Soft Computing (2021) 25:11711-11733
https://doi.org/10.1007/s00500-021-06047-y

SOFT COMPUTING IN DECISION MAKING AND IN MODELING IN ECONOMICS ")

Check for
updates

Novel pricing strategies for revenue maximization and demand
learning using an exploration-exploitation framework

Dina Elreedy’® - Amir F. Atiya' - Samir . Shaheen'

Accepted: 14 July 2021 / Published online: 25 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

The price demand relation is a fundamental concept that models how price affects the sale of a product. It is critical to have an
accurate estimate of its parameters, as it will impact the company’s revenue. The learning has to be performed very efficiently
using a small window of a few test points, because of the rapid changes in price demand parameters due to seasonality and
fluctuations. However, there are conflicting goals when seeking the two objectives of revenue maximization and demand
learning, known as the learn/earn trade-off. This is akin to the exploration/exploitation trade-off that we encounter in machine
learning and optimization algorithms. In this paper, we consider the problem of price demand function estimation, taking
into account its exploration—exploitation characteristic. We design a new objective function that combines both aspects. This
objective function is essentially the revenue minus a term that measures the error in parameter estimates. Recursive algorithms

that optimize this objective function are derived. The proposed method outperforms other existing approaches.

Keywords Revenue management - Dynamic pricing - Demand learning - Exploration—exploitation trade-off - Price

experimentation - Sequential decision problems

1 Introduction

In the field of business, companies offer products and ser-
vices, and they seek to maximize the revenue achieved
by these sales. Determining the right price is crucial for
obtaining the optimal revenue, and this is controlled by the
well-known price-demand relation. Setting a high price will
drive customers away and therefore reduce demand. On the
other hand, choosing a low price will lead to increasing
demand, but lower revenue due to the lower price. Compa-
nies attempt to set an optimal price that maximizes revenue
based on their knowledge of price-demand relation. How-
ever, the shape or the parameters are not known beforehand,
and have to be inferred from actual selling situations. This
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may have corporations test a number of different prices, in
order to learn the demand curve parameters.

Some firms could perform the price experimentation as a
part of the market research phase before the actual business
operation. For example, the companies selling their products
on the internet can utilize digital price tags to gather price-
demand data for online customers (den Boer 2015). However,
other firms could have business constraints on the frequency
of price changes for their products (Cheung et al. 2017; Chen
and Chao 2019; Rhuggenaath et al. 2019)). Moreover, exces-
sive price experimentation may lead to a long initial period
of non-optimal pricing, and will therefore compromise the
revenue. On the other hand, too little experimentation may
be insufficient to discover accurate parameter values.

Generally, price experimentation is used to learn the
demand model by testing a number of prices in order to
estimate the price demand relation. This is known in liter-
ature as the learning problem. On the other hand, companies
should also seek to choose the optimal price that maxi-
mizes the gained revenue, which is known as the earning
problem. Typically, there is an inherent trade-off between
these two problems, named as the learning/earning trade-off
(Rothschild 1974; Cheung et al. 2017). It is akin to the trade-
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off of exploration versus exploitation that we encounter in
machine learning and evolutionary optimization (Tokic 2010;
Crepinéek et al. 2013; Rezaei and Safavi 2020; Jerebic et al.
2021; Mahesh and Sushnigdha 2021).

Fast and accurate estimation of the demand curve becomes
particularly important for the novel field of dynamic pricing
for revenue management (Bertsimas and Perakis 2006; Bes-
bes et al. 2014; den Boer 2012; den Boer 2015). Dynamic
pricing means pricing the product in a time varying way,
according to the changes in demand, in order to maximize
revenue (Ibrahim and Atiya 2016). Dynamic pricing has
proved its powerful impact in various applications such as
hotel revenue management (Bayoumi et al. 2013), airline
industry (McAfee and Te Velde 2006), mobile data services
(Elreedy et al. 2017), electricity (Triki and Violi 2009), and
e-services (Xia and Dube 2007).

The problem with dynamic pricing is that firms usually do
not know the underlying demand price relation that character-
izes customers’ response upon any price change. Moreover,
the price demand curve shifts frequently with time and with
seasonal fluctuations (which is the reason why we would
apply dynamic pricing). The learning window is therefore
too short, and one has to make the most out of few data.

Another factor that could result in sudden shift in demand
is catastrophic events such as wars, economic downturns, or
pandemics like COVID-19. Also some lesser effects, such
fluctuations of demand by season or due to shift in fashion
tastes, lead to smaller and more gradual shifts of the demand
curve. This necessitates speedy learning of the new demand
relation. A timely algorithm that can quickly track the new
demand variations, like the methods we propose here, would
be very useful.

In this paper, we make use of the knowledge in the
machine learning field of the exploration versus exploitation
concept, in order to solve the problem of price demand func-
tion determination. Initially, the algorithm is more focused
on exploration. It is a discovery phase with the goal being
to accurately estimate the parameters of the price demand
relation. Gradually, the algorithm shifts to exploitation,
where it puts more attention toward revenue maximization
(rather than exploration of the parameter space). Moreover,
in the proposed approach we make use of machine learn-
ing approaches and signal processing algorithms, to explore
efficient algorithms for learning the demand function. Specif-
ically, we propose an objective function that is a combination
of revenue and accuracy of the parameter estimates. Revenue
is the ultimate goal that needs to be optimized. However,
parameter estimate accuracy will positively impact future
revenue. This is a novel formulation that can combine the
effects of exploration and exploitation. By having a decaying
weighting coefficient for the accuracy term of the objective
function, exploration will gradually make way for exploita-
tion as time goes by.
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Essentially, the proposed approach formulates a sequen-
tial optimization problem, where the objective function is the
revenue minus a term that measures the error or uncertainty in
the price demand parameters. We propose three different for-
mulations for handling the problem, where each corresponds
to a different way of defining the parameter uncertainty.

We use a simple parametric model, assuming a linear
demand curve. We consider a simple parametric model
for several reasons: first, at early time steps, not much
information is available, which hinders the performance of
nonparametric models. In addition, generally, parametric
models are less computationally intensive than nonparamet-
ric ones. Another argument raised by Keskin and Zeevi
(2014) is that the linear demand function could approximate
any demand function especially that firms usually do not use
a very broad range of prices, they rather experiment with
prices around a certain predefined price or within a certain
range, where such predefined prices are set according to busi-
ness considerations and marketing conditions. Operating at
a narrow range means that a linear model is approximately
valid. Finally, linear demand models are the dominant models
used in the operations research and the economics literature
(Lobo and Boyd 2003; Bertsimas and Perakis 2006; Cheng
2008; Keskin and Zeevi 2014; Besbes and Zeevi 2015).

In our work, we apply the recursive linear regression
model proposed by Atiya et al. (2005) for estimating the
demand curve due to its efficiency since it fits the sequen-
tial nature of the problem. We provide Sect. 4 for briefly
describing the recursive linear regression model and present-
ing its formulation. The purpose of this work is to propose
several simple, closed-form, efficient, and effective pricing
strategies that can be conveniently applied by firms for rev-
enue maximization and demand learning. We conduct a set of
experiments to our proposed pricing strategies, to some stan-
dard baseline pricing strategies, and to some pricing methods
in the literature. The experiments show that our proposed
formulations outperform the competing methods and bench-
marks in terms of the achieved revenue.

The main contributions of this work are summarized as
follows:

e To the best of our knowledge, the explicit incorporation
of model uncertainty is essentially novel in the context of
managing the exploration versus exploitation trade-off.

e In this work, we propose several novel formulations
incorporating the target objective function (revenue) and
model uncertainty.

e This work presents different pricing methods that are
simple and easy to implement taking into account busi-
ness considerations of pricing constraints and little price
experimentation.

e We apply our proposed pricing methods to real and syn-
thetic datasets, and they achieve superior performance in
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terms of the gained revenue compared to the other pric-
ing methods in the literature including: myopic pricing,
myopic pricing with dithering (Lobo and Boyd 2003),
and controlled variance pricing (CVP) (den Boer and
Zwart 2013).

The paper is organized as follows: Sect. 2 presents a liter-
ature review. Section 3 presents the problem formulation.
Section 4 briefly describes the recursive formulation of lin-
ear regression model that is applied in our experiments. Then,
our proposed pricing formulations are represented in Sect. 5.
After that, Sect. 6 presents experimental results. The results
are further analyzed in Sect. 7. Finally, Sect. 8 concludes the
paper and mentions potential future work.

2 Related work
2.1 Dynamic pricing with demand learning

In this section, we review the work in the literature con-
sidering dynamic pricing in case of unknown demand price
curve. Our work relates to the literature in both opera-
tions research and sequential optimization. Regarding the
operations research literature, there are several contributions
handling dynamic pricing with demand learning (compre-
hensive reviews are provided in Araman and Caldentey
(2010); Aviv and Vulcano (2012); den Boer (2012); den Boer
(2015)).

We discuss dynamic pricing in two main settings: with
no inventory restrictions (i.e., infinite inventory) and finite
inventory where there is a limitation on the supply of prod-
ucts/services to sell.

2.1.1 Infinite inventory

One intuitive dynamic pricing strategy is the greedy or
myopic pricing where at each time step, the price is chosen
so as to maximize the immediate revenue. Definitely, this
policy is myopic and sub-optimal since this pricing strategy
does not learn the demand curve parameters.

Lobo and Boyd (2003) propose a basic simple pricing
policy for linear demand learning of a single product based
on the simple myopic pricing policy. The authors modify
the myopic pricing and introduce some exploration to it by
adding a random perturbation to the myopic price.

Another work extending the simple myopic pricing is the
work by den Boer and Zwart (2013). The proposed pricing
policy, named controlled variance pricing (CVP), chooses the
optimal price given the current estimate of the model (like
myopic greedy pricing). However, the CVP policy imposes a
constraint that the chosen price is not very close to the aver-
age of the prices previously selected. This constraint ensures

diversity of chosen prices and incorporates some exploration
to enhance the accuracy of estimating demand model param-
eters.

Since price experimentation is costly as pointed out in
the introduction (see Sect. 1), Cheung et al. (2017) propose
a dynamic pricing model with unknown demand function,
and under the constraint of having a limited number of price
adjustments for demand learning. The authors propose a
pricing policy minimizing the worst-case regret, O (log" T),
where T is the length of the sales horizon and m is the maxi-
mum limit of number of price changes. However, their model
assumes that the demand function belongs to a finite set of
functions.

Besbes and Zeevi (2015) investigate how model misspec-
ification could affect revenue loss. They consider a multi-
period single product pricing problem and prove that some
pricing strategies based on two parameter linear demand
models could converge to near-optimal pricing decisions
even in case of model misspecification.

Keskin and Zeevi (2014) handle pricing not only for a
single product, but also for multiple products along finite,
T-time step horizon. They propose some variants of the
greedy iterative least squares strategy which utilizes sequen-
tial model learning, and myopic price optimization given the
learned model.

Carvalho and Puterman (2005) consider the dynamic
pricing problem in the context of online pricing over the
internet. They model the individual customer’s response to
price change as a binary random variable following binomial
distribution. Their proposed pricing method maximizes the
one-step look-ahead revenue using Taylor series expansion
to approximate the next step revenue. Their proposed method
outperforms myopic pricing. Further, Elreedy et al. (2021)
develop a multi-step look-ahead pricing policy for uncer-
tain linear demand models. Their approach incorporates
future revenues into the objective function by maximizing
the expected multi-step look-ahead revenue in addition to the
immediate revenue. They implement two methods consider-
ing a single and two look-ahead revenues. Their approach
outperforms the myopic pricing.

2.1.2 Finite inventory

There are various contributions in literature that handle finite
inventory setting in the dynamic pricing with learning prob-
lem, where the seller has a fixed finite number of products
to sell over a sales horizon. An example of the work con-
sidering the finite inventory setting is the work by Aviv and
Pazgal (2002). The authors develop a Bayesian dynamic pric-
ing control model where customers arrive according to a
Poisson process with unknown arrival rate. However, the
customer’s potential buying probability is assumed to be
known. Prices are derived by solving a differential equa-
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tion, and in case of no solution of the equation, one of the
these simple heuristics is applied: fixed pricing policy, cer-
tainty equivalent pricing (CEP), and a basic pricing policy
that ignores demand uncertainty and uses initial expected
values for demand parameters.

Araman and Caldentey (2009) consider a similar problem
setting of finite inventory. They model the dynamic pric-
ing problem as an intensity control problem, and propose
a heuristic pricing policy based on approximating the value
function of the underlying problem.

Farias and Van Roy (2010) handle dynamic pricing with
finite inventory, in case of unknown demand. They consider
maximizing the expected discounted revenue over an infinite
time horizon. In their model, they assume that a customer
buys the product/service only if his reservation price equals
or exceeds the seller’s price. The authors propose a heuris-
tic pricing strategy named as decay balancing. They show
that their proposed decay balancing strategy outperforms
certainty equivalent pricing (CEP) (Aviv and Pazgal 2002)
and the greedy strategy proposed by Araman and Caldentey
(2009). In addition, the authors extend their model to handle
sellers with multiple branches.

Another piece of work that considers dynamic pricing
with finite inventory is proposed by Bertsimas and Perakis
(2006). Since the dynamic pricing problem is a sequential
optimization problem, the authors develop dynamic pro-
gramming based models considering both competitive and
non-competitive marketing environments, assuming perish-
able products. However, since dynamic programming con-
siders the whole state space, it is intractable. Consequently,
the authors propose several lower-dimensional approxima-
tions. The proposed pricing policies outperform the myopic
pricing; however, these methods are still computationally
intensive.

Another piece of work done by Wang et al. (2014)
applies a nonparametric demand model for pricing with
finite inventory constraint. The proposed model applies a
sequence of shrinking pricing intervals before choosing a
price within each iteration. This model achieves low regret
bounds O (n~!/?); however, it is computationally intensive.

Cao et al. (2019) develop a Bayesian pricing method for
a single product in a finite time horizon with unknown cus-
tomers’ arrival rate. The authors assume that the customers’
buying behavior is affected by the reference price. They
formulate the dynamic pricing problem with the imposed
assumptions using Bayesian dynamic programming. More-
over, they study how demand learning is influenced by having
sufficient inventory. In addition, they analyze the impact
of the reference price on the gained revenue. Price et al.
(2019) use a Gaussian Process methodology to track and
estimate the dynamic changes in demand, taking into consid-
eration the necessity to unconstrain the demand (estimating
the true demand in case inventory is assumed unlimited from
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finite inventory data). The Gaussian Process is a machine
learning/statistical approach that models data as a joint mul-
tivariate Gaussian (Atiya et al. 2020).

Some dynamic pricing approaches do not use a fixed price
for all customers, they rather tailor a different price per cus-
tomer based on each customer’s buying behavior, commonly
known in the literature as personalized pricing (Aydin and
Ziya 2009; Diao et al. 2011). A piece of work that devel-
ops an adjusted price per customer in case of unknown
demand is presented by Morales-Enciso and Branke (2012).
In this paper, the authors assume a different potential buying
probability per customer. They develop two different pric-
ing policies. One of them chooses the price maximizing the
expected improvement of revenue. On the other hand, the
other pricing policy selects the price maximizing the sum-
mation of expected immediate revenue and expected revenue
of the next time step. However, the myopic greedy pricing
policy outperforms both of their proposed pricing methods.

Another work adopting personalized pricing is developed
by Ban and Keskin (2020). In this work, the authors develop a
personalized pricing policy that learns the customer behavior
over time horizon 7. In their work, the authors model the cus-
tomer behavior as a d-dimensional feature vector where only
s out of the d features are the personalized ones. The authors
analyze their proposed policy and prove that the expected
regret of their policy is O (s+/T (logd + log T)).

Not only product pricing, but also option pricing exhibits
uncertainty in the financial market environment as indicated
by (Ji and Zhou 2015; Sun et al. 2018; Chen et al. 2019;
Gao et al. 2021). Several works study option pricing under
the uncertain stock market. Chen et al. (2019) examine pric-
ing the European call options under a fuzzy environment.
Furthermore, Gao et al. (2021) investigate pricing the Asian
rainbow option under the uncertain stock model. The authors
model assets’ prices as uncertain processes, and they derive
pricing formulas for the Asian rainbow option.

Crises such as COVID-19 usually result in a tremen-
dous change of customers’ purchase behavior. Liu et al.
(2020) analyze the impact of COVID-19 on the demand
price relation. They develop a Bayesian approach for learn-
ing the demand function. In their work, the authors handle a
single-product periodic-review inventory system. They adopt
a multiplicative demand model where the demand is defined
as the product of a price function and a random perturbation
term representing the fluctuations in the market environment.
The authors formulate the dynamic pricing problem as a
Bayesian dynamic program to learn the demand distribution.

2.2 Studies of the exploration-exploitation
trade-off

Exploration versus exploitation trade-off is studied in many
contexts including: reinforcement learning (Ishii et al. 2002;
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Tokic 2010; Asiain et al. 2019), dynamic pricing (Araman
and Caldentey 2009; Harrison et al. 2012; den Boer and
Zwart 2013; Besbes and Zeevi 2015), evolutionary optimiza-
tion (Crepinsek et al. 2013; Singh and Deep 2019), sequential
optimization (Martinez-Cantin et al. 2009), sequential design
(Crombecq et al. 2011), and online advertising (Li et al.
2010). Furthermore, the exploration—exploitation trade-off
is investigated in the context of multi-armed bandit problem
setting (Auer et al. 2002; Vermorel and Mohri 2005; Val-
izadegan et al. 2011; Besbes et al. 2014).

Multi-armed bandit (MAB) is a class of sequential
decision-making problems originally developed by Thomp-
son (1933); Robbins (1985). Multi-armed bandit problems
aim to maximize rewards, but under uncertainty and incom-
plete feedback about rewards, so there is a trade-off between
performing an action that gathers information regarding
reward (exploration), and making a decision that maximizes
the immediate reward given the information gathered so far
(exploitation) (Audibert et al. 2009). Many problems can be
formulated using the multi-armed bandit setting such as our
target problem: dynamic pricing with unknown demand (den
Boer 2012), online advertising (Pandey et al. 2007), and clin-
ical trials (Villar et al. 2015).

Trovo et al. (2015) utilize the multi-armed bandit formula-
tion for solving the revenue maximization problem in case of
unknown demand model. They propose two pricing policies
that are, essentially, refined versions of the upper confidence
bound (UCB) algorithm proposed by Auer (2002) to adapt
the pricing problem. In addition, Rhuggenaath et al. (2020)
develop an auction pricing algorithm based on one of the
main multi-armed bandit algorithms: Thompson Sampling
(Thompson 1933, 1935).

Reinforcement learning is extensively applied in dynamic
pricing frameworks (Kutschinski et al. 2003; Cheng 2008;
Han et al. 2008; Rana and Oliveira 2015). As an exam-
ple of using reinforcement learning for dynamic pricing
with unknown demand is the work developed by Cheng
(2008) where Q-learning is applied for learning the value
function, with the objective of revenue maximization. How-
ever, the reinforcement learning approach is computationally
expensive, and under the constraint of having limited price
experimentation. Accordingly, reinforcement learning could
be challenging for the underlying problem of dynamic pric-
ing with unknown demand curve.

Deep learning (Shrestha and Mahmood 2019) and deep
reinforcement learning (Arulkumaran et al. 2017; Caviglione
et al. 2020) have gained much interest in recent years.
Kastius and Schlosser (2021) employ deep reinforcement
learning for dynamic pricing. The authors mainly apply
Deep Q-Networks (DQN) to model market competitors in
e-commerce. Moreover, they develop another pricing model
using a policy gradient algorithm named soft actor-critic
(SAC). Furthermore, the work developed by Zhong et al.

(2021) applies deep reinforcement learning to dynamic pric-
ing in regenerative electric heating.

Recently, active learning has proved its powerfulness,
especially in applications where the cost of data collection is
significant (Settles 2009; Fazakis et al. 2019). Elreedy et al.
(2019) propose an active learning framework for handling the
exploration—exploitation trade-off in optimization problems.
They apply the proposed framework to the dynamic pricing
with demand learning problem.

Another approach for optimizing multiple contradictory
objectives is the multi-objective evolutionary algorithms
which seek to find Pareto-optimal solutions (Schaffer 1985;
Curiel et al. 2012). An example of the multi-objective
evolutionary algorithms is the multi-objective differential
evolution (DE) algorithm developed by Awad et al. (2017).
Another work by Srinivasan and Kamalakannan (2018)
introduces a multi-objective genetic algorithm (MOGA) for
analyzing financial data for risk management. However, gen-
erally, the performance of evolutionary algorithms is highly
dependent on the applied crossover, mutation, and selection
strategies. Recently, Farahani and Hajiagha (2021) employ
meta-heuristic algorithms: social spider optimization (SSO)
and bat algorithm (BA) along with artificial neural networks
for stock price forecasting. However, generally, the perfor-
mance of evolutionary algorithms is highly dependent on the
applied crossover, mutation, and selection strategies.

Recently, fuzzy optimization has been applied to uncertain
environments, especially in financial markets as indicated by
Bisht and Srivastava (2019). For example, Li et al. (2020)
design a multi-objective fuzzy optimization algorithm for
portfolio selection of time-inconsistent investors.

Several game theoretical approaches have been developed
for dynamic pricing in different contexts such as smart grids
by Tang et al. (2019) and resource pricing by Zhu et al.
(2020). For example, Zhu et al. (2020) design a dynamic
pricing model for cloud computing services using game the-
ory. Specifically, the authors model pricing and resource
allocation as a Stackelberg game in order to resolve the
conflict of maximizing revenues for both the software as a
service (SaaS) providers that deliver software services and
the infrastructure as a service (IaaS) providers that offer the
infrastructure.

3 Problem formulation

In this work, we use a linear price demand model (or price
elasticity model), as typically used in the economics/finance
literature. The price is the main controlling variable for
demand. We assume a monopolist seller who has a sufficient
inventory to satisfy all potential demand, which is known in
literature as infinite inventory setting. Our work considers
pricing a single product over a finite selling horizon 7.
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We formulate a dynamic pricing problem for the case of
unknown demand as a sequential optimization problem. Our
work is algorithmic in general and attempts to derive efficient
algorithms for tackling this problem. At each time step n, a
price p, is chosen so as to maximize a certain utility function
incorporating the two objectives of demand estimation and
revenue maximization. For any new price p,, we observe
the corresponding demand D,,, and this pair (p,, D,) is con-
sidered an extra data point that can fine tune more accurate
parameter estimates (for the price demand relation). We apply
a weighted least squares recursive formulation for updating
these parameter estimates given the new acquired data point
(pn, Dy). This process iterates until the number of iterations
defining the horizon T is reached.

The linear demand model equation is defined as follows:

D=a+bp+e )

such that b < 0 and € ~ N(0, 02). Letx =[1 p]T, SO we
can express the linear regression problem as:

y=Blate @

where 8 = [a b1’

4 Preliminaries: recursive formulation of
weighted linear regression

In this section, we briefly describe the weighted linear regres-
sion model developed by Atiya et al. (2005) that we employ in
our proposed optimization strategies. We apply such a recur-
sive regression model because it conforms with the sequential
nature of the dynamic pricing problem in case of unknown
demand where at each time step a new price is tested, and
the model is updated accordingly. Moreover, it becomes more
computationally efficient, due to the sequential update nature.

4.1 Estimating model’s parameter vector 3 and its
covariance matrix 2 g

In this subsection, we present the recursive formulations
of the weighted linear regression for the regression model
parameter’s vector 8, and its covariance matrix Xz using the
work presented in (Atiya et al. 2005).

Let x,, be the d-dimensional vector example, picked at
time 7, and let y, be the predicted response variable, which
defines the demand in our problem. In addition, let ﬁ be the
d x 1 estimated coefficient vector [a B]T used for the linear
prediction, for the linear demand estimation problem (d = 2)
according to Eq. (1). A discounted error function is defined
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as follows:
T
ET) =Y y""[x." B =yl 3)
n=1

where y is the discount factor, such that 0 < y < 1, and
usually y is set close to 1. Define the matrix X, where the
rows of X are the input vectors x,, . Similarly, let y represent
the vector of target outputs y,, and let W denote the discount
matrix, which is a n x n diagonal matrix with W,,,, = yT_”.
Then, the estimated model parameter B is given by the least
square solution formula according to (Atiya et al. 2005) as
follows:

p=xTwx)"'xTwy 4

However, evaluating Eq. (4) in a continuous manner is com-
putationally extensive, so recursive formulas are used.

Similarly, as indicated in (Atiya et al. 2005), the covari-
ance matrix of 8 can be calculated as follows:

2 =o?(XTwx)™! )

When a new data point comes at instant n, the parameter vec-
tor is updated recursively. According to (Atiya et al. 2005),
the recursive update for the model parameter B(n) in terms
of previous estimates is:

g — Dxp[yn — xa7 Bn — D]
o2y +x,TEg(n — 1)x,

By =pn—1)+ (©6)

Similarly, the recursive formula for the covariance matrix
Y g(n) can be written as follows:

p(n — Dxpx, T Zp(n — 1)
o2y? +yx, T Zp(n — Dx,

1
Bp(n) =~ Tp(n — 1) - M

4.2 Estimating variance of random error term (¢?)

In the last subsection, we showed the recursive formulas for
the regression model’s parameter vector 8, and covariance
matrix Xg using the work of Atiya et al. (2005). However,
there is still an unknown parameter not explicitly considered
in (Atiya et al. 2005), namely the variance o2 of the € error
term. Accordingly, in this subsection, we estimate the vari-
ance parameter o > recursively using the maximum likelihood
estimator.
The likelihood function can be expressed as:

25:1 T =BT xn)?

®)

e
2no

Lo
Le* p =]
n=1
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where T denotes the number of data points used in the esti-
mate and y is the discount factor of the weighted linear
regression. Accordingly, the log likelihood can be calculated
as follows:

l(0%, B) = —Tlogo — T'logv2n

T T—n _pT 2
_Zn:l Y (yn — B xn) ©)

202

Maximizing the log likelihood in Eq. (9) results in the fol-
lowing estimate 62

T —
52— Lz V! "G = BT’

T (10)

which represents an estimate of the variance of data.
A recursive version of the above formula can be written
as

e*(n)

n

62(n) = )02(n -1+

where e(n) = y, — BT x,.

5 Formulations of pricing policies

In the proposed dynamic pricing formulations, we seek
to optimize both objectives of maximizing the immediate
revenue (exploitation), and minimizing the uncertainty of
demand model parameters (exploration). This is achieved by
combining the two objectives into one hybrid utility function
in three different ways. At each time step 7, the price value
maximizing the expected utility is used as the pricing for the
next period. This price choice would simultaneously achieve
good revenue and provide some exploration to test different
portions of the price space in order to obtain better parame-
ter estimates. Every successive step would provide gains in
parameter accuracy, until ultimate exploration would almost
no longer be necessary, and exploitation (i.e., focusing on
just maximization of the revenue) would dominate.

The general form of the considered constrained optimiza-
tion problem at any time step n can be expressed as follows:

max p* E[U(P*)n|/3n—1] s.t. pr = P* = Pu (12)

where B, is the estimated regression model parameters at
time step n — 1, U, is the utility to be maximized, and p,
and pj, are imposed price bounds which are set by business
owners to keep the prices in a controlled range. The util-
ity function U (p*), consists of the revenue R(p*) for the
selected price (exploitation term), minus a term that measures
the uncertainty or error in parameter estimates (exploration
term). The coefficient multiplier of the exploration term 7,

presented in the three formulations (Egs. 13, 21 and 26,
decays with iteration, as the initial emphasis on exploration
will gradually give way to more exploitation as we proceed
with the iterations. After solving the constrained optimiza-
tion problem defined in Eq. (12), then the price at time step
n, p, is set to p*. We propose three different formulations,
with each suggesting a different parameter uncertainty term.

Exploration means inspecting the parameter space, and in
the process narrowing down onto the true parameter values,
thereby reducing the uncertainty. At the beginning uncer-
tainty is high, but the more we explore, the more information
about the parameters will be uncovered and uncertainty will
decrease.

In the three proposed formulations, exploration is per-
formed by minimizing different forms of model parameters’
variances. The reason for adopting the variances of model
parameters to express exploration is that the ultimate objec-
tive of exploration is minimizing the model estimation error.
Furthermore, the model estimation error can be expressed in
terms of the variances of the model parameters due to the bias-
variance decomposition of the learning model error (Geman
et al. 1992; Taieb and Atiya 2015; Elreedy and Atiya 2019).
The model bias results from model misspecification. On the
other hand, the model variance is caused by the disparity of
the model performance when learning using different sets of
training samples. Increasing training data points reduces the
model variance (Elreedy and Atiya 2019).

5.1 Formulation 1

The first proposed utility function aggregates the immedi-
ate revenue R(p*), and the model uncertainty expressed in
terms of the total summation of variances of the estimated
model parameters ¢r[Xg], i.e., equal to the trace of covari-
ance matrix Xg. However, for keeping units consistent, the
square root of the trace of [Xg] is taken. Consequently, the
utility function of a certain price p* is defined as:

U(p®) = R(p*) — ny/tr[Zg] (13)

where 7 represents the trade-off parameter between exploita-
tion (choosing a price maximizing the gained revenue) and
exploration (choosing a price minimizing the model uncer-
tainty). We consider 1 to be exponentially decreasing in time
according to Eq. (14). At early iterations, more emphasis
is imposed on exploration in order to have better estimate
for the demand model parameters. However, at later iter-
ations since the model estimates improve over time, more
attention should be devoted to the ultimate goal of revenue
maximization. This setting of 1 is applied for all of the three
formulations, and it is given by:

n = noe " (14)
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where n is the time step and o > 0. Taking the expectation
of the utility function defined in Eq. (13):

E[U(p*)nl = E[R(p")n] — n/tr[Zg(n)] 15)

The expected revenue E[R(p*)] for linear demand model is
calculated as follows:

E[R(p)] = p*(a + bp*) = bp** + ap* (16)

Substituting from Eq. (7) and Eq. (16) into Eq. (15) results
in:
* *2 * 1
E[U(p Il =0bp™ +ap™ — -—F—==tr

2, /tr[Eﬁ(,,)]

Tg(n — Dxpx, Tpn — 1)]
o2y2 +yx, T Zp(n — Dx,

[lzﬂ(n — - (17)
y

where x, = [1 p*]7.

Since our target is to find the price p* that maximizes the
expected utility function defined in Eq. (17), we evaluate the
derivative of E[U (p™*),] w.r.t. p*:

ZUICT) 1 oot S = DZ(po)]

8p* 1/Z‘?‘[Elg(n)]

(18)

where g(p*) = (62y? + y[02 + 20 p* + 0 p**]), and
Z(p%) is a 2 x 2 matrix with elements: Z11, Z12, and Zy»
given as

Z11 = =2y (0ap + 0p>p*)
Zip =y?y +o2 - ‘717217*2)

Zyn =y Q0y p* + 20, p" + 200p™) (19)
Then, by equating Eq. (18) to zero and solving the resulting
equation, we can get the price p* maximizing the expected
utility function at time step n using a simple one-dimensional
search.

ap*
tr[ =t 22(n - DZ(p*)]

1 2 (p*)

=0 (20)

2/tr[Zpm]

The details of the derivative computation of the expected
utility of this formulation, defined in Eq. (17), can be found
in Appendix A.
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5.2 Formulation 2

Similar to the first formulation, we define a utility function
in terms of the immediate revenue R(p*) and model uncer-
tainty. However, the model uncertainty in this formulation is
expressed as a summation of normalized standard deviations
of model parameters o, and o, We normalize the standard
deviations o, and o} in order to have the uncertainty rela-
tive to the value of the parameters. For example, consider a
problem where a = 1000, and another one where a = 10,
and if the standard deviation o, = 5, this value for the uncer-
tainty in parameter a would be more significant for the case
of a = 10 than for a = 1000.

The proposed utility function can then be written as:

U(p*) = R(P*)—n((;—a-i-%) (1)

Calculating the expectation of the utility function defined in
Eq. (21):

E[U(p*)nl = E[R(p™)al — 1

(w 22)

op(n)
* |b|)

Using Eq. (7) and the definition of g(p*) in formulation 1,
Sect. 5.1, accordingly, the expected utility can be calculated
as:

n(Eﬂ(an)“ n Zﬁ(”)m)

E[U(p*)nl = E[R(p™)n] — ]

(23)

The first derivative of the expected utility % with

respect to p* can be evaluated as follows; the details are
presented in Appendix A.

IE[U (p*)n]
ap*

Y
+
122 (p") /58, )

2
X (p* (Oab® — Oapolal) + p*(0?yal,

=a + 2bp*

—0305) + ozyaazaab)
14
+n
2|b|\/3 g5, (n)g*(p*)

—l—o,foaz) + (crzycrabcrb2 + 0,,2%20”1, — %3}))) 24)

x, 2 4 2 2
x(p (c“yoy — 0,05

Similar to formulation 1, by equating Eq. (24) to zero, and
solving the resulting equation, we can get the price p* max-
imizing the expected utility function at time step n using a
simple one-dimensional search.
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AE[U (p*)nl
ap*

)4
_l’_
2487 (p) /T, ()

2 3 2.2 2 2
X(p* (oab” — 0apo o) + p*(0 Yoy,

=a + 2bp*

—ajabz) + ozyoazaab)
+77 L 2( ¥
2|b| Eﬂzz(”)g (p*)

+op02) + (02y0apol + 020200 — aj,,)) —0 (25

%, 2 4 2 2
(P (0%yoy — 04,0%

The details of deriving the derivative of the expected utility
defined in Eq. (22) are presented in the appendix.

5.3 Formulation 3

For the third proposed formulation, we define the utility func-
tion in terms of the immediate revenue R(p™*), but the focus
here is on the uncertainty of the immediate revenue og(p),
instead of uncertainty of demand model parameters. The intu-
ition for including uncertainty of revenue in the model is
to promote the potential of selecting prices that maximize
the expected revenue with high confidence. Thus, the utility
function is defined as:

U(p*) = R(p™) — norp (26)

where og(p+) is the standard deviation of revenue. Taking the
expectation of the utility function:

E[U(p*)n]l = E[R(P")n] — noR(p*), 27)

Given the linear elasticity demand model defined in Eq.
(1), the standard deviation of revenue o'g,+) can be calculated
as follows:

oR(p*) = proy = p* x*TEﬁ(n_l)x* + 02 (28)

Accordingly, the utility function can be expressed as:

E[U(P*)n] = E[R(P*)n] - np* X*TE/S(”_])X* + 02
(29)

The derivative of expected utility with respect to p*,

%(f*)”] is evaluated as follows:
AE[U (p*
[al(af Mg + 2bp*

2
20,2 p** + 304y p* + 04 + 0>

(30)

-n
J©? + 02 + 20mp* + 07 p*2)

As the two formulations above, by equating Eq. (30) to
zero, and solving the resulting equation, we can get the price
p* maximizing the expected utility function at time step n
using a simple one-dimensional search.

IE[U (p*)n]

ap AT

2
20,2 p*? + 304 p* + 04 + 0>
-1
\/(62 + 02 4 204 p* + 0 p*?)

=0 (€20)

We provide the details of calculating the derivative of the
expected utility defined in Eq. (27) in Appendix A.

6 Experiments

To test the performance of the proposed approaches, we
have applied them to different pricing problems. In order to
explore the standing of the proposed methods compared to
other existing approaches, we have also applied some bench-
mark or baseline price demand estimation methods, and some
other algorithms proposed in the literature.

6.1 Benchmarks

One benchmark pricing strategy that we apply is the basic
myopic pricing policy, which selects the price maximizing
the immediate revenue at each time step. Such price is esti-
mated as ;—“ for the standard linear demand model. Clearly,
this pricing strategy greedily focuses on exploitation only.
In addition, we compare our proposed methods to two other
strategies from the literature, the myopic pricing with dither-
ing proposed by Lobo and Boyd (2003), and the controlled
variance pricing (CVP) policy proposed by den Boer and
Zwart (2013). We have briefly described these methods in
Sect. 2.

Furthermore, we investigate a strategy consisting of two
phases: exploration then exploitation. In this strategy the first
phase of exploration (for example in the first half of the
period) is essentially performed in order to obtain an accurate
estimate of model parameters. In the next phase (the remain-
ing portion of the considered period), we use the estimated
model, and apply pure exploitation by applying the greedy
myopic pricing policy. We consider two variants of this
two-phase approach: the random-myopic policy where the
exploratory phase is performed by selecting random prices,
and then exploitation is performed by means of myopic pric-
ing. Similarly, the second approach is the uncertain-myopic
pricing whereby the exploratory phase is performed by min-
imizing the model uncertainty, expressed as the summation
of variances of the two model parameters a and b. Follow-
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ing this, the exploitation phase is performed using myopic
pricing.

6.2 Performance metrics

We evaluate the performance of the different pricing policies
with respect to two main objectives. The primary objective is
revenue maximization, while the secondary objective is the
accuracy of the estimated demand. The revenue management
objective is basically the revenue gain, or a normalized ver-
sion of the total discounted revenue Rev(T') achieved in the
considered time period, as follows:

Rev(T) _ STy RM)

Rev Gain = T 1
Revopr 3=, v" ' Rops

(32)

where R(n) is the revenue in step n and R, is the optimal
revenue given the true model parameters a and b, which is
calculated as:

Ropt = popt(a + bpopt) = bpzopt + apop: (33)

where p,, is the optimal price, which equals to ;- for our
case of linear demand model where a and b are the ground
truth values for the linear demand model parameters.

Simplifying Z,le ¥~ ! by using the summation of geo-
metric series formula, this becomes:

Rev(T) > _ v" 'R(n)

= 34
Revgp; (- VT)/(l — ¥)Ropt G

Rev Gain =

In addition to evaluating the gained revenue, we test whether
the final price converges to the true optimal price by measur-
ing the deviation of the price pr, at last iteration 7', from the
true optimal price pop;-

o |PT - puptl

5, = (35)

Popt

Concerning the demand model estimation accuracy, we eval-
uate it in terms of the deviation of the final estimated demand
model parameters ﬁr, at iteration 7', from the true parame-
ter’s vector $ as shown in Eq.(36):

_ 1B~ prl

36
18112 G0

6.3 Experimental setup

The simulation proceeds as follows: after generating a pool
of price-demand data, we start with a very limited number
of points, Ny = 3 points (less than three points cannot give
any sensible initial parameter estimate). Then, we train a
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regression model to obtain an initial estimate for the model
parameters o, and the corresponding covariance matrix Xg,.
After that, we apply the proposed sequential optimization
methods (which maximize the utility function) in order to
obtain the optimal price at iteration n, denoted as p,. The
optimization is under the constraint that p, is within the
pricing interval defined by the seller where the minimum
allowable priceis p;, and the maximum possible price p,,,i.e.,
p1 < pn < pu.Once the price is determined, the demand D,,
is observed. It follows the linear demand model (Eq. (1)), with
of course the error term € giving random fluctuations around
the true demand line. We use this point (p,, D,,) to update the
model estimates 8 and Xg using recursive weighted linear
regression update equations (Egs. 6 and 7). The simulation
loop continues till reaching a certain predefined number of
iterations 7. For each dataset, we run the experiment 100
runs and we present the average results over the runs.

One can observe from the equations of three proposed
utility functions (Egs. 17, 23 and 29) that the true values of
demand model a and b are present in parts of the formulas
that determine the price. However, since the demand model
parameters are unknown, we use current estimates of model
parameters d,_; and b1, respectively, at each time step .

In our experiments, we set the number of iterations 7' to
100, and the discount factor of the weighted linear regres-
sion, y is set to 0.99. Since the optimization problem is over
one variable, the price p, any simple grid search over the
pricing values could be used. In our implementation, we use
the interior point optimization algorithm (Byrd et al. 1999).
Regarding the exploration—exploitation hyper-parameter o
presented in Eq. (14), we set « such that at the last iteration
T, where the exploration is nearly diminished, 1 equals to a
small value: n = 0.25. For ng, we use values that make the
weights (impacts) of the two underlying objectives of rev-
enue and model uncertainty comparable at the first iteration.

In our implementation, for the considered two-phase
benchmark strategies we use the same number of iterations
for the exploration phase as for the exploitation phase, i.e.,
50 for each. Regarding the myopic pricing with dithering
method (Lobo and Boyd 2003), we set the amount of dither-
ing to 0.1.

We use a unified method for estimating the demand model
parameters for all pricing methods, which is the weighted
recursive linear regression described in Sect. 4 in order to
have a fair comparison among the different pricing policies.

6.4 On price-demand elasticity

In our experiments, we test several values for the demand
slope parameter b in order to explore the performance for
three main cases of demand elasticity ranges (to be described
shortly). Elasticity is defined as the ratio of the percentage
change in demand change to the percentage change in price
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change (see Eq. (37) and refer to (Gillespie 2014; Gwartney
et al. 2014)).

Ap%
A, %

Elasticity = 37

where A, denotes the price change, and Ap is the corre-
sponding demand change. The elasticity parameter is related
to the slope of linear demand model b in Eq. (2). Naturally,
demand elasticity is negative because of the inverse relation
between price and demand.

The demand-price elasticity varies for different types of
products or services. Demand can be inelastic (elasticity
< 1), e.g., for necessities or indispensable products, neu-
trally elastic (elasticity & 1), and elastic (elasticity > 1), e.g.,
for luxury goods. We test the performance of our proposed
methods for each of these three cases by setting appropriate
values for the elasticity parameter b.

6.5 Experiments using synthetic datasets

First, we apply our proposed methods as well as the other
pricing methods and benchmarks to artificial datasets. The
advantage of using artificial data is that the true model param-
eters B = [a b]T are known. Therefore, the revenue gain
can be accurately estimated with the knowledge of the true
optimal revenue. Moreover, the estimation error of demand
model parameter’s vector B can be accurately evaluated. We
create synthetic datasets by generating several price points
and then assuming linear demand model, we calculate the
corresponding demands using Eq. (1). We adopt different
values for the standard deviation o of the error term €, so
that we can analyze the impact of the error term on the dif-
ferent pricing policies, and evaluate their immunity toward
errors. Moreover, we use different values for the variance of
the error term because it can be conceived as aggregating all
other influencing factors that may be hard to model, such as
competition, seasonality, or perishability of the products.

We generate twenty different synthetic datasets using
diverse values for parameters a, b, and o. Specifically, we
investigate different values for the parameter b including the
three demand elasticity cases of inelastic, neutral, and elastic
demands. The detailed results for revenue gain, parameter
accuracy, and price convergence are represented in Tables 1,
2,and 3, respectively.

Tables 1, 2, and 3 represent the gain in revenue, the
estimation error of model parameter’s vector 8, and the
percentage error of the estimated price with respect to the
optimal price, respectively. These tables show the results
averaged over the twenty synthetic datasets in case of low
error setting and high error setting.

In order to investigate the behavior of different pricing
methods over time horizon 7', we provide, as an example,

Table 1 Revenue gain of different methods, averaged over twenty dif-
ferent synthetic datasets over two different settings of the standard
deviation of the error term

Method Low error High error Average (%)
setting setting
(%) (%)
Form2 98.88 96.09 97.49
Forml 98.11 92.47 95.29
Cvp 95.717 94.25 95.01
Form3 94.95 88.52 91.73
Myopic 93.67 77.26 85.46
Myopic-dith 94.40 76.30 85.35
Rand-Myopic 79.22 78.81 79.02
Uncertain-Myopic 51.93 47.78 49.86

he methods are sorted descendingly according to their average revenue
gain over the two settings of the standard deviation of the error term.
The bold entries represent the maximum revenue gain per column (over
all strategies)

Table 2 Percentage error in estimating model parameter’s vector f
of different methods, averaged over twenty different synthetic datasets
over two different settings of the standard deviation of the error term

Method Low Error High Average (%)

Setting Error Set-

(%) ting (%)
Uncertain-Myopic 0.64 2.68 1.66
Rand-Myopic 0.77 3.27 2.02
Form3 1.04 3.53 2.29
Cvp 1.11 4.08 2.60
Form?2 1.44 5.64 3.54
Myopic 1.58 5.76 3.67
Myopic-dith 1.53 5.84 3.69
Form1 1.70 6.01 3.85

The methods are sorted ascendingly according to their average percent-
age model error over the two settings of the standard deviation of the
error term. The bold entries represent the minimum model error per
column (over all strategies)

the figures for one artificial dataset with @ = 1000, b = —1,
and o = 200. Figure 1 shows the cumulative discounted
revenue for different methods over time steps of the horizon.
Figure 2 shows the model percentage error for regression
coefficients B using different pricing methods at different
time steps. Figure 3 represents the chosen price at different
iterations by different methods.

6.6 Experiments using real parameter sets

To have more realistic parameter values, we have adopted
seven real datasets of nineteen different products described
in Table 4. First, we have gathered some data online though
surveys. The dataset is a transportation ticket pricing data,
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Fig.1 Cumulative discounted revenue using different formulations for the synthetic dataset a = 1000, b = —1, and o = 200
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Fig.2 Estimated regression model percentage error using different formulations for the synthetic dataset a = 1000, » = —1, and o = 200

where we ask users about the minimum and the maximum
fares they would pay for an economy class bus ticket between
any generic certain two cities. We collected 41 responses
from different users. In order to have data in the form of
price and demand pairs, we perform the following. For each
price, we calculate the corresponding demand as the number
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of users who can afford this price according to their stated
minimum and maximum prices.

Another dataset is the so-called beef dataset. It is obtained
from the USDA Red Meats Yearbook Library (2001). Simi-
larly, the sugar dataset is adopted from Schultz (1933). The
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Fig.3 Estimated prices using different formulations for the synthetic dataset « = 1000, b = —1, and o = 200
Table3 Percentage error of the final estimated price pr for all methods, Table4 A description for the real-world datasets
averaged over twenty different synthetic datasets over two different - R N R
settings of the standard deviation of the error term Dataset Size  a b o
Method Low Error High Average (%) Transport 41 41.3778 —0.1378 3.3902
Setting Error Set- Beef 91 300515  —0.0465  0.5670
(%) ting (%)
Sugar 18 1.3576 —0.3184 0.0292
Rand-Myopic 0.19 0.72 0.45 Spirits 69 4.4651 —1.2723 0.0573
Form3 0.26 1.49 0.88 Coke 20 50.5700 —0.3406 1.9319
Uncertain-Myopic 0.13 1.68 091 Café-Burger 1351  189.6795  —7.1411 15.6471
Form2 0.33 1.68 1.01 Café-1 1351  54.2005 —2.0234 6.1317
Forml 0.33 2.08 1.20 Café-2 1351  47.7671 —2.2588 4.1790
CvVP 0.84 1.89 1.36 Café-3 1351  108.9627  —5.2635 8.6968
Myopic 4.87 20.44 12.66 HOBBIES-1-001 146 206.9059  —21.5411  7.3863
Myopic-dith 4.15 21.28 12.71 HOBBIES-1-028 274 132.2558  —13.3455  6.9413
The methods are sorted ascendingly according to their average price HOBBIES-1-046 72 3416164 — 164479 7.1373
deviation over the two settings of the standard deviation of the error term. HOBBIES-1-207 274 231.1926 —77.4905  7.8952
The bold entries represent the minimum price deviation per column HOBBIES-2-045 199 79.4778 _ 254614 65352
11 strategi
(over all strategies) HOUSEHOLD-1-164 115 2323479  —52.0884  20.9894
HOUSEHOLD-2-089 274 1042676  —21.9714  19.1267
.. . . . HOUSEHOLD-2-505 274 1322804  —21.3876  9.7262
spirits dataset is obtained from Durbin and Watson (1950),
. . FOODS-3-754 165 3325571  —48.8230  9.4418
and the coke dataset is acquired from Sun (2011).
FOODS-3-799 274 71.9769 —28.8564 52721

In addition, we have considered a large sales dataset of
a café offering four products at a single store Zavarella
(2018). The four offered products are a burger and three
other meals. Each product has 1351 sales transactions. For the
café dataset, we estimate the demand model for each product
separately. In the experimental results, the four products are
denoted as: Café-1, Café-2, Café-3, and Café-4. Furthermore,
we have used the Walmart retail goods dataset offered by the
University of Nicosia, named as M5 Forecasting dataset of

Nicosia (2020). This dataset is quite large; it has 42,840 sales
records for 3049 products of three main categories (Hob-
bies, Household, and Food) placed in seven departments.
The M5 Forecasting dataset includes the sales data of ten
stores of Walmart in three states. For space limitations, we
present the results of ten different products of the M5 Fore-
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casting dataset. We follow the naming convention described
in (Makridakis et al. 2020) for the dataset products shown in
Table 4. For example, HOUSEHOLD — 2 — 505 defines
a household product at department 2 with id 505.

In our sequential optimization framework, the selected
price p, at each time step n could potentially be outside the
available prices provided in the dataset. Thus, we use any of
the real datasets mainly for estimating linear demand model
parameter’s vector 8 only. Then, we generate data using the
estimated parameters, with the same methodology described
in Sect. 6.5. The regression model coefficients a and b are
estimated using ordinary least squares linear regression. For
the error variance parameter o>, we estimate it using the
maximum likelihood estimator (Eq. (10) with y = 1). The
estimated parameter values for the adopted real datasets are
presented in Table 4.

The following tables summarize the results of our con-
ducted experiments on the real datasets described in Table
4, for the different pricing policies. Tables 5, 6, 7 represent
the gain in revenue, the estimation error of model parame-
ter’s vector 8, and the percentage error of the estimated price
with respect to the optimal price, respectively.

7 Discussion

From the experiments, we observe the following findings. We
categorize our findings with respect to the three performance
evaluation aspects: revenue gain, model estimation error, and
price convergence.

7.1 Revenue gain

e From the presented results, we can observe that our
proposed models generally outperform the competing
methods in terms of the achieved revenue, for most of the
synthetic and real datasets as indicated in Tables 1 and 5,
respectively. They obtain on average better results com-
pared to the standard benchmarks of random-myopic,
uncertain-myopic, and myopic pricing, as well as the
two state-of-the art methods in revenue management lit-
erature: myopic with dithering (Lobo and Boyd 2003),
and controlled variance pricing (den Boer and Zwart
2013). The reason for this outperformance of our pro-
posed methods over other approaches is the way we
incorporate both aspects of the target objective which
is the gained revenue, and model uncertainty into one
hybrid utility function with the aim of maximizing the
immediate revenue in addition to having better estimates
of model parameters that help maximizing future rev-
enues.
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e Regarding the myopic pricing policy, typically, it yields
sub-optimal performance due to its greedy nature. Even
for myopic pricing with dithering, the dithering level,
which is a major hyper-parameter for balancing explo-
ration and exploitation, is a user input parameter. It turns
out that this method’s performance is not significantly
better than the myopic pricing policy. One can observe
from Figure 1 that the curves of myopic pricing and
myopic pricing with dithering are very close. In addi-
tion, Tables 1 and 5 show that the two methods obtain
very close average revenue gains over the synthetic and
real datasets, respectively.

e It could be inferred from Figure 1 that our proposed
methods, especially formulation 1 and formulation 2,
convincingly have superior performance in terms of the
gained revenue over other methods over the whole time
horizon 7. In addition, Tables 1 and 5 indicate that for-
mulation 2 is the best performing method on average,
over the synthetic and real datasets, respectively.

e Table 5 demonstrates that our proposed methods, espe-
cially the second formulation, outperform other bench-
marks for the real datasets. Furthermore, one can observe
that the myopic and myopic with dithering strategies per-
form comparably well and this occurs since the inherent
random error in the data is low as shown in Table 4. Sim-
ilarly, for synthetic datasets with low error settings, our
first and second formulations surpass the performance of
other methods in terms of the gained revenue over, as
indicated in Table 1.

e For the more challenging synthetic datasets with high
error settings, our proposed methods have robust per-
formance and outperform other methods in terms of the
gained revenue as shown in Table 1. This is due to the
explicit incorporation of model uncertainty in the under-
lying objective functions we optimize.

7.2 Model estimation error

e Regarding the model estimation error, Tables 2 and 6
show that the uncertain-myopic benchmark achieves the
minimum estimation error. This result is essentially rea-
sonable since the first phase of uncertain-myopic is totally
devoted for minimizing model uncertainty, by explicitly
minimizing the trace of covariance matrix Xg. Accord-
ingly, the uncertain-myopic benchmark obtains accurate
model parameters’ estimates. However, the first, rel-
atively long, exploration phase compromises revenue,
and accordingly the uncertain-myopic benchmark obtain
poor revenues as indicated in Tables 1 and 5 for the syn-
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thetic and real datasets, respectively.

e Similarly, the random-myopic benchmark obtains rela-

tively accurate model estimates as indicated in Tables 2
and 6 since the first phase is pure exploration via random
sampling. In addition, the CVP method achieves low esti-
mation error rates for synthetic and real datasets as shown
in Tables 2 and 6, respectively. The reason for that is that
the CVP method inherently imposes emphasis on explo-
ration by ensuring the diversity of the chosen prices in
order to improve the regression model accuracy. Conse-
quently, the CVP method results in near-optimal values
for model parameters as well. However, similar to the
uncertain-myopic baseline, both of the random-myopic
and the CVP method compromise the gained revenue.
However, the CVP method achieves more robust per-
formance in terms of the gained revenue, especially in
high error settings since it inherently emphasizes explo-
ration through choosing diverse prices, as indicated in
Table 1.

Tables 2 and 6 demonstrate that our proposed methods
achieve comparable performance in terms of model esti-
mation error. Moreover, our proposed methods mainly
emphasize the ultimate objective: the utility (revenue)
maximization, while treating the convergence to the
true model parameters as an important, but a secondary
objective. Furthermore, there is a trade-off between
parameter estimation accuracy (exploration) and rev-
enue maximization (exploitation). Too much focus on
parameter estimation may be at the expense of some
foregone revenue, and vice versa. This is valid in the
short term ahead. However, in the long run, better
parameter accuracy should positively impact revenue.
Therefore, it is imperative to attempt to improve the
accuracy, if possible without too much sacrifice in
revenue.

The myopic and myopic with dithering policies obtain
poor estimates for model parameters, especially for high
noisy datasets as represented in Table 2.

Figure 2 shows the model estimation error for one noisy
synthetic dataset, as an example. Beside the final esti-
mates represented in Table 2, here we seek to investigate
the performance of different methods over time. One can
observe from Fig. 2 that over iterations, the model esti-
mation is enhanced, and this is intuitive because more
training points are added as iterations go on. It can be
noticed that our proposed third formulation achieves
comparable performance to the best performing bench-
marks uncertain-myopic and random-myopic, and these
results agree with the results of the Monte Carlo simula-

@ Springer

tion presented in Table 2.

7.3 Price convergence

e Figure 3 shows that in the initial period the price changes
rapidly, often going up and down. The algorithm is liter-
ally exploring the space in order to learn the price demand
model. Later in the iterations the price stabilizes. It now
enters the exploitation phase, whereby it narrows down
on the price that maximizes revenue.

e Regarding the price convergence to the optimal price
Dopt» Tables 3 and 7 indicate that the best perform-
ing methods are our defined random-myopic baseline
for the synthetic datasets and the uncertain-myopic
method for the real datasets, respectively. However, our
three proposed formulations produce comparable results.
The two-phase pricing policies: random-myopic and
uncertain-myopic perform well with regard to price con-
vergence because sufficient exploration during the first
phase leads to fairly accurate parameter estimates (see
Tables 2 and 6 for synthetic and real datasets results,
respectively).

e For the other methods including: myopic and myopic
with dithering methods, they have a considerable devia-
tion error from the optimal price, especially for the high
error setting according to Table 3. These methods do not
converge to optimal prices because they do not obtain
accurate model estimates. Accordingly, they do not reveal
the true demand model, and cannot converge to the opti-
mal pricing.

e Figure 3 shows the price convergence to the optimal price
which is the obtained price if the true model parameters
are known, for one noisy synthetic dataset. For all meth-
ods, along iterations, the convergence improves due to
the corresponding enhancement in model estimation pre-
sented in Fig. 2. It can be inferred that all of our proposed
methods produce promising results (near-optimal prices).
Figure 3 indicates that the random-myopic benchmark
performs the best in terms of price convergence, but at the
expenses of sacrificing revenues as indicated in Table 1
and Fig. 1.

8 Conclusions and future work

In this work, we have proposed several dynamic pricing
strategies for revenue maximization with demand learn-
ing. The proposed methods seek to balance the trade-off
between exploitation (revenue maximization) and explo-
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ration (demand model estimation). We compare our proposed
methods to different benchmarks and popular methods in
literature with respect to different aspects including: the
total discounted gained revenue, the accuracy of the esti-
mated demand model, and the price convergence to optimal
price. We test the pricing methods using different twenty
synthetic datasets with different parameter settings and error
settings, and seven different real datasets including nineteen
different products.. The experiments show a significant per-
formance improvement of our pricing strategies, especially
in terms of the gained revenue, while achieving compara-
ble performance in demand learning. Moreover, our pricing
policies are easy to analyze and implement since we use
simple formulations. Furthermore, our proposed methods are
computationally efficient as we apply regression model with
incremental updates. For future research directions, we can
extend our proposed methods to different demand models
such as exponential, and logit demand functions. Further-
more, other factors could be taken into consideration in
demand estimation to maximize the obtained revenue such as
market environment and customers’, and competitor’s related
features. Finally, we may thoroughly investigate the impact
of the counterfeit products on demand, and we could develop
pricing strategies with the aim of combating the counterfeit-
ing adverse effects.
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A Derivation of utility derivatives for the
three proposed formulations

Formulation 1

According to Section 5, the expected utility of our first for-
mulation is defined as:

1
2,/1‘7‘[2;;(,,)]
Yg(n — l)xnanE,g(n — 1)]
o2y? +yxaTZp(n — Dxy

E[U(p*)al = bp™ +ap* — 1

trl:%Eﬁ(n— 1 —

The first derivative of the expected utility, %Ef*)”], can be
calculated as:
OE[U (p* 1
WO _ ey
ap 2 tr{Xgm]l
1 . . Eﬂ(nfl)x,,x,,TEﬂ(nfl)
tr,Zpg(n — 1) o2y Tyl Sp(n—1)x,
T (38)
Since tr[A + B] = tr[A] + tr[B], then "L would be:
d1r[Tp(m)] _ rlyTpin — 1]
ap* - ap*
Zp(n—Dxpx, T Zpn—1)
B atr[ 02y2+)/an25(n—l)Xn (39)

ap*

It can be observed that the first derivative term in Eq. (39)
evaluates to zero. Evaluating the second term of Eq. (39), and
letting x,, be denoted as x™*:

e[ Sp(n—1x*x*T Tp(n—1)
orr[Zg(n)] o2y 24y T S (n—1)x*

ap* ap*

(40)

x*x*TEﬁ(nfl)
Let A = 02y2+yx*T2/3(n—l)x*’
evaluated as follows:

accordingly Eq. (40) can be

dtr[Ep(n)]  dtr[Zg(n — 1)AXg(n — 1)]
ap* N ap*

(41)

However, from trace properties tr[BAC] = tr[AC B], then:

drr[Sp(n)]  Or[AZF(n — D]
ap* 3 p*

(42)
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Then, from trace derivative properties:

drr[AB] 9 < AT B >p
0x - 0x
r 0A r 0B
=<B',—>p+ <A, — >F
0x 0x
0A 0B
=tr[B— + A—] 43)
0x 0x

Accordingly, substitute from Eq.(43) into Eq. (42) where
B = 2% (n—1) and x = p*, accordingly % evaluates to
zero, and Eq. (42) is simplified to:

orr[Zp(n)]
ap* -

JdA
tr |:E§(n -1 ap*} (44)

Simplifying matrix A:

A= (45)
022+ y[02 + 2045 p* + 02 p*?]

2
where Zg(n — 1) = 9a Uag).

Oab Op
Then, evaluating 3‘);‘* :
0A 1

P*  (02y2 + y(02 + 20up* + 0p2p*2))’

01
[(0272 + (02 + 204, p" + 0> p*?)) (1 2p*>

~ ( ; ”:2) (20u +207 ") (46)
pp

Let g(p*) = (02y? + y[02 + 2045 p* + 05> p*?]), then:

dA 1 L (Zn Zu)
2 _7(pw) = 47
o 2 YT 2o (le Zn “7)

where Z(px*) matrix elements: Z11, Z12, and Z»; are evalu-
ated as follows:

Zi = 2y (0ap + 0b>p¥)
Zip =y?y +ol - 01,21?*2)

Zy = yQoPy p* + 207 p* + 200 p™) (48)
Substituting from Eq. (44) and Eq. (47) into Eq. (38):

IELU(p*)nl

ap AT

tr|

1
+n
2 tr[Xgm]

1
g% (p*)

Shn—DZ(px] 49
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Formulation 2

As presented in Section 5, as defined in Section 5, can be
evaluated as follows:

VEs(m)n

Xp(n)x
E[U(p*)a] = ELR(pal = n( v Y o)
Using Eq. (7) to substitute for Xg(n), and let A = Xg(n —
1)x*x*TEﬁ (n — 1), and calculate the derivative of utility
%ﬁf*)"] with respect to p*, this results in the following
equation:

IELU(p*)nl

ap AT

n ( 1 ad [ Aqq ]
7 2a,/Tp(n)11 dp* L g(p*)

n 1 0 |: A :|> (50)
2|bl\/Xp(n)2 Ip* L &(p*)

where A is the first row and column entry in matrix A. Ay
and Ajp; are evaluated as follows:

A = Uabzp*2 + 20a20ab17* + Ua4
2
Ax = 0" p** + 200507 p* + oap” (51

Substituting Eq. (51) into Eq. (50) and evaluating 32* g? ; L) ]
0 r_Ax

and ap*tg(p*)

] terms results in:

VE[U(p*)n]
ap*
+n<[2g<p*>(oahaa2 +02,p") — 2y Ao + oﬁp*)]
2ag%(p*),/Xp,,(n)
+[28(P*)(0ab0b2 + 0 p*) — 2y A (04 + 0 p)) ])

2b82(P*)\/ 2/322(”)

= a + 2bp*

(52)
Simplifying Eq. (52) results in the following equation:

IE[U (p*)n] 14
————— =a+2bp*+n x
ap* 25182(19*)\/ Eﬂ]](”)

2 3 22
(p* (0ap” — 0ap0;0p)

+p*(02yaazh — crja,,z) + azyaazoab)
Y
+n
2|b|\/Z g, (n)g*(p*)

2 2, 42
—0.,0p + 0,0,

(p*(021/0£‘
) + (oY oapoi

+Gb2crazaab — 031;)) (53)
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Formulation 3

The expected utility of the third proposed formulation, the
expected utility of our second formulation is defined as:

E[U(p" )l = E[R(p™)n]l — np*\/x*T Zgiu—1)x* + 02

The derivative of the expected utility U(p*), w.r.t. p* is
calculated as follows:

IELU(p*)nl

ap AT

U
2,/ P2 Spup +0?)
8(p*2(x*TZﬁ(,,_1)x* +02))
ap*

(54)

Oab Ob

0a? Oup .
where Xg(n — 1) = < 5 ). Thus, the derivative of

*
expected utility with respect to p*, %}g{:)’l]

fied into:

can be simpli-

AE[U(p*),
W@l _ g
ap*

'7(217*(%2 + 2045 p* + p*20p? 4 02) + 2p* (Oup + abzp*))

2\/p*2(x*T Eﬁ(n—l)X* + 02)
(55)

Simplifying Eq. (55) results in the following equation:

IE[U(p™)nl
ap*
2
—n 2(71)2[7*2 +304pp* + 04 + o?
\/(02 + 02 4 204 p* + 0 p*?)

=a + 2bp*

(56)
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