists and foreign travellers with some fatal cases (Rutherford 
et al., 2004). Its seroprevalence is usually high in native populations, 
but few acute cases have been reported (Kelly et al., 1991; Ndip, 
Bouyer, et al., 2004). This may be due to exposure at an early age 
leading to only mild clinical cases that are ignored, poor visibility of 
inoculation eschars on pigmented skin and lack of diagnostic capac-
ity at most health centres (Jensenius et al., 2003). Alternatively, some 
R. africae may be more virulent than others. In this study, we found 
R. africae variants that have been reported in previous studies (Kimita 
et al., 2016; Macaluso et al., 2003; Maina et al., 2014). The differences 
found in the nucleotide composition of the omp B gene, which codes 
for the most immuno-dominant surface cell antigen of Rickettsia, could 
possibly affect the virulence of R. africae variants. Surface cell antigens 

are involved in cellular adhesion of Rickettsia and subsequent entry 
into cells (Blanc et al., 2003). The hypothesis that variants with an in-
tact omp B gene are less virulent than those with the deletion (Maina 
et al., 2014) may explain the absence of acute ATBF cases in Kenya, 
despite the high seroprevalence. This is supported by the evidence 
that genome reduction may lead to increased virulence in Rickettsia 
(Fournier et al., 2009). However, it remains to be seen if some of these 
variants can be detected in febrile patients in our study area. Clearly, 
there is a need for studies that focus on the public health aspect of this 
pathogen in endemic areas.

4.3 | Theileria, Babesia and Anaplasma spp. in ticks

We detected A. marginale, the cause of gall sickness, B. bigemina, 
which causes redwater, and T. parva, which causes East Coast 
fever in 1.88%, 0.63% and 0.31% (estimated true prevalences) of 
rhipicephaline ticks, respectively. These three diseases are major 
impediments to livestock production in Kenya and SSA, causing se-
vere loss of production in affected animals (Wesonga et al., 2010; 
Woolhouse et al., 2015). We recently found T. parva more frequently 
in Rh. appendiculatus (15.7% of tick pools) sampled in the Maasai 
Mara National Reserve, where no Babesia was detected (Oundo 
et al., 2020). The absence of T. parva in animal blood samples in this 
study may be partly explained by its biology, where most of its life 
cycle is found in the lymphoid system and only multiplies in RBC 
for completion of its life cycle (Mans et al., 2015). Accordingly, we 

F I G U R E  4   Maximum likelihood phylogeny of apicomplexan protozoa inferred from 32 aligned 502-nt segments of the 18S rRNA gene. 
GenBank accession numbers and isolation sources are indicated for each sequence. Accession numbers for sequences from this study are 
in bold. Bootstrap values at the major nodes are of percentage agreement among 1,000 replicates. The branch length scale represents 
substitutions per site
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found higher prevalence in ticks of the mildly pathogenic Theileria 
spp., T. taurotragi, T. velifera and T. mutans than reported by Njiiri 
et al. (2015) in calves in Busia, Kenya and by Lorusso et al. (2016) in 
Nigerian cattle. Nonetheless, these species can also cause theileri-
osis in immuno-compromised animals. We also detected A. platys, 
the cause of canine cyclic thrombocytopenia, in several pools of 
Rhipicephalus ticks from cattle. This pathogenic bacterium has been 
reported in other studies in ticks and blood from livestock (Ben Said 
et al., 2017; Lorusso et al., 2016; Omondi et al., 2017), and recent 
evidence suggests that A. platys may infect humans, posing a risk 
in cases of opportunistic tick bites (Arraga-Alvarado et al., 2014; 
Breitschwerdt et al., 2014; Maggi et al., 2013).

4.4 | Coxiella endosymbionts of ticks

As in recent studies by Mwamuye et al. (2017) and Oundo 
et al. (2020), we also obtained Coxiella endosymbiont sequences 

from Rickettsia 16S rRNA primer amplicons. Previous studies have 
shown that these endosymbionts, which are closely related to the 
pathogen responsible for Q fever, C. burnetii, provide additional 
essential nutrients and reproductive fitness to ticks. Their elimi-
nation with antibiotic treatment was shown to negatively impact 
the fitness of the lone star tick Amblyomma americanum (Zhong 
et al., 2007). The phylogenetic codivergence between the differ-
ent tick species and their Coxiella endosymbionts shows the high 
specificity of these endosymbionts to their tick hosts. Four phy-
logenetic clades (A–D) have been described for tick-associated 
Coxiella endosymbionts. The sequences of endosymbionts from 
this study fell into groups B and C. Group B consists of Coxiella 
endosymbionts of Amblyomma and Ornithodoros, while group C 
consists of rhipicephaline endosymbionts (Duron et al., 2015). 
These endosymbionts are non-pathogenic. However, it is im-
portant to note that there is evidence that C. burnetii evolved 
recently from a maternally inherited symbiont of ticks (Duron 
et al., 2015).

F I G U R E  5   Maximum likelihood phylogeny of tick-associated Coxiella endosymbionts inferred from 33 aligned 279-nt segments of the 
16S rRNA gene. GenBank accession numbers and tick species of origin are indicated for each sequence. Accession numbers for sequences 
from this study are in bold Bootstrap values at the major nodes are of percentage agreement among 1,000 replicates. The branch length 
scale represents substitutions per site. The gaps indicated in the branches to the L. pneumophila out-group represent 0.12 substitutions 
per site. Sequences from this study and those from GenBank fall into three genotypes: A = Coxiella burnetii; B = Coxiella endosymbionts of 
Amblyomma spp. ticks; C = Coxiella endosymbionts of Rhipicephalus spp. ticks; D = Coxiella endosymbionts of Dermacentor and Amblyomma 
spp. ticks
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5  | CONCLUSIONS

We identified an array of pathogens of both veterinary and pub-
lic health importance in vectors collected from domestic animals 
at LMs and SHs. Significantly, the host animals were either being 
traded to destinations that were different from their origin or taken 
to slaughter, carrying infected vectors. These findings show how 
livestock trade can be the driver for new foci of infection in new 
areas, with risks to livestock from pathogens identified in this study, 
such as T. parva, A. marginale and B. bigemina. Furthermore, the pres-
ence of CCHF virus at SHs exposes abattoir workers, meat inspec-
tors, butchers and consumers to the haemorrhagic disease, which is 
highly fatal. The high prevalence of R. africae detected in Am. var-
iegatum ticks shows the high risk of transmission of the pathogen, 
which causes ATBF in humans in case of a tick bite. The zoonotic 
pathogens detected here cause febrile illness that can be clinically 
difficult to differentiate from malaria or other non-specific fevers. 
Indeed, a large majority of non-malarial febrile cases are never prop-
erly diagnosed. Therefore, evidence of their possible circulation and 
risk for human infection warrants their inclusion, if not routinely due 
to limitations in clinical differential diagnostics, at least in routine 
prospective surveys in health centres receiving febrile patients.
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