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Neuroendocrine liver metastases (LM-NEN) develop in a considerable proportion of
patients with gastroenteropancreatic neuroendocrine neoplasms. There is a paucity of
experimental models that accurately recapitulate this complex metastatic human liver
microenvironment precluding scientific and clinical advancements. Here, we describe the
development of a novel personalised immunocompetent precision cut tumour slice
(PCTS) model for LM-NEN using resected human liver tissue. The histological
assessment throughout the culture demonstrated that slices maintain viability for at
least 7 days and retain the cellular heterogeneity of the original tumour. Essential clinical
features, such as patient-specific histoarchitecture, tumour grade, neuroendocrine
differentiation and metabolic capacity, are preserved in the slices. The PCTS also
replicate the tumor-specific immunological profile as shown by the innate and adaptive
immunity markers analysis. Furthermore, the study of soluble immune checkpoint
receptors in the culture supernatants proves that these immunomodulators are actively
produced by LM-NEN and suggests that this process is epithelium-dependent. This
model can be employed to investigate these pathways and provides a powerful platform
for mechanistic, immunological and pre-clinical studies.

Keywords: tissue slices, neuroendocrine liver metastases, ex vivo model, soluble immunomodulators, immune
checkpoint receptor, tumour modeling
INTRODUCTION

Neuroendocrine neoplasms (NENs) are heterogeneous tumours that arise from cells of the
neuroendocrine systems in almost any organ of the body. The incidence of NENs has had a 6-
fold increase since 1973, reaching an annual age-adjusted incidence of 9 per 100,000 people in 2015
(1). The most common location for NENs is the gastroenteropancreatic (GEP) region and the liver
n.org July 2022 | Volume 13 | Article 9091801
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constitutes a frequent metastatic site (liver metastases, LM) (2,
3). LM-NEN can lead to development of carcinoid syndrome and
carcinoid heart disease. Regardless of the primary site, LM are a
strong prognostic predictor of mortality, reducing considerably
the overall survival compared to non-metastatic disease (4, 5).
Although medical treatments can relieve symptoms and/or delay
progression, the response rates are low and complete resection of
LM-NEN tumours, which is rarely a curative option, is reserved
for a minority (7-15%) of patients (6, 7).

Over the past decades, it has become increasingly clear that the
pathobiology of tumours is far more complex than an
accumulation of uncontrolled mitotic cells. Stromal cells,
extracellular matrix, infiltrating immune cells, vasculature
and other tissue-specific factors make up the tumour
microenvironment (TME), a highly dynamic interactive network
that has been shown to dictate tumour aggressiveness and drug
resistance (8). Naturally, a change in the TME can result in a
survival advantage for tumour cells that are most adapted to grow
in that environment. This was recently demonstrated by Walter
and colleagues, who found that small intestinal NENs have
significant intertumoral heterogeneity between the primary and
LM lesion, sometimes having a complete absence of common
mutations (9). Additionally, studies have shown that up to 97% of
LM-NEN are infiltrated with T-cells, immunosuppressive
regulatory T-cells (Tregs) and have surface expression of immune
exhaustion markers (programmed cell death protein 1, PD-1 and
programmed death ligand 1, PD-L1) (10, 11) making these
tumours potential candidates for immune checkpoint inhibitor
therapy, contrary to non-metastatic disease in which checkpoint
inhibitors have had marginal success (12). It is therefore
paramount to consider the relevant TME of the liver, in which
LM-NEN have thrived, to investigate the nature of this cancer.

Besides the membrane-bound immune checkpoint receptors,
there has been a growing interest in cell-free (soluble) forms of
those immunomodulators (soluble immune checkpoint
receptors (solCRs)), which are generated by alternative mRNA
splicing or proteolytic ectodomain cleavage/shedding. Soluble
CRs have been shown to maintain the functional properties that
modulate the checkpoint receptor-mediated immune signalling
(13, 14) and to be released in the liver-metastatic environment
thereby modulating the intricate immunotolerant landscape of
the liver, as it has been shown for other cancers with liver
metastasis and in liver diseases (14, 15). An increasing number
of publications have demonstrated that solCRs regulate anti-
tumour immune response and there is intense research activity
to elucidate the complex pathobiology of solCR, including which
cell types produce solCRs, when and how (13). Amongst the
most studied, sPD-1 has been reported to be able to interact both
with PD-L1 and PD-L2 and to inhibit their interactions with the
membrane-bound PD-1 as well as to activate CD8+ T cells (16,
17). In addition, prognosis has been shown to be considerably
affected by the presence and concentration of solCRs in the
circulation or the TME, their role as biomarkers has yielded
promising results and has highlighted their use to monitor and
predict response to therapy and disease progression in patients
with various cancers (18, 19). Importantly, solCRs have been
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shown to have predictive value for the efficacy of checkpoint
receptor therapies (20, 21). Finally, therapies targeting solCRs
or clinical interventions aiming at their removal have been
suggested as an adjunct strategy to immunotherapy and
a potential avenue to tackle immunotherapy resistance (22).
No studies to date have explored the therapeutic potential of
solCRs as autologous biologicals or as biomarkers for
immunotherapeutic strategies in LM-NEN, partially due to the
paucity of experimental models that allow the investigation of
solCRs and the human TME. This is an urgent unmet research
need that significantly thwarts the advancement of our
understanding of LM-NEN pathogenesis and the development
of effective therapies (5, 23).

Various cell lines have been derived from NEN hepatic
metastases such as GOT1, H-STS, CM and CNDT2 (24–26),
but these cellular models present inherent shortcomings. For
example, repeated cell passages favour highly proliferative
adherent cell lines with chromosomal instabilities and loss of
neuroendocrine features (such as chromogranin and achaete-
scute homolog 1 expression), as such they bear little resemblance
to the low-intermediate grade phenotype of well differentiated
LM-NEN. Indeed, phenotypic and genetic investigations have
evoked a debate regarding the authenticity and clinical value of
these cell lines (27–29). Mouse models mimicking LM-NEN,
such as the genetically engineered glucagon deficient GCGKO
mouse model, simian virus 40 large tumour antigen transgenic
mouse, or patient derived xenograft (PDX) models can overcome
some of these challenges (30, 31), but lack in their ability to
recapitulate the relevant (human) microenvironment, in which
liver metastases thrive. Moreover, these models are not suitable
for immunological studies or for testing immunotherapies,
considering they are usually immunodeficient; even when
immunocompetent, such as syngeneic mice, it would be
difficult to predict how a mouse immune response translates to
human immunity. Other experimental models relevant for the
study of tumour biology of NENs include tumour organoids,
spheroids and personalised cell cultures (32–36). Among the
advantages, organoids can be derived from patient biopsies of
primary tumours or metastases and in some cultures, they have
shown to preserve the characteristics of the initial tumour and
replicate in vitro the drug sensitivity of the patient of origin (32).
However, a limiting drawback of NEN organoids is the low
culture success rate (about 10%), which reduces the possibility of
using this model for clinical applications and personalised
medicine. Moreover, in organoids derived from very
heterogenous tumours (common in NEN), a rapid increase in
cells negative for the typical neuroendocrine markers
synaptophysin or chromogranin A has been observed,
suggesting a selective overgrowth of non-neuroendocrine cells
underpinning the failure of these cultures to be consistently
classified as NEN models (32).

In the present study, we describe the generation of a
personalised ex vivo LM-NEN model using patient-derived
precision cut tumour slices (PCTS). This organotypic culture of
LM-NEN PCTS remains viable for at least 7 days (15 days for one
patient) and preserves the original tumour proliferative capacity,
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differentiation, the native metastatic TME, stromal fraction and
the distinctive/heterogeneous immune infiltrate. In addition, we
demonstrate that this model can be used for immunological
studies and to investigate the immunopathogenesis of LM-NEN.
Finally, employing the PCTS model, we present the novel finding
that solCRs are produced and released in the local TME by LM-
NEN tumour slices.
MATERIALS AND METHODS

Patient Recruitment and
Sample Collection
This study was approved by the local Research Ethics Committee
established by the Health Research Authority (REC reference 17/
NE/0340; IRAS project ID 222302). Informed consent for the
collection of plasma and surgical waste liver tissue was obtained
from all patients in this study. We collected plasma from 28
patients and 17 healthy controls (Table S1 for baseline
characteristics) and tissue samples from 6 LM-NEN patients
(Table 1 for clinical characteristics). Patients positive for HIV or
Hepatitis B or C were excluded.

Blood Plasma Isolation
Blood was collected in EDTA vacutainers (Becton, Dickinson
and Company) and processed by centrifugation at 3,200 rcf for
10 minutes within 2 hours of obtaining the sample. Plasma was
immediately stored at -80°C until analysis.

Tissue Slice Preparation and Culture
Human liver specimens were donated by patients who
underwent partial hepatectomies for LM-NEN or primary liver
cancer (Table 1 and Figure S6 for baseline characteristics). PCTS
were obtained and cultured as previously described (37, 38). In
short, the tissue specimens were flushed in the operating theatre
with sterile ice-cold organ preservative solution (Belzer
University of Wisconsin solution, UW) through open hepatic
veins and arteries immediately after resection. Portions of tissue
were cut from the samples and selected by liver histopathologists
at a gross examination of the resection specimens, then
transported to the laboratory, and processed within 3-4 hours.
Tissue cores were cut from the tumour and surrounding tissue
using a 5mm cylindrical hollow drill, and tissue slices with a
thickness of 250 µm (corresponding to 10-15 cell layers) were cut
using a Krumdieck tissue slicer (Alabama R&D). As slicing
buffer, we used Krebs-Henseleit solution (2.5 mM CaCl2, 118
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mMNaCl, 5 mMKCl, 1.1 mMMgSO4, 1.2 mMKH2PO4, 25 mM
NaHCO3, 25 mMD-Glucose, 9 mMHEPES, all fromMerck) pH
7.42 saturated with carbogen (95% O2/5% CO2). Each slice was
then placed into a 12-well plate (Corning) and cultured with a
recovery step of 2 hours in 1.5 mL supplemented Williams
Medium E (sWME) (William’s E Medium (ThermoFisher
Scientific), 5% Human AB serum (Pan-Biotech), Penicillin/
Streptomycin (ThermoFisher Scientific), 2 mM Glutamine
(ThermoFisher Scientific), ITS (10 mg/L Insulin + 5.5 mg/L
Transferrin + 6.7 µg/L Sodium selenite, ThermoFisher
Scientific), 1nM epidermal growth factor (ThermoFisher
Scientific), 100nM Glucagon (Merck), 1µM Corticosterone
(Merck), after which the medium was replaced, and the
experiment started (Day 0). Culturing steps, including
recovery, were performed under orbital shaking in a
humidified incubator at 37°C in a sealed chamber saturated
with carbogen (schematic in Figure 1A). Slices were cultured
under these conditions for up to 15 days, with the media changed
every 24 hours.

Lactate Dehydrogenase
LDH release was quantified in the culture supernatants from
tissue slices for the whole duration of the culture as a
measurement of cell death. The supernatants were collected in
triplicate for each timepoint, cleared from tissue debris by
centrifugation at maximum speed (21,000 rcf) for 10 minutes,
and frozen at -80°C for batch analysis. The colorimetric CyTox96
Cytoxicity Assay (Promega) was used to quantify LDH release,
following the manufacturer’s instructions. As a positive control
(total LDH content per mg tissue), tissue slices were collected in
triplicate at the beginning of the culture (Day 0) and
homogenized at 4°C using Precellys 1.4 mm ceramic bead
tubes (Precellys CK14) containing sWME with 10% lysis buffer
(provided with Promega LDH kit): 2 x 25 seconds on 5,500 rpm
with a 30 second pause. The homogenate was then centrifuged at
21,000 rcf for 10 minutes to clear tissue debris and supernatants
stored at -80°C until analysis.

Cytokeratin 18
Full length (indicative of total cell death) cytokeratin 18 (CK18)
and caspase-cleaved (indicative of apoptosis) cytokeratin 18
(cCK18) were measured in culture supernatants from tissue
slices by M65 and M30 sandwich ELISA kits (PEviva)
respectively according to manufacturer’s instructions. Results
were plotted as a percentage of apoptotic cell death compared to
total death.
TABLE 1 | Clinical characteristics of patients recruited for PCTS generation.

Patient Sex Age Ethnicity Primary tumour Pre-treatment Tumour Grade Ki67 (%) Fibrosis Score CgA

Pt#015 M 81 Caucasian Lung Hydroxycarbamide G2 8 UA +
Pt#045 M 58 Caucasian Pancreatic Ocreotide G2 16.9 F0 +
Pt#051 F 51 Caucasian Small bowel – G2 11 F0 +
Pt#062 F 52 Caucasian Pancreatic Streptozocin/Capecitabine G1 3 F1-2 +
Pt#077 M 70 Caucasian Small bowel Lanreotide G2 3.6 F0 +
Pt#106 F 69 Caucasian Small bowel Lanreotide/Ocreotide G2 4.6 F0 +
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Adenosine Nucleotides
Adenosine and adenosine mono-/di-/tri-phosphate (AMP, ADP
and ATP respectively) were quantified in liver slice homogenates
by HPLC (JASCO Automated HPLC System) to assess
intracellular ATP content (viability) and adenylate energy
charge (metabolic capacity/state, equation 1). All steps were
performed at 4°C up until sample loading, to prevent
adenosine nucleotide degradation. In brief, tissue was collected
in 500 µL ice-cold 1 M perchloric acid (VWR) and homogenised
with 1 mm glass beads (Merck) using a Precellys homogenizer
(Bertin Instruments) at 2 x 25 seconds on 5,500 rpm with a 120
second pause in-between on ice. The homogenate was stored at
-80°C until analysis. Proteins were precipitated by adding 0.5 M
Potassium Hydrogen Carbonate (VWR) until the pH was
neutral. Protein precipitate was cleared by centrifugation at
13,000 rcf and the samples were then used for derivatization.
Derivatization of the AMP, ADP and ATP molecules into
fluorescent N6-etheno derivatives was performed by adding
100 µL of sample to 0.5 M Sodium Acetate pH 4.5 (VWR) and
0.2 M Chloroacetaldehyde (Merck) and reacting at 60°C for 40
minutes. The adenosine derivatives were then kept at 4°C. 20 ml
of sample was analysed by reversed phase HPLC using a C18
column (Hypersil 5 ODS 4.6 × 150 mm, 3 µm, Sigma) at a flow
rate of 0.8 mL/min for 40 minutes. The chromatography was
achieved using a gradient from 100% mobile phase A (0.2 M
Potassium Phosphate, pH 5.0, VWR) to 99% mobile phase B (0.2
M Potassium Phosphate, pH 5.0/10% Acetonitrile, Sigma).
Detector excitation: 290 nm, emission: 415 nm, gain: 10x.
Retention times (minutes) were ATP: 6.8 ± 0.1, ADP: 7.6 ±
0.1, AMP: 10.8 ± 0.2, Adenosine: 18.2 ± 0.4 and consistent for all
samples and standards. Peak areas (AUC) of known standard
solutions and samples were integrated using Unichrom v
5.0.19.1178 and used to calculate the concentration of the
Frontiers in Endocrinology | www.frontiersin.org 4
adenine nucleotides. Adenylate energy charge was calculated
using the ATP, ADP and AMP concentrations with the
following equation (39):

AEC =
ATP½ � + ADP½ �

2

ATP½ � + ADP½ � + AMP½ �

Processing of Tissue Specimens,
Histology and Immunohistochemistry
Tissue slices collected for histology or immunohistochemistry
were placed in 10% neutral buffered formalin v/v and fixed
overnight at 4°C. Fixed tissue slices were cryo-protected by
placing the slices in 30% w/v sucrose (Merck) at 4°C until they
sank to the bottom. As embedding matrix, 7.5% porcine gelatin
(Merck) w/v + 15% sucrose w/v in PBS at 37°C was used. The
blocks were then frozen in dry-ice cooled isopentane and stored
at -80°C until sectioning.

For histological analysis, 10 µm sections were cut with the
cryostat (Bright Instrument Co. Limited) and thawed in PBS at
37°C for 1 hour. Sections were stained for 1 minute with filtered
Shandon’s Instant Haematoxylin (ThermoFisher Scientific).
After dedifferentiation sections were stained with Eosin Y
(Merck) for 10 seconds, dehydrated and mounted with DPX
mounting medium (Merck). Images were taken at 200x
magnification. For immunohistochemistry, 7 µm sections were
cut and thawed as described above. The samples were
permeabilized with 0.3% v/v Triton X-100 (Merck) in PBS for
5 minutes at room temperature. Excess permeabilization buffer
was washed off with PBS and samples were blocked in blocking
buffer (5% goat serum in PBS) for 1 hour at 37°C. Tissue sections
were incubated with primary antibody diluted in blocking buffer
(anti-Ki67 1:500, Novus Biologicals NB600-1209, RRID :
AB_10001641; anti-Chromogranin A 1:500, NB120-15160,
A

B

DC

FIGURE 1 | Precision cut tissue slices from LM-NEN require carbogen for tissue preservation beyond 3 days. (A) Schematic overview of experimental design.
(B) Representative images of H&E staining of LM-NEN PCTS cultured in carbogen or atmospheric oxygen (npatients=3). Tumour stroma is highlighted by blue arrows.
Areas of necrosis (green arrows) and apoptosis (black arrows) are magnified. (C) PCTS weight (in mg) was measured daily, each point represents a different patient
and is the average of 3 technical replicates (slices), (npatients indicated; *P ≤ 0.05, **P ≤ 0.01). (D) Normalised lactate dehydrogenase release (LDH) detected in PCTS
culture supernatant. Each point is the mean ± SD of 3 supernatants per patient (npatients indicated). Created with BioRender.com
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RRID : AB_789299; anti-CD3 Abcam, ab11089, CD3-12 RRID :
AB_2889189) overnight at 4°C. The next day, slides were
incubated for 1 hour at room temperature with secondary
antibody, Goat-anti-Rabbit labelled with AlexaFluor 488
(Abcam, ab150077), AlexaFluor 555 (Abcam, ab150166) or
AlexaFluor 568 (ThermoFisher, A-11004) diluted 1:300 in
blocking buffer. Samples were then washed 4 times with PBS,
mounted with Fluoroshield mounting medium with DAPI
(Abcam, ab104135) and sealed with nail varnish. For the
evaluation of apoptosis, tissue sections were stained using
Dead-end Fluorometric TUNEL Kit (Promega, G3250). Images
were made on a Cytation 5 imaging system (BioTek) at 10x
magnification or with Olympus Fluorescence Microscope BX431
using UPlan FL N 20x and 40x objectives. Post-imaging analysis
was performed in ImageJ. Any background reduction, brightness
or contrast modifications were applied homogeneously across a
complete image dataset.

Histopathological staining of liver specimens for diagnostic
purposes was performed by Kings College Hospital Liver
Histopathology Department. H&E staining was performed
using standardised staining method for clinical histopathology.
Immunohistochemical staining for chromogranin A and Ki67
was performed using the Leica-BOND-III automated staining
platform. For chromogranin A, slides were pre-treated in citrate
buffer for 20 minutes for heat-induced epitope retrieval, prior to
staining with anti-chromogranin A primary IHC antibody clone
5H7 (Leica Biosystems, PA0515) at the commercially available
concentration (>1.5 mg/L). For Ki67, slides were pre-treated in
EDTA buffer for 20 minutes for heat-induced epitope retrieval,
prior to staining with anti-Ki67 primary IHC antibody clone
MM1 (Leica Biosystems) at the commercially available
concentration (>1.9 mg/L). Interpretation of histology was
confirmed by consultant histopathologists (R.M. and Y.Z.) at
King’s College Hospital.

Detection of Soluble Checkpoint
Receptors by Luminex
The levels of solCRs in plasma and PCTS supernatants were
analysed by multiplex Luminex technology using a commercially
available custom 14-plex Immuno-Oncology Checkpoint
Human ProcartaPlex Panel (ThermoFisher Scientific)
according to the manufacturer’s instructions. The following 14
checkpoints were included in the panel: sBTLA; sCD28; sLAG3;
sCD40; sCD80; sCD137; sCD152 (CTLA-4); sGITR; sHVEM;
IDO-1; sPD-1; sPD-L1; sPD-L2; sTIM3. Measurements were
performed using a Luminex MAGPIX Instrument and
analysed using XPonent MAGPIX 4.2 and BioPlex Manager
(Bio-rad, version 6). In samples where the solCR concentration
was recorded as undetectable, a value corresponding to half the
lowest detectable value was used for the purpose of analysis.

PCR Array
Tissue slices were preserved in Allprotect Tissue Reagent
(Qiagen) and stored at -80°C until processing. RNA, DNA and
protein content were isolated with AllPrep DNA/RNA/Protein
Mini Kit (Qiagen) according to manufacturer’s instructions.
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cDNA was synthesized with RT2 First Strand Kit (Qiagen) and
analysed with Innate and Adaptive Immune Responses RT2
Profiler PCR Array (Qiagen) with RT2 SYBR® Green qPCR
Mastermix (Qiagen). qPCR array for Human Innate & Adaptive
Immune Responses (Qiagen 330231 PAHS-052ZA, full list of
genes available online) was run on ABI 7500 Real-Time PCR
System with an initial denaturation step at 95°C for 10 minutes
followed by 40 cycles of denaturation at 95°C for 15 seconds and
annealing/extension at 60°C for 60 seconds.

Image Analysis
Quantification of immunofluorescent and histological images
(i.e. the number of Ki67, TUNEL positive nuclei or tumour
epithelium percentage) was performed in ImageJ. For Ki67 and
TUNEL, all cells in 3 images per sample were counted using a
custom ImageJ macro that was created in ImageJ macro
language. To quantify the content of tumour epithelium in the
tissue slices, the H&E staining was used. The epithelium
percentage was calculated by the following formula: Epithelium
area/(Epithelium area + Stroma area) × 100%.

Statistical Analysis
Continuous numerical variables were analysed by Mann-
Whitney (MW) U rank-sum test (2 independent groups) or
Kruskal-Wallis (KW) test (>2 independent groups) with Dunn’s
post-hoc multiple comparison correction. Paired continuous
numerical variables were compared by paired Wilcoxon Signed
Rank test (2 groups) or (i) Repeated-Measures Two-way
ANOVA with Holm-Sidak’s post-hoc multiple comparison
correction or (ii) Mixed Model analysis with Tukey or Sidak
correction for group/time-dependent cell-culture kinetics.
Categorical variables were analysed by Chi-square test.
Correlations were investigated by Pearson’s R or Spearman’s
rho analysis as appropriate. The statistical analyses were
performed with Prism GraphPad 8 and MS Excel 2016.
Statistical significance was set at two-tailed alpha ≤ 0.05.
RESULTS

PCTS can be Derived From Fresh
Specimens of Neuroendocrine
Liver Metastases and Successfully
Cultured Ex Vivo
PCTS from LM-NEN were prepared from 5 resected human
tumours and cultured at different oxygen concentrations for up
to 3 days to identify the optimal conditions (Figure 1 and
Table 1 for patient baseline characteristics). Based on our
previous experience, tissue slices derived from tumour-free
liver specimens necessitate high oxygen levels to maintain
viability in culture (37). Considering the difference in
metabolic requirements typical of cancer cells, both carbogen
(95% O2/5% CO2) and atmospheric (21% O2) cultures for PCTS
from LM-NEN were tested. In the carbogen environment, the
tumour epithelium was observed at all timepoints and resembled
the original tumour histology at baseline in terms of structure
July 2022 | Volume 13 | Article 909180
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and diffuse morphology, according to independent histological
evaluations conducted by expert LM-NEN histopathologists.
Tumour stroma (Figure 1B, blue arrows) and epithelium were
maintained. Tissue slices cultured at atmospheric oxygen levels
lost tumour epithelial cells and tumour stroma over the duration
of the culture period, with areas of necrosis (Figure 1B, green
arrow) and apoptotic bodies (Figure 1B, black arrows) clearly
visible at day 2 and day 3. The tissue slice integrity (as measured
by the slice’s weight) was significantly affected by the duration of
the culture period and the oxygen concentration (p=0.0008 and
p=0.0208 respectively, Mixed-Model analysis) (Figure 1C).
Multiple comparisons by time in culture and oxygen
concentration found no statistically significant change in mass
of the slices at day 3 compared to day 0 when they were kept in
carbogen. In contrast, slices cultured in atmospheric oxygen lost
significant weight compared to day 0 at all timepoints
(p=0.0208). Cumulative lactate dehydrogenase (LDH) release
further confirmed these findings as LM-NEN PCTS cultured in
carbogen released less LDH over the duration of the culture
period when compared to slices cultured in atmospheric
oxygen (Figure 1D).

PCTS From LM-NEN Tumours Maintain
Viability, Metabolic Capacity and
Histomorphology for Up to 15 Days
Based on the results shown in Figure 1, enhanced oxygenation
(95% O2/5% CO2) was selected as the optimal condition for the
culture of LM-NEN PCTS and, therefore, all the subsequent
experiments have been performed in carbogen atmosphere.

Long term viability was assessed by measuring slice integrity
(weight), LDH release, apoptotic cell death and intracellular
ATP levels up to 15 days (Figure 2). Tissue slice weight
remained constant over the duration of the culture period for
all patients (Figure 2A). Release of LDH was always lower than
20% of the total expected LDH in the tissue slices, and apoptotic
cell death was consistently lower than 5% evaluated both on
supernatants (cCK18) and on the tissue via TUNEL assay
(Figures 2B, C, G, H). In slices from patients 051 and 077,
the intracellular ATP content significantly increased after the 2-
hour recovery period and stabilised at 1.38 and 3.86 nmoles/mg
tissue, respectively (Figure 2E). The ATP content for slices
from patient 045 remained stable at 1.53 nmoles/mg tissue
throughout the culture period. The adenylate energy charge
(AEC) showed a similar trend to the ATP levels (Figure 2F).
The AEC for slices from patients 045, 051 and 077 was 0.81,
0.43 and 0.79 before the recovery and stabilised at 0.80, 0.66
and 0.85 for the remainder of the culture period, respectively.
The consistently low levels of LDH and apoptotic cell death
markers combined with the stabilisation of the intracellular
ATP and AEC levels after the recovery step indicate that the
cells in the tissue slices maintained a good viability for the
duration of the culture period.

Histological and tissue structure analysis of the PCTS was
performed and cross-matched with the routine clinical
histopathology H&E staining (Figure 3). For all patients except
patient 106, the PCTS retained near-intact histomorphology
Frontiers in Endocrinology | www.frontiersin.org 6
when directly compared to the clinical histopathology
reference staining at all timepoints. Tissue from patient 106
did contain viable tumour, but after day 0 the tissue slices did not
show any viable tumour epithelium and were therefore classed as
stromal slices. Tissue from patient 062 did not have viable
tumour epithelium at the start of the culture and consisted of
stroma. Although these tissue slices comprised mainly tumour
stroma, the non-epithelial stromal cells remained detectable and
viable in the tissue slices over the duration of the culture period
(Figure 3, blue arrows). Viable tumour epithelial cells could be
seen in all tissue slices for patients 045, 051 and 077 (red arrows).
The tissue structure in slices from patient 045 resembled typical
pancreatic NEN with mild nuclear atypia, round and oval in a
trabecular growth pattern (ribbon like appearance and gland like
formations). Slices from patients 051 and 077 displayed
characteristic trabecular, insular growth and uniform, small
and round nuclei with granular chromatin patterns often
referred to as ‘‘salt and pepper’’ morphology which is typical
for small bowel NEN. Fibrotic stroma surrounding the tumour
epithelial nests could be clearly recognised. Again, stromal cells
and immune cells were visible throughout the tumour stroma
and the initial tumour epithelium percentage was maintained
constant for the duration of the culture period for all
patients (Figure 4A).

Neuroendocrine Differentiation Markers
Are Maintained in LM-NEN PCTS
The neuroendocrine differentiation of the tumour cells within
the tissue slices was assessed. All the LM-NEN samples utilised to
obtain PCTS expressed chromogranin A (CgA), as confirmed by
the CgA staining performed by the clinical histopathologist
(Figure 4B, top row). In the PCTS cultures, CgA expression
was observed for all patients and remained stable over the culture
period. The CgA staining co-localised with the tumour
epithelium, not with the stroma, and was matched with the
clinical histopathology reference staining for each patient. As
expected, the CgA staining could be detected within the
cytoplasm and not the nucleus of the tumour cells (Figure 4B,
magnified panel).

Proliferative Capacity Remains Stable in
LM-NEN PCTS
The proliferative capacity was assessed to investigate if our
culture settings were altering the inherent proliferation grade
of the tumour. In accordance with the guidelines from the World
Health Organization 2019 Classification of Tumours of the
Digestive System (40) both the number of Ki67 positive cells
(%Ki67) and the mitotic rate were quantified. Given the limited
size of PCTS compared to the clinical specimens analysed at
histopathology, the %Ki67 was determined based on all the
tumour cells in the examined section, and not in selected areas
with concentrated mitosis (proliferation hotspots), as is done by
routine histological assessment clinically. The level of %Ki67 for
the tissue slices at the start of the culture (day 0) was therefore
lower than the reported levels from the clinical histopathologist
(Figures 4C, D). In the LM-NEN PCTS at day 0, the levels of
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Ki67 positive cells (for patients 045, 051 and 077, respectively)
were 1.39, 1.27 and 0.51% compared to 16.9, 11.0 and 3.6% as
reported by the clinical histopathologist. However, representative
images from histopathology for the corresponding patients
illustrating areas outside the hotspots confirm the low levels of
proliferation, reflecting rates observed in the PCTS (Figure S1).
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Importantly, the proliferative capacity in the slices did not
significantly change over the duration of the culture
(p=0.2871) and remained constant at 2.90 ± 2.88, 0.37 ± 0.14
and 0.84 ± 0.41 for patients 045, 051 and 077, respectively. In
addition, the rate of mitosis in the LM-NEN PCTS was evaluated.
All the samples included in the study were well-differentiated
A B

D E

F

G H

C

FIGURE 2 | LM-NEN PCTS cultured in carbogen are viable for up to 15 days. (A) Tissue integrity was evaluated by measuring the slice weight over the duration of
the culture period (at day 0, 1, 2, 3, 5, 7 & 15). Each point represents the weight of a single slice. 3 replicates per patient per timepoint are displayed as mean ± SD.
Ns, P>0.05. (B) Weight-adjusted LDH leakage in PCTS supernatant throughout the culture was plotted as a percentage of the total LDH present per mg of tissue
(determined separately for each patient). (C) Caspase-cleaved cytokeratin 18 (cCK18) indicative of apoptotic specific cell death is shown as a percentage of total cell
death (full form cytokeratin 18, CK18). Datapoints in (B, C) represent individual patients and are an average of 3 replicates per patient. Bars indicate mean ± SD of 4
patients (D0-D8) or 1 patient (D15). (D) Overview of HPLC quantification of ATP, ADP and AMP and formula utilised to calculate the energy charge. Retention times
for ATP, ADP and AMP (consistent across all runs) are indicated in the graph. (E, F) Intracellular energy charge and weight adjusted intracellular ATP levels in LM-
NEN PCTS at indicated timepoints for patients with viable tumour epithelium (045, 051 and 077). Each datapoint represents a single slice (*P ≤ 0.05). (G)
Representative images showing apoptotic nuclei stained by TUNEL (green, indicated by white arrows) in tissue slices generated from 3 patients; 3 slices (D0-D7) or 1
slice (D15) were analysed per patient at each indicated timepoint. (H) TUNEL positive nuclei were quanitfied ans presented as %Apoptotic cells of total number of
cells per image. Data are shown as mean ± SEM of 3 patients and each dot represents a single patient.
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tumours with rare mitotic figures, therefore the number of
mitotic cells in the PCTS was extremely low and close to zero
for most patients (data not shown, example of one mitotic
nucleus detected in patient 051 Figure S2).

LM-NEN Slices Are Immunocompetent
and Produce Soluble Forms of
Checkpoint Receptors
To assess the immunocompetency of LM-NEN PCTS, 84
markers for innate and adaptive immune cells were
investigated for all patients with viable tumour epithelium and
one patient that contained no viable tumour epithelium (Patient
106) (Figures 5A, B). Each patient had differences in their
immunological profiles and for patient 045 we found low
expression levels of most genes, characteristic of a ‘‘cold’’, non-
infiltrated TME. However, IL-4 and IL-5 levels were consistently
increased in tumour tissue slices compared to tumour-free slices
from patient-matched surrounding tissue, with an average fold
change of 24.80 and 15.43, respectively. In addition, immune
signatures typical of Treg such as FOXP3, CCR4 and CCR8 were
increased in LM-NEN PCTS, while expression of co-stimulatory
molecules CD80 and CD86 were decreased. Interestingly, patient
106 had a similar expression pattern compared to patient 077
and 051, suggesting that the immune cell infiltrate was not
affected by the lack/presence of tumour epithelium.
Additionally, we measured the same factors in tissue slices
Frontiers in Endocrinology | www.frontiersin.org 8
with a prevalence of stroma vs. epithelium but derived from a
patient with a primary liver tumour and this analysis showed a
completely different immunological landscape (Figure 5B). The
presence of T cells (CD3+) on PCTS derived from patients 051,
045 and 106 was also confirmed by IF at day 1 and day 7
(Figure S3).

To further investigate the immunological characteristics of
the tumour slice culture, the levels of soluble (s)BTLA, sCD28,
sLAG3, sCD40, sCD80, sCD137, sCD152 (CTLA-4), sGITR,
sHVEM, IDO-1, sPD-1, sPD-L1, sPD-L2 and sTIM3 were
measured in PCTS supernatants of patients with LM-NEN. We
observed that tissue slices consistently released solCRs in the
tissue culture media after each day in culture, and for most of the
molecules, the detection of solCRs was constant for the entire
culture duration (Figure 5C, blue line graphs).

In addition, we quantified the same 14 solCRs analysed in the
slice supernatants in plasma samples collected from 28 LM-NEN
patients and 17 healthy controls (Figures 5A, C, black box and
whisker plots). For most of the molecules, no difference was
observed between the LM-NEN patients and healthy controls,
besides sGITR and sPD-L2 which were lower in patients
(P=0.028 and P=0.007, respectively). Interestingly, in patients
with pancreatic LM-NEN, plasma solCRs were consistently
lower for all analytes when compared to gastrointestinal LM-
NEN (Figure S4). In addition, for some of the patients (n=5) we
could correlate the plasma solCRs with the levels in PCTS culture
FIGURE 3 | LM-NEN PCTS retain patient specific histoarchitecture in culture. Representative H&E images of tissue slices generated from 5 patients; 3 slices (D0-
D7) or 1 slice (D15) were analysed per patient at each indicated timepoint. Tumour epithelium is indicated by red arrows and tumour stroma by blue arrows.
Histoarchitecture was compared with clinical histopathology staining (left column) for each patient.
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supernatants, but only a weak correlation was found (Figure S5).
Overall, these data suggest that while there is no aberrant
systemic regulation of solCRs in LM-NEN, there seems to be a
consistent local production of solCR in the LM-NEN TME.
Frontiers in Endocrinology | www.frontiersin.org 9
Further analysis of the solCR data was performed after
stratifying the patients based on the histological features of
their tissue slices. A consistent difference was observed in
solCRs between LM-NEN PCTS containing viable tumour
A

B

D

C

FIGURE 4 | LM-NEN PCTS retain key molecular features associated with tumour grade and neuroendocrine differentiation. (A) The areas of tumour epithelium and
stroma (highlighted in red) were measured in the H&E images of each patient throughout the culture using ImageJ as indicated on the right panel (npatients=5) and the
epithelium percentage is shown for each patient per timepoint. Patients 062 & 106 lacked tumour epithelium hence % = 0. (B) Chromogranin A (CgA) staining in
brown or green and DAPI (purple) on epithelial LM-NEN tissue slices at indicated timepoints. (C) Representative images for Ki67 staining (positive nuclei in green or
brown) and DAPI (in purple) at indicated timepoints. Areas of tumour and stroma are indicated with T and S, respectively. Images in (B, C) at D0-D7 are
representative of 3 technical replicates per patient, for D15, 1 replicate. (D) Ki67 was quantified in 3 images per patient and presented as %Ki67 of total number of
cells per image. Data are shown as mean ± SD of 3 patients and each dot represents a single patient.
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epithelium (patients 045, 051 and 071) compared to PCTS that
consisted of only stroma (patients 062 and 106). The
concentration of all the analysed solCRs was elevated in the
culture medium of the epithelial LM-NEN PCTS compared to
supernatants from stromal slices (Figure 6). In the latter, all the
checkpoints were low but within detectable range besides
sHVEM, sTIM3, sPD-1, sPD-L1 and sPD-L2. We proceeded
by interrogating the solCR profile of tissue slices generated from
other l iver tumours (hepatocel lular carcinoma and
Frontiers in Endocrinology | www.frontiersin.org 10
cholangiocarcinoma) with a prevalence of stroma (Figure S6).
We found similar levels (low) of solCR production as from the
stromal LM-NEN slices. After combining the data derived from
all the stromal slices (LM-NEN and HCC), we observed that the
release of sCD40 and sPD-1 was significantly higher in the LM-
NEN epithelial tumour slices (p=0.0286) and a similar trend was
detected for sCD137, sCD80, IDO-1, sLAG3, sBTLA, sGITR and
sPD-L2 (p=0.0571). In contrast, sCD28 and sCD152 were
similarly expressed in epithelial and stromal slices (p=0.1143).
A

B

C

FIGURE 5 | LM-NEN PCTS retain innate and adaptive immunity markers and release soluble checkpoint receptors (solCRs) in the supernatant. (A) Schematic
representation of the experimental design. Plasma samples were collected from LM-NEN patients (n=28) and healthy controls (n=17). Additionally, PCTS were
generated from patients with LM-NEN (n=5) and culture supernatants collected at day 1, 2 and 3. solCRs were quantified in plasma and supernatants using
Luminex. In parallel, gene expression analysis of innate and adaptive immunity markers was performed at day 1. Created with BioRender.com. (B) Heatmap showing
the differential gene expression of immune cell markers in tumour versus surrounding tumour-free liver tissue in slices derived from patients with LM-NEN (n=4) and
primary liver cancer with a prevalence of stroma, stroma (n=1). (C) Levels of solCRs in LM-NEN plasma (black box and whiskers plots) and slice supernatants at day
1, 2 and 3 (blue line graphs, mean ± SD of 3 replicates per patient). The supernatant was refreshed daily hence the levels are always displayed from y=0.
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These findings suggest that solCRs are produced by the LM-NEN
epithelial cells – or in response to the presence of LM-NEN
epithelial cells – and not by the hepatic TME in the absence of
tumour cells, or that a decrease/change in the stromal
component can affect the production of solCRs.
DISCUSSION

Modern therapeutic strategies for cancer act beyond direct
cytolysis of tumour epithelial cells and often target different
tumor components, such as the TME and the immune infiltrate.
Frontiers in Endocrinology | www.frontiersin.org 11
This change of focus in the study of tumour biology, combined
with the rise of precision medicine, has revealed a lack of
appropriate and more complex models for pre-clinical studies.
The development of the tissue slice ex vivo platform described
here can significantly advance our understanding of LM-NEN
pathobiology and potentially accelerate drug development in a
research area that lacks basic and translational tools and studies.
Human tissue slice models have been validated before to mimic
breast, pancreatic, and metastatic colorectal liver tumours ex vivo
(41–43). Our approach directly addresses the main limitations of
the existing LM-NEN pre-clinical disease models, namely lack of
TME or immune compartment and maintenance of tumour-
A

B

FIGURE 6 | The release of soluble checkpoint receptors (solCRs) by LM-NEN PCTS is dependent on the presence of tumour epithelium. (A) Histological
assessment of the content of stroma and epithelium in LM-NEN PCTS at day 3 or 5 in culture (see Figure S3 for images related to HCC with prevalent stroma).
(B) solCRs quantified in supernatants at day 3 in culture derived from LM-NEN slices with prevalent epithelium (npatients=3) and slices with prevalent stroma
(npatients=4, 2 LM-NEN + 2 primary liver cancer). Each datapoint indicates the average of 3 technical replicates (slice supernatants) per patient. LM-NEN in blue and
grey, stroma primary liver cancer in red. P values following the comparison of stroma slices vs epithelial LM-NEN slices are indicated in graphs.
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specific characteristics. The precision cut LM-NEN slices retain
tumour grade, neuroendocrine differentiation, the resident
immune infiltrate and tumour stroma interactions for up to 15
days ex vivo, which exceeds the viable lifespan reported by other
tissue slice studies and is on par with a recently reported three-
dimensional (3D) primary cell culture approach for
neuroendocrine tumours (33). The LM-NEN slice model
focuses on the clinically relevant subgroup of neuroendocrine
liver metastases. The slicing technology offers several advantages
inherent to the technique, allowing the recapitulation of
the original tumour with near in vivo-like accuracy in a
controlled and highly reproducible laboratory setting. One of
these advantages is the ability to reproduce the native liver-
specific microenvironment in which these metastases flourish,
including the stromal compartment and the tissue-resident
immune landscape. LM-NEN slices add to the organotypic
model recently developed by Herring et al. for primary
neuroendocrine tumours, based on the 3D culture of patient-
derived tissue fragments in a flow-perfusion bioreactor (36).
However, the two models are substantially different in the
amount of starting material required. In the system described
by Herring et al., the minimum amount of tissue necessary for
the perfusion channels of each bioreactor to work is 250mg (36).
This quantity constitutes a single biological replicate (or test
condition) and therefore, the analysis of different treatments
would necessitate much more tissue, which is rarely available in
NEN. In the PCTS model, approximately 50 slices were obtained
from a similar amount of tissue, allowing for expanded analysis
and sufficient replicates for consistent multi-parameter and/or
longitudinal investigations.

Recurrence following curative resection of LM-NEN is
common (>50% cases), and this is when tissue is often available
for research, affording the possibility to use this model as a
proactive drug screening platform, as shown for other tumour
slices (42). Drug testing on PCTS would allow the selection of
patient/tumour-specific efficacious therapeutics ex vivo to prevent
or treat recurrent hepatic disease (3, 44). That said, a limitation of
this study is that only specimens from patients with grade 1 and 2
of well differentiated neuroendocrine tumours were utilised to
produce tumour slices. Grade 3 or poorly differentiated
neoplasms, associated with the poorest prognosis, were not
represented as only a selected number of these patients are
suitable for surgical resection of liver metastases. This issue can
be overcome by deriving and culturing tumour fragments from
liver biopsies, which can be obtained across all tumour grades.
However, preliminary experiments performed in our laboratory
suggest that technical limitations, including specimen size and
tissue fragmentation due to the biopsy procedure, severely impact
the feasibility, success rate, and viability of the tissue culture with
fragments (data not shown). Notably, most patients in the current
study were treated with somatostatin analogues, but this did not
affect the viability of the tumour tissue ex vivo.

Despite the extraordinary success of immuno-oncology in
several cancer types, there is still reduced or inconsistent
evidence of the effects of immunotherapy on NENs (45). This
is principally explained by the limited knowledge of the
Frontiers in Endocrinology | www.frontiersin.org 12
neuroendocrine immunological landscape and the lack of
appropriate models to perform molecular studies. We
demonstrate that LM-NEN PCTS maintain proliferative and
metabolic capacity and replicate distinct immunological
phenotypes such as ‘‘hot’’ and ‘‘cold’’ tumours, typical of the
original tissue. For example, markers of immunosuppressive Treg

were upregulated, suggesting that LM-NEN PCTS could capture
the infiltrated but suppressed immunity associated with immune
exhaustion, although this would need to be confirmed as Tregs
are not the only cells in the TME that can express FOXP3. The
main scope of the current article is to report the development
and characterisation of an immunocompetent organotypic
model for the investigation of LM-NEN, which will fill the gap
between pre-clinical and clinical research in this field.

Additionally, this study has revealed for the first time that
LM-NEN slices in culture produce and release detectable levels of
solCRs and this further validates the PCTS model for studies
aimed at investigating the novel role of solCRs in
neuroendocrine liver metastases. Despite the importance of
solCRs in affecting the homeostasis between tumour and
immune response (13), no investigations to date have
described the influence of these soluble forms in the context of
LM-NEN. The quantification of solCRs in the systemic
circulation (plasma) of LM-NEN patients did not show
significant differences compared to healthy controls, but the
analysis of PCTS supernatants demonstrated that solCRs are
strongly and consistently produced locally by LM-NEN and this
occurs in an epithelium-dependent manner. For example, sPD-1
was significantly increased in the supernatant of epithelial LM-
NEN tissue slices compared to stromal slices, whilst sPD-L1 did
not show the same trend. This is relevant because although sPD-
1 may be able to exert anti-immunosuppressive effects, it might
also act as a decoy for therapeutic antibodies directed against
membrane bound PD-1, such as Nivolumab, thereby negatively
affecting the patient response to immunotherapy and outcome
(46). In addition, the release of solCRs by LM-NEN seems to be
dependent on the presence of tumour epithelial cells and not
solely reliant on the TME or presence of immune infiltrate. In
fact, the lack of viable tumour epithelium in the stromal PCTS
(patients 062 and 106) was not associated with diverse levels of
immune infiltrate, as indicated by the PCR panels and T cell
detection by IF. Moreover, viable non-epithelial cells were
identified by histology both in stromal and epithelial slices.
PCTS from patient 045, whilst containing mainly tumour
epithelium, had a distinctively ‘cold’ microenvironment, but
solCRs in the supernatant were comparable to the levels
detected in the cultures from other epithelial PCTS (patients
051, 077). Whether the solCRs are produced by LM-NEN
tumour epithelium or by other cells in response to the
presence of tumour epithelium is currently unknown and
requires further investigation.

Overall, small sample size notwithstanding, our results
suggest that production of solCRs involves tumour cells and
possibly immune resident and/or non-parenchymal/stromal
cells. It is difficult to accurately pinpoint which cell subsets
actively produce these paracrine immune factors, but in the
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slice model, PCR array characterisation suggests immune
involvement. In the solCR analysis, only the levels of two
molecules (sCD40 and sPD-1) were significantly increased in
epithelial compared to stromal PCTS culture supernatants.
However, it may be relevant to highlight that a clear trend was
observable in all the other 12 solCRs and increasing sample sizes
may have revealed significant differences.

Importantly, different levels of solCRs and a diverse intra-
tumoral immune compartment were observed among the
patients, highlighting the utility of PCTS for precision
medicine and as a tool to identify subjects that may respond to
current and emerging therapies. Indeed, studies investigating
immune checkpoint inhibitors in neuroendocrine malignancies
have indicated that only a small subgroup of patients may benefit
from treatment (47–49) and the technology presented here could
aid the identification of these patients.

In summary, this study demonstrates the value of PCTS
technology for investigating the (immuno)pathobiology of
neuroendocrine liver metastasis and developing complex
personalised disease models of LM-NEN, especially for studies
focusing on TME and stroma-epithelium interactions.
Furthermore, as reported for other solid tumours, LM-NEN
PCTS could constitute an excellent platform for drug screening
and studies exploring the increasingly more common group of
therapeutic strategies that do not target the replicating tumour
epithelial cells, but other components, such as immunotherapies.
Finally, although PCTS require specific equipment, tissue source
and expertise, the cost-effectiveness, efficiency and speed of
preparing human LM-NEN PCTS from surgically resected
tissue for discard make this model globally applicable.
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