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The epithelium is integral to the protection of many different biological systems and for the
maintenance of biochemical homeostasis. Emerging evidence suggests that particular
children have epithelial vulnerabilities leading to dysregulated barrier function and integrity,
that resultantly contributes to disease pathogenesis. These epithelial vulnerabilities likely
develop in utero or in early life due to various genetic, epigenetic and environmental
factors. Although various epithelia are uniquely structured with specific function, prevalent
allergic-type epithelial diseases in children potentially have common or parallel disease
processes. These include inflammation and immune response dysregulation stemming
from atypical epithelial barrier function and integrity. Two diseases where aetiology and
pathogenesis are potentially linked to epithelial vulnerabilities include Paediatric Asthma
and Eosinophilic Oesophagitis (EoE). For example, rhinovirus C (RV-C) is a known risk
factor for paediatric asthma development and is known to disrupt respiratory epithelial
barrier function causing acute inflammation. In addition, EoE, a prevalent atopic condition
of the oesophageal epithelium, is characterised by similar innate immune and epithelial
responses to viral injury. This review examines the current literature and identifies the gaps
in the field defining viral-induced effects on a vulnerable respiratory epithelium and
resulting chronic inflammation, drawing from knowledge generated in acute wheezing
illness, paediatric asthma and EoE. Besides highlighting the importance of epithelial
structure and barrier function in allergic disease pathogenesis regardless of specific
epithelial sub-types, this review focuses on the importance of examining other parallel
allergic-type disease processes that may uncover commonalities driving disease
pathogenesis. This in turn may be beneficial in the development of common
therapeutics for current clinical management and disease prevention in the future.
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WHAT IS PAEDIATRIC ASTHMA AND WHY
IS WHEEZING IMPORTANT?

Asthma is a heterogeneous, multifaceted respiratory disorder
often emerging in early childhood (1–4). It is considered a
symptomatic respiratory disorder, ranging from mild to severe.
A review of several birth cohorts and risk factors for asthma
development that encompassed 122 paediatric studies identified
over 60 individual asthma definitions with different parameters
for diagnosis (5). Thus, a clear definition has not been established
(6). Clinically, paediatric asthma is diagnosed as having onset
between the ages of 0 months up to 18 years, although
approximately 80% of paediatric asthma cases begin between
the ages of 0 months and 6 years (7). To further improve asthma
diagnosis in the paediatric population, the Asthma Predictive
Index (API) was developed to assist diagnosis of asthma under 3
years. However, observations from several cohort studies have
indicated that asthma diagnosis in children under five years is
difficult, with most standard testing regimens being variable or
inaccurate under the age of seven (5, 8, 9). Many children, in
particular, infants, have episodes of wheezing, which is often
associated with respiratory viral illness (10) and has been shown
to be a strong predictor for asthma diagnosis (1, 11). However,
there is often heterogeneity in asthma onset particularly between
gender and age. Males are more likely to be diagnosed pre-
puberty and to have a heritable component to their disease (1, 12,
13). Females, in contrast, are often diagnosed with asthma later
in life. Irrespective of such gender differences, children with
wheezing illness exhibit clinical pathological features including
smooth muscle hyper-constriction, immune responses such as
inflammation, chronic remodelling such as mucous metaplasia
and the resultant symptoms. A large proportion of children with
early onset asthma have these innate immune system pathologies
of allergic disease, and are also found to have elevated adaptive
immune cells such as eosinophils in both blood and inflamed
tissue (14, 15). Collectively, these pathological changes are
triggered by insults such as acute viral infection or allergens
which then contribute to a progressive loss of lung function
through repeated damage to the airways. This is particularly
evident in children who experience more intense and frequent
asthma exacerbations (1, 3, 4).

Children exhibiting severe symptoms or respiratory distress
caused by several of these pathologies may be hospitalised as
Frontiers in Immunology | www.frontiersin.org 2
their illness requires intervention (16–20) and in rare cases may
be life-threatening (21–23). The frequency and severity of
wheezing illnesses in infancy and early childhood may
determine the likelihood of paediatric asthma development.
Paediatric asthma is characterised by multiple phenotypes that
have been identified in several different paediatric birth cohort
studies (2–4, 24, 25). The Tucson Arizona birth cohort (1) has
examined factors affecting presentation of wheezing illness
before three years of age in relation to wheezing illnesses at six
years and identified four specific phenotypes, (A) non-wheezing
illness, (B) intermittent wheezing illness, (C) late-onset wheezing
illness and (D) persistent wheezing illness (Table 1). This
seminal study (1) suggests inherent differences in likelihood of
asthma development disease phenotype and the likely
mechanisms of disease progression.

To address this further, Oksel et al. (25) used latent class
analysis to assess five other birth cohorts and found that the
‘persistent wheeze’ phenotype (26) has the strongest association
with asthma development (25). In addition, all asthma
phenotypes in which wheezing illness was present had
significantly diminished lung function by 4 to 5 years of age
when compared to non-wheezing children (25). However,
observations between groups suggest that some children are
uniquely susceptible to asthma development, and that in
addition to symptoms such as wheezing, other factors from the
prenatal to early childhood period contribute to the persistent
wheezing phenotype and asthma susceptibility. For example,
using multivariate analysis, Hallit and colleagues (4) found that
early persistent wheezing at one year of age was independently
associated with respiratory distress, excess bronchial secretions,
reflux and nocturnal cough at two months of age (4). Others have
found that maternal smoking during pregnancy and maternal
history of asthma are also associated with the early persistent
wheezing phenotype in children from two months to one year of
age (4, 13, 27). Furthermore, the incidence rate of wheezing is
increased when these same risk factors are paired with paternal
history of asthma and cutaneous rash at two months of age (4,
27). In addition, another contributing factor for asthma
development is allergic sensitisation to at least one allergen.
Rubner and colleagues (28) have reported that 65% of children
that were sensitised under twelve months, ended up being
diagnosed with asthma by 13 years (28), and others have
found that allergic sensitisation by the age of three is pivotal in
TABLE 1 | Asthma Phenotypes identified in the tucson arizona birth cohort and corresponding lung function findings (1).

Asthma Phenotypes Identified in
Tucson Arizona Birth Cohort (1)

Children in study
assigned to

phenotype (%)

Relevant Findings

Children who had never wheezed by six years 51.5% N/A
Children who had at least one LRTI/wheezing in the first
three years of life but none at six years

19.9% Decreased airway function by the age of one year and at six years

Children who had non-wheezing before three years,
but had wheezing at six years

15% N/A

Children who were wheezing both before three years and at
six years

13.7% Normal lung function under the age of one year, decreased lung function
at six years
Table showing distinct asthma/wheezing phenotypes in children in the first six years of life adapted from the Asthma and Wheezing in the First Six Years of Life paper utilising the Birth
Cohort from Tucson Arizona by Martinez and Colleagues.
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asthma development (1, 3). Through the Urban Environment
Childhood Asthma (URECA) birth cohort (24), a study
characterising patterns of wheezing and allergic sensitisation in
early life, five wheeze and atopy phenotypes were identified: (1)
low wheeze/low atopy; (2) low wheeze/high atopy; (3) transient
wheeze/low atopy; (4) high wheeze/low atopy; and (5) high
wheeze/high atopy (24). Although asthma was overrepresented
in the high wheeze phenotypes, most cases of respiratory
morbidity were observed in children with both frequent
(persistent) wheezing and allergic sensitisation (high atopy)
(24). Children that are pre-disposed to airway vulnerabilities
through a variety of factors may have more severe and frequent
wheezing illnesses in response to an environmental trigger in
early life that often leads to an asthma diagnosis. Therefore,
recurrent wheezing illnesses in early childhood are a potential
indicator of eventual paediatric asthma diagnosis. Furthermore,
the combination of exogenous insults to the airway in early life,
and the child’s specific innate and adaptive immune responses to
these may further potentiate any vulnerabilities, and likely
contribute to asthma development.

Collectively, numerous heterogeneous risk factors contribute
towards asthma susceptibility as well as wheezing illness in
children. With regards to asthma development, parental
history of asthma, host genetics, wheezing illnesses and wheeze
phenotype all play a pivotal role as well as exposure to allergens,
pathogens and exogenous particulates (1, 4, 19, 20, 29–31).
Additional risk factors that contribute to wheezing illnesses
and asthma exacerbations in susceptible children include
exhaust fumes, cold air, and respiratory viruses known to cause
acute respiratory infections (ARI). Respiratory viral infections
such as respiratory syncytial virus (RSV), influenza, adenovirus,
coronavirus and rhinovirus (RV) have also been highlighted as
key triggers of wheezing illnesses and asthma exacerbations in
children (18–20, 32–37). Furthermore, various studies have
suggested a potential nexus between the airway epithelium,
respiratory viral insults and its association with wheezing
illness. However, the mechanism for this remains unclear (20,
37–39) but there is cogent evidence (40–45) to support the
pivotal and contributory role of the airway epithelium to
disease progression.
AN EXCELLENT DEFENCE – HOW DOES
THE EPITHELIUM ENACT ITS INTEGRAL
FUNCTION?

The airway epithelium is a pseudostratified structure whose
complex functions provides protection through structural,
mucociliary and innate-immunological barriers. These barriers
work synergistically in maintaining epithelial homeostasis and
providing a dynamic response to pathogens, allergens and
particulate matter. As reviewed by Knight and Holgate (46)
and also identified by Garcia and colleagues (47), there are
various types of epithelial cells, including basal, club, ciliated
columnar and goblet cells (46–48). In addition, there are other
lesser known epithelial cells involved in innate-immunological
Frontiers in Immunology | www.frontiersin.org 3
epithelial function including neuroendocrine cells, ionocytes
expressing CFTR that contribute significantly to the muco-
viscosity of airway surface liquid, and solitary chemosensory
cells which are involved in the detection and release of
neurotransmitters and ion channel function, among other
functions (49–51). The heterogeneity of epithelial cell
populations is further highlighted when comparing between
the proximal and distal airway epithelium, each having similar
yet distinct roles and functional processes (Figure 1).

The airway epithelium was once regarded as inert but is now
known to be a dynamic barrier which actively regulates the
passage of smaller molecules, ions and water while remaining
impermeable to macromolecules (Figure 1). This is achieved via
a myriad of junctional complexes (52, 53), which provides
anchorage not only between adjacent cells but also to the
basement layer and works to prevent exogenous molecules
from passing through to the systemic circulation (52–55). In
addition, O-glycosylated linear glycoproteins, which are mucins
produced and secreted by goblet cells onto the airways, provide
further defence against external insults. Structural mucins exist
as brush-like structures attached to epithelial cells adjacent to the
lumen in between cilia to form an additional structural barrier.
These mucins bind to or block pathogens and other exogenous
stimuli to prevent them from reaching the cell surface (56–58).
Goblet cells, along with non-epithelial submucosal glands, also
secrete non-structural polymeric mucins such as MUC5AC and
MUC5B that form interconnected strands and sheets as part of
airway mucus (59, 60). Airway mucus forms a percentage of the
airway surface liquid layer atop the epithelium and helps to
capture exogenous matter including pathogens and particulates
(59, 60). Mucociliary clearance of the trapped pathogens and
particulates are then unidirectionally propelled away from the
distal and proximal airways towards the oropharyngeal regions
for expectoration.

Adding to the protective capacity provided by mucins, basal
epithelial cells have also been demonstrated to have a reparative
capacity (61–63). Following wounding or injury to the
epithelium by airborne pathogens, initiation of the cell repair
process commences with the leading edge basal cells surrounding
the injury site migrating into the wound to begin restitution of
barrier integrity. This then follows by proliferation and
differentiation as part of the wound repair process (61).

Complementing the physical defence of the airway
epithelium, airway epithelial cells have also been shown to
have an innate-immunological function that often leads to the
recruitment of the adaptive immune system. This encompasses
epithelial derived cytokines (Table 2) that define the pro-
inflammatory responses that comprise part of the innate
immune system and are released in response to stimuli. These
have been comprehensively reviewed in numerous studies
assessing adult airway epithelium (106–108) and will not be
covered within the scope of this review.

The paediatric upper airway epithelium has been shown to
have 91% transcriptional homology with the lower airway
epithelium and a similar gene expression profile particularly in
children with atopy (109). This conservation between the upper
November 2021 | Volume 12 | Article 773600
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and lower respiratory airways lends support to the unified airway
hypothesis that disease manifestation at both sites is likely a
consequence of similar processes (109). However, it is
acknowledged that this may not always translate functionally
in both upper and lower respiratory airways. Foxman and
Frontiers in Immunology | www.frontiersin.org 4
colleagues (110) have shown that there is a temperature
dependent innate immune response in murine airway epithelial
cells infected with RV-A1. At 37°C, which is equivalent of the
lower airways, there were increased interferon (IFN) type I and
III genes, along with IFN stimulated genes compared to at 33°C,
FIGURE 1 | Structural Morphology and Barrier Functions of the Airway Epithelium. An overview of the structural morphology of the airway epithelium and it’s
multifaceted barrier functions including structural, mucociliary and immunomodulatory barrier functions in response to injury. (A) Tight Junction Complex, (B)
Adherence Junction Complex, (C) Desmosomes, (D) Mucin Release into Airway Surface Liquid, (E) Structural Mucins, (F) Hemidesmosomes, (G) Disruption of
Junctional Complexes due to epithelial vulnerabilities and injury. L, Lumen; ASL, Airway Surface Liquid; Ep, Epithelium; BM, Basement Membrane; ECM, Extracellular
Matrix; En, Endothelium; BS, Bloodstream. Created with BioRender.com.
TABLE 2 | Various cytokines involved in immune response to different stimuli.

Particulate Matter Viral Infection Bacterial Infection Fungal Infection

Cytokines associated with immune response to: TNF-a (64, 65)
IL-1b (64–67)
IL-6 (64–66, 68)
IL-8 (66–68)
IL-10 (69)
MIP-1 a (64)
GM-CSF (64, 66, 67)
LIF (66, 67)
TLRs (70)

IFN-a (71, 72)
IFN-b (71, 73, 74)
IFN-g (71, 75, 76)
IFN-l (77, 78)
IL-1b (79, 80)
IL-6 (79, 81, 82)
IL-8 (79, 83–85)
RANTES (84, 85)
GM-CSF (84)
TNF- a (70, 82)
CXCL8 (81)
CXCL10 (81, 86)
TSLP (87)
MCP-1 (82)

IFN-g (88–90)
IFN- g-IP10 (91)
IL-1 a (92)
IL-1b (91–93)
IL-6 (91, 92, 94)
IL-8 (92, 94)
GM-CSF (95)
G-CSF (95)
TNF-a (92, 94)
NFkB (96)
MCP-1 (91, 92)
MIP-1 a (91)
RANTES (91)
TLRs (97–99)

TLRs (100, 101)
IL-1b (102)
IL-2 (103)
IL-4 (103)
IL-6 (102)
IL-10 (103)
IL-12 (103, 104)
IL-18 (104)
IL-36 (101)
TNF-a (102–105)
IFN-g (103, 104)
November 2021 | Volume 1
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the equivalent of upper airways. This suggests a higher level of
anti-viral defence or a more potent host response to infection at
the higher temperature and in the lower airway. Furthermore,
Lopez-Souza and colleagues (111) identified that RV-A16-
infected human bronchial epithelial cells at air-liquid interface
had lower trans-epithelial resistance, increased viral load (20-30
times), increased anti-viral and inflammatory cytokine
production such as regulated on activation, normal T-cell
expressed and secreted (RANTES), interleukin (IL) -8, IP-10,
and IL-1a, compared to RV-A16-infected human nasal epithelial
cells irrespective of asthma diagnosis (111). This suggests that the
nasal epithelium has a greater protective capacity than the
bronchial epithelium, and that asthmatic children with
epithelial vulnerability may have a greater chance of RV
infection spreading from the upper to the lower respiratory
tract. Foxman et al. also found that genetic deficiency in
mitochondrial antiviral-signalling protein (MAVS) and IFN
type 1 receptor allowed for higher levels of RV replication at
37°C (110), suggesting that children with innate immunity
deficiencies such as inadequate IFN response in the airway
may allow for greater severity of RV infection. However, not
all children with asthma are deficient in IFN production, as
shown by Miller et al., where some children were able to produce
sufficient IFN even while exacerbating (112). It was also
demonstrated that IFN-l was increased in nasal lavage fluid
from wheezing asthmatic children with an RV infection
compared to non-wheezing asthmatic children with an RV
infection (112). Therefore, this again suggests that there are
immunological and mechanistic differences between asthma
phenotypes in different children, as well as potential
respiratory epithelial differences, resulting in varying levels of
vulnerability towards exogenous stimuli.
WHAT IS A VULNERABLE EPITHELIUM
AND HOW MAY THIS VULNERABILITY
OCCUR?

It is evident that despite similarities between the upper and lower
airways of a child, there may be innate differences compared to
other children. Factors that can cause this heterogeneity include
host genetics (29, 113–117), epigenetic modifications throughout
infancy and early childhood (117–119) as well as environmental risk
factors (61, 120–122), that together, result in variable gene
expression patterns and clinical characteristics. These may be
hereditable or caused by environmental modification during the
in utero or early childhood period. Although children with a
healthy, respiratory epithelium functioning at full capacity are
unlikely to develop vulnerability, those who are at risk or
predisposed to disease may be more susceptible to external insults
such as viral infection, allergens, or particulate matter by exhibiting
an atypical epithelial barrier and immune response. These insults
may then contribute to further epithelial dysregulation.

Studies have observed differences in individual genes involved
in innate immune responses activated during viral respiratory
illness including JAK2, STAT4, MX1, DDX58, VDR and EIF2AK2
Frontiers in Immunology | www.frontiersin.org 5
(29, 114). Interestingly, genetic polymorphisms on these genes
have been significantly associated with asthma exacerbations (29,
114). Variations in the ORMDL3/GSDMB locus, and GSDMB,
CD14, CC16, CYSLTR1, ST2, GSTP1, and IL1RL1 genes among
others (123–129), some of which may be epithelium and innate
immunity specific have also been shown to be associated with
childhood onset asthma. In addition, single nucleotide
polymorphisms (SNP) have been shown to occur in mucin
genes, potentially causing alterations in airway mucus (130).
SNPs such as the MUC5AC coding rs1132440 G/C (C risk allele
variant) have been associated with increased MUC5AC
expression during respiratory viral illnesses (130). Jackson and
colleagues found that this particular risk allele enhanced
expression of a gene hub containing MUC5AC and other genes
related to mucus hypersecretion and activation of eosinophils
resulting in clinical outcomes such as airway-hyper-
responsiveness, mucus plugging and increased inflammatory
processes (130).

Other genetic variations in cellular viral receptors are also
likely to contribute to epithelial vulnerability. SNPs such as
rs5498 and rs688 have been found in RV species A and B
receptors - the intracellular adhesion molecule (ICAM-1) and
the low density lipoprotein receptor (LDLR) respectively (131,
132). However, the most clinically relevant viral receptor SNP
rs6967330 A/G (Cys529Tyr) is located in the cadherin related
family member 3 (CDHR3), the viral receptor for RV-C, the
species most prevalent in paediatric wheezing illness (19, 20, 35–
37, 115, 116). The CDHR3 receptor protein is present on all
ciliated epithelial cells with its extracellular domains 1-3
mediating the interaction of epithelial cells with RV-C (133).
The CDHR3 gene risk allele is associated with a ten-fold increase
in cellular CDHR3 expression (134) and has been shown to
increase RV-C infection levels and protein surface localisation of
the receptor on epithelial cells potentially leading to more severe
infection (134). This risk allele has also been associated with
earlier, faster ciliogenesis and a ten-fold increase in FOXJ
transcription factor expression, a known driver of basal
epithelial cell differentiation into ciliated cells (116, 117).
Despite this, it appears to have no effect on ciliary beat
frequency or the integrity of tight junctions (117).
Furthermore, cleaved cytoplasmic domains of some cadherins
are able to self-activate their own gene expression which
decreases as cells mature and protein interactions increase
(135). This suggests that epithelial cell damaged due to
infection may trigger the repair process, which in turn may
lead to an increase of immature cells and increased CDHR3. RV-
C infection has been observed to decrease CDHR3 mRNA
expression in wheezing children compared to the control
group (136). Clinically, the CDHR3 risk allele has been
associated with increased risk of wheezing illness leading to
hospitalisation. It was found to be overrepresented in wheezing
children, and children with this risk allele were observed to need
an increased amount of respiratory medical care during
wheezing illness (136).

There are various genetic risk factors that may cause
variability in the amount gene encoding or gene function as
November 2021 | Volume 12 | Article 773600
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recently identified by Khoo and colleagues in their Mechanisms
of Acute Viral Respiratory Infection in Children (MAVRIC)
acute wheezing cohort (113). They found that some children, in
response to an acute viral-induced wheezing illness, have
different upper airway gene network expression patterns in
their anti-viral Interferon Regulatory factor 7 (IRF7) network.
These network patterns, named “IRF7hi” and “IRF7lo”, are likely
to represent different immune responses to respiratory viral
infection. Children characterised as “IRF7hi” exhibited a gene
expression pattern associated Th1 and type 1 interferon
responses to viral-induced asthma exacerbations. Alternatively,
children characterised as “IRF7lo” exhibited a gene expression
pattern associated with epithelial cytokine signalling,
upregulated growth factor signalling and downregulated anti-
viral interferon gamma. The study also reported that children
with “IRF7lo” expression exhibited symptoms twice as long prior
to hospital presentation from initial symptoms and had cough
three times as long compared to children with “IRF7hi”
expression. In conjunction, the odds ratio for hospital
admission for children with “IRF7lo” was increased by a factor
of four and a much shorter time until wheezing illness
recurrence. Thus, children with the “IRF7lo” phenotype may
have more frequent wheezing illnesses which may potentiate
asthma development. These molecular sub-phenotypes may
impact on each child’s epithelial response due to the genes and
cytokines associated with them.

In addition to genetic risk factors, each child will likely incur
epigenetic modifications, due to environmental factors such as
diet and exposure to allergens and exogenous pathogens to their
airway epithelium during development. These epigenetic
modifications have the potential to change epithelial
functionality and integrity, as shown by Lund et al., where RV
infection causes DNA methylation (118) and has been found to
occur in genes including SMAD3, that encodes for the cell
signalling protein SMAD3, as well as DDO and METTL24,
genes that encode for peroxisomal flavoprotein and
methyltransferase 24 respectively (118, 137). Furthermore,
Pech and colleagues found that DNA methylation and
resultant changes in mRNA expression in genes occurred in
nasal cells from children with asthma following infection with
RV (119) And that these altered genes are associated with host
immune response to viral infection as well as asthma
pathogenesis (119).

In addition to genetic and epigenetic risk factors, there are
also environmental risk factors. An important subset of
environmental risk factors for epithelial vulnerability are those
imparted by pre-term birth (<32 weeks) and its associated
medical stresses such as oxygenation, steroids use and
mechanical ventilation (120). Hillas and colleagues observed
that cultured primary nasal epithelial cells from healthy full-
term children were able to complete in vitro wound closure by 60
hours (120). In contrast, pre-term infants appear to have either
(1) delayed but complete (>80%); (2) significant but incomplete
(50-80%); or (3) fully incomplete (20-50%) epithelial wound
closure (120). Moreover, epithelial vulnerability in pre-term
children may develop in utero during maternal exposure to
Frontiers in Immunology | www.frontiersin.org 6
pathogens, particulates and resultant inflammation.
Chorioamnionitis, an inflammatory in utero risk factor for pre-
term birth (121, 122), has been associated with increased airway
epithelial apoptosis (121) with further studies also showing that
epithelial cells treated with bronchoalveolar lavage fluid from
infants born pre-term with chorioamnionitis have a reduced
capacity for epithelial wound repair after mechanical
wounding (122).

A dysregulation in epithelial wound repair potentially leaves
children more susceptible to exogenous insults and further
epithelial vulnerability. Defective epithelial wound repair has
been found to be highly prevalent in children with asthma (38,
39). Deficient production of fibronectin, an epithelial
extracellular matrix protein, may contribute to aberrant wound
repair (138) although treating in vitro cell cultures with
exogenous fibronectin only partially restored wound repair
(138). Iosifidis et al., using paediatric asthmatic primary airway
epithelial cells, demonstrated an aberrant wound migration
pattern associated with decreased integrin a5b1 expression
(61) that is regulated by the PI3K/Akt pathway (61). The
transcriptomic signature associated with aberrant wound repair
and the PI3K/Akt pathway was associated with viral-induced
wheezing illness, suggesting that RV infection could disrupt the
PI3K/Akt pathway particularly in children susceptible to asthma.
Importantly, they showed that Akt restoration with a repurposed
drug resulted in improve epithelial repair capacity and integrin
expression, thus providing proof of principle that a dysregulated
airway epithelium can be therapeutically targeted (61).

There are many other risk factors that increases epithelial
vulnerability and eventually leading to the development of
persistent wheeze and ultimately, asthma. Epithelial
vulnerability has the potential to cause a dysregulated response
to an environmental insult which may potentiate disease
progression. Furthermore, it is possible that RV infections,
particularly RV-C, may infect the vulnerable epithelium
opportunistically. The consequence of this may be a repetitive
cycle of infection, dysregulated epithelial barrier function, repair,
leading to persistent wheezing exacerbations and potential
asthma pathogenesis. Although there has been progress in
research on epithelial vulnerability and its potential to
contribute to airway disease pathogenesis, elucidating the role
of the vulnerable epithelium in disease progression and in
particular, its association with respiratory viral infections such
as rhinovirus, remains significantly inadequate.
THE SIGNIFICANCE OF RHINOVIRUS –

WHAT HAVE CLINICAL AND
LABORATORY BASED STUDIES
IDENTIFIED SO FAR?

Rhinovirus (RV) is the most common virus found in children,
particularly in those admitted to hospital with wheezing (19,
139). As reviewed by Palmenberg and Gern (140), RVs are
viruses that are part of the enterovirus genus and the
November 2021 | Volume 12 | Article 773600
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picornaviridae family. These viruses are known to have a five
prime (5’) virus encoded protein (VP) and a three prime (3’) poly
adenosine tail like that of messenger RNA (140). They are small,
approximately 30nm in diameter irrespective of RV species.
Three known species of RV exist: RV-A, RV-B and RV-C.
There are three host viral receptors for RVs; major genotypes
of RV-A and RV-B use the intracellular adhesion molecule 1
(ICAM-1), and minor genotypes use the low density lipoprotein
receptor (LDLR) (140), however, RV-C uses CDHR3 as its
receptor (134, 141, 142). There are many RV strains with more
than 150 RV sub-types identified and extensive antigenic
diversity and presently, there are no therapeutics capable of
mitigating its effects and the development of serious respiratory
disease (143). Interestingly, the increase in RV infections in
spring and autumn correlate with hospital admission rates for
paediatric asthma exacerbations (144, 145) and the virus is
present in the majority of paediatric asthma exacerbations (11,
19, 20, 23, 35–37, 144, 146–150). The anti-viral immune
response triggered by ARIs is likely to contribute to the overall
inflammatory load that is in turn capable of triggering an
asthma exacerbation.

The inter-relationships between RV infections, epithelial
vulnerability and why some children have persistent wheeze,
leading to the development of asthma, is still largely unclear (146,
151). Rhinovirus is commonly detected in children with ARIs
(11, 139, 152–160), with ARIs leading to symptoms in the lower
respiratory tract being a major cause of paediatric morbidity and
mortality worldwide (151). ARIs, particularly those caused by
RV may contribute towards epithelial vulnerability, further
wheezing illnesses and asthma development. RVs are
ubiquitous in the community, and it is estimated that they
cause ~50% of all upper respiratory tract infections in humans,
as well as being associated with acute asthma exacerbations in
both children and adults (11, 19, 20, 23, 35–37, 144, 147–150).
This is due to RV being identified as the most common virus in
wheezing children admitted to the hospital emergency
department, associated with 20 - 87.5% of hospitalisations (19,
20, 35–37, 144, 146, 150) and 10 - 15% of admissions into the
paediatric intensive care unit (18, 19). The highest instances of
RV infection have been reported in children with a history of
asthma related symptoms (144). Moreover, Jackson and
colleagues utilising the COAST high-risk birth cohort of
children with parental history of asthma or allergy, also found
that 90% of wheezing illnesses were of viral origin, and that by
the age of three years, RV-associated wheezing had a three-fold
stronger association with increased asthma risk by six years than
aeroallergen sensitisation or RSV (11). Almost 90% of the
children that had RV induced wheezing illness at the age of
three years were diagnosed with asthma at the age of six (11).
They concluded that among all outpatient viral wheezing
illnesses in infancy and early childhood, those caused by RV
were the most significant predictors of asthma development in
their high-risk birth cohort (11). Wheezing illnesses and their
relation to house dust mite allergy and RV was also examined in
another study, which found that the probability of acute
wheezing in children was positively correlated with increasing
Frontiers in Immunology | www.frontiersin.org 7
IgE titres to house dust mite. This was also significantly further
potentiated when an RV infection was present during
exacerbation (161).

The effect of RV on the paediatric airway epithelium - and its
contribution to wheezing illness and eventual asthma
development - is not yet fully understood. One study suggests
that receptor specificity determined by the major or minor
genotype of RV- A and RV-B can influence host response to
the virus (162). Other studies have shown that RVs can
dysregulate epithelial barrier function and integrity, potentially
contributing to asthma development by altering epithelial barrier
function and integrity in several ways including by disruption of
homeostatic and dynamic cytokine production, tight junction
complexes, as well as dysregulating wound repair (38, 79,
144, 163).

An example of one of the effects that RV has on the
epithelium is that RV is able to dysregulate the production of
anti-viral and pro-inflammatory cytokines and biochemical
signalling molecules during infection, particularly in asthmatic
children (144, 164–169) potentially leading to systemic
inflammation and the switch from the innate immune system
of the epithelial response to the adaptive immune system.
Contradictory findings have been made around the interferon
response in this setting. For example, some have found that IFN
type I, II and III genes are induced by the airway epithelium
during RV infection (71). Interestingly, this response appears to
be dysregulated particularly in asthmatics (170). IFN-a levels
have been found to be upregulated in PBMCs from asthmatic
children infected with RV, while IFN-l is already upregulated at
baseline in these children (171), which, when combined, suggest
a hyperactive immune response. In addition, Miller and
colleagues (112) found that IFN-l is further increased in RV-
infected-wheezing children with asthma compared to RV-
infected-non-wheezing children with asthma (112). Conversely,
others have shown that primary airway epithelial cells from
asthmatic children infected with RV-A1 and RV-A16 produce less
IFN-b and IFN-l than cells from their healthy non-asthmatic
counterparts (38, 162, 170, 172). In addition, Edwards and
colleagues (170), found that deficient IFN b and l was positively
correlated with asthma severity, with high levels of IFN deficiency
found in severe therapy resistant atopic asthmatics (170). However,
the controversy surrounding these findings is potentially due to
children having different interferon molecular sub-phenotypes
(“IRF7hi” and “IRF7lo”) such as was identified in the MAVRIC
acute wheezing cohort byKhoo and colleagues (113). These studies
collectively suggest a dysregulated anti-viral response to RV
infection. In conjunction with epithelial IFN production in
response to RV, there are other antiviral mechanisms that appear
to be dysregulated during infection, such as the signal transducer
andactivatorof transcription1 (STAT1) signallingpathway.STAT1
is typically activated in response to RV in epithelial cells and
activates a signalling cascade that promotes the expression of
anti-viral genes (71) as part of the multifaceted epithelial response
to infection.

The airway epithelium’s multifaceted response to RV
infection has been shown to upregulate gene expression and
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ultimately the release of innate immune system pro-
inflammatory cytokines, chemokines (79, 81, 83–86, 173),
including eotaxins, IL-17C, IL-4, IL-5, IL-13, IL-33, NFkB,
TSLP (71, 85, 173–175) and others (Table 2). Nasal washes
collected from children during confirmed RV infection, have
increased thymic stromal lymphopoietin (TSLP) levels at the
time of infection which is also linked to atopy and plays a role in
many allergic diseases (176). Kennedy and colleagues (173),
observed an increase in TSLP gene expression and protein as
well as gene expression of IL-25 and IL-33, in asthmatic donor
lungs compared to non-asthmatic controls following RV-A39
infection (173). They also observed that there was only a
difference in carbachol-induced airway constriction between
the two cohorts post RV-A39 infection, suggesting an altered
immune response even in the lower airway (173). In addition,
Subauste and colleagues (177) demonstrated that RV-B14 was
able to induce TNF-a, IL-6 and IL-8 release in human bronchial
epithelial cells, and that prior exposure to TNF-a, increased
susceptibility to RV-B14 infections suggesting the potential for
cytokines to potentiate further RV infection (177). Another study
examining the nasal cytokine profiles of children hospitalised
with respiratory wheeze found that RV-C-induced wheezing was
identified to have a characteristic Th2 type cytokine release
profile in both non-asthmatic children and asthmatic children
(17). Interestingly, the same study also found that cytokines IL-
17 and IL-1b (characteristic of Th17) were increased in children
with pre-existing asthma and not in non-asthmatic children,
irrespective of both being diagnosed with wheeze and viral
infection symptoms (17). In addition, the pro-Th2
inflammatory profile inducing cytokine IL-33, is shown to be
downregulated in children with the “IRF7hi” phenotype defined
in the paper by Khoo and colleagues (113) but not in the
“IRF7lo” phenotype and thus could potentially be a driver of
wheezing illnesses in children with the “IRF7lo” phenotype. IL-
33 has been associated with paediatric asthma in other studies
also (17, 113, 175, 178). Moreover, in response to RV infection by
adult bronchial biopsy specimens, there is an increased number
of sub-epithelial inflammatory cells that express IFN, as well as
epithelial and sub-epithelial pattern recognition receptors (PRR)
(169). It is important to note that RV infection is recognised by
PRRs (86, 179, 180) that activate MAPK signalling pathways that
in turn induce inflammatory gene production. MAPK pathways
p38 and JNK have pivotal roles in the epithelial inflammatory
response to RV infection (181). Duel Specificity Phosphatase 10
(DUSP10) also plays a pivotal role by regulating it inflammatory
cytokine production (e.g. IL-1b) and has been observed to be
downregulated by RV infection, thus weakening the anti-viral
response and perpetuating uncontrolled inflammation (181).
The overproduction or upregulation of pro-inflammatory
cytokines and chemokines potentially confers a hyper-active
response which may damage the airway epithelium further and
go on to impair barrier function and integrity. Interestingly, even
without RV infection present at the time, asthmatic airway
epithelial cells from children have been identified to have
increased IL-6, epidermal growth factor and prostaglandin-E2
as well as decreased TGF-b1 (39). This suggests intrinsic
Frontiers in Immunology | www.frontiersin.org 8
differences in the airway epithelium between asthmatic and
non-asthmatic children, and thus a different response to
pathogens such as RV.

RV infection also disrupts the barrier function of the airway
epithelium by dissociating tight junction proteins such as zonula-
occludens 1 from the tight junction complex in both asthmatic
and non-asthmatic children (163, 182). Despite upregulation of
the basal gene expression of the tight junctions claudin-1 and
occludin in children with asthma compared to non-asthmatics,
protein levels are significantly reduced (163). This suggests that
although genes are being transcribed, translation into protein
may not be occurring. Furthermore, in vitro air-liquid interface
cultures of epithelial cells established from asthmatic children
show a sustained decrease in tight junction protein staining,
decreased trans-epithelial resistance, (TEER) and a consequent
increase in permeability when infected with RV-A1 (163).
Dysregulated tight junction expression and resulting function
as seen in asthmatic epithelial cells would potentially allow
pathogens and particulates to pass through the epithelial layer
and into the bloodstream resulting in a heightened host response.

In addition, RV has also been observed to be able to disrupt
epithelial wound repair and increase cellular cytotoxicity (38,
183–185). RV-A1 has been shown to delay wound repair
capacity and inhibit apoptotic processes by epithelial cells,
exaggerating the already defective repair in the asthmatic
airway (38). RV infection of a bronchial epithelial cell line in
vitro has been able to stimulate mRNA expression and release of
basic fibroblast growth factor (bFGF), leading to fibroblastic
repair rather than normal epithelial repair processes (184). The
release of bFGF is associated with RV-induced cytotoxicity and
resultant epithelial necrosis as opposed to apoptosis.
Furthermore, RV infection also causes an increase in matrix
metalloproteinase (MMP) activity in vitro, and may affect
proteins of the extracellular matrix to which the epithelium is
attached (184). Levels of bFGF and MMP are also induced
following RV infection of epithelial cells in vitro (184). This is
further evidence that epithelial wound repair is dysregulated in
asthmatics, and potentiated further by RV. Furthermore, Altman
and colleagues (186) examined cellular transcriptome networks
and found that peak upregulation of epithelial SMAD3 and type
one IFN signalling occurs at day two of a viral-induced asthma
exacerbation, followed by peak upregulation of epidermal growth
factor, and extracellular matrix at day three to four (186).
Deficient or dysregulated wound repair of the epithelium likely
leaves the epithelium susceptible to further infection or damage
from exogenous insults.

Of the three species of RV, RV-C is of particular interest as it
is associated with more severe acute wheezing illnesses (20). In
addition, several studies have shown that RV-C accounts for the
majority of RV positive cases in children (Table 3) (17, 19, 20,
35–37, 188, 189) and coincide with higher asthma severity scores
as evidenced in children presenting to the emergency department
with a wheezing illness (20). Furthermore, wheezing illnesses
induced by RV-C are often more commonly associated with
typical asthma symptoms such as wheezing and cyanosis when
compared to other RV species (36, 37, 190). It is possible that
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RV-C may further potentiate epithelial vulnerability, yet this is
currently unknown.

Despite anatomical differences, other epithelial surfaces are
damaged following insult, which when dysregulated can
contribute towards disease manifestation and progression. One
example, eosinophilic oesophagitis (EoE), exhibits similar disease
characteristics to paediatric asthma including atypical epithelial
barrier integrity and dysregulated innate and adaptive immunity
Frontiers in Immunology | www.frontiersin.org 9
(193). Although the intricate interplay between allergic
sensitization and airway inflammation has been studied in
these diseases (28, 187), their association with epithelial barrier
dysregulation remains relatively unknown, however, there is
evidence to suggest that systemic inflammation could be a
major contributor (191, 192). Therefore, examining parallel
epithelial diseases processes may further the understanding of
their pathogenesis. For example, to understand the role of the
TABLE 3 | Different species of RV in paediatric patients.

Cohort(s) Sample Type Detection Method(s) RV-A
(n)

RV-B
(n)

RV-C (n) Untypable
RVs or other
viruses (n)

Includes
Asthmatics

Ref.

Adults and Children admitted to
hospital (results recorded for
children only)
(Italy)

Nasopharyngeal
Aspirate

Real time RT-PCR 24 6 21 5 Unknown Piralla et al.
(187)

Children aged 2-16 years with
Acute Asthma presenting to
hospital emergency department
(Australia)

Nasal Aspirate Quantitative real-time PCR 31 A
or B

31 A
or B

76 6 Yes Bizzintino
et al. (20)

Healthy Pre-school children in the
community under the age of 5 years
swabbed when presenting with ARI
symptoms
(Australia)

Nasopharyngeal/
Oropharyngeal
swabs

Quantitative real-time PCR 99 13 113 13 Unknown Mackay
et al. (188)

Children <5 years presenting to
hospital with an acute wheezing
episode (Australia)

Nasal Samples Quantitative real-time PCR 38 3 81 13 Yes Cox et al.
(35)

Children between the ages of 1
month and 14 years admitted to
hospital with ARI (Italy)

Nasopharyngeal
Swab

Nuclisens EasyMAG
automated extraction
system; Quantitative real-
time PCR

18 5 22 N/A Unknown Esposito
et al. (189)

Children aged 0-18 years
presenting to hospital with Acute
Wheeze
(Australia)

Nasopharyngeal
Aspirate, Nasal
Swab

Quantitative real-time PCR 85 6 169 N/A Yes Hurdum
et al. (36)

Hospitalised children aged 1 month
to 16 years and 11 months with
lower respiratory tract infection
(China)

Nasopharyngeal
Aspirate

Quantitative HRV-specific
real-time PCR

229 27 100 N/A Yes Xiao et al.
(190)

Children hospitalised with
Pneumonia (Morocco) 2-59 months

Nasopharyngeal
Aspirate

Quantitative real-time PCR 60 8 89 N/A Unknown Annamalay
et al. (37)

Children aged 0 to 16 years
admitted to a hospital PICU* with
ARI**
(Australia)

Nasopharyngeal
Aspirate

Quantitative real-time PCR 40 4 51 N/A Yes Cox et al.
(19)

Children <18 years hospitalised with
Acute Lower Respiratory Tract
Infections
(Korea)

Nasopharyngeal
Aspirate

Multiplex real-time PCR 55 8 31 N/A Unknown Ahn et al.
(191)

Multi-centre Post-hoc analysis of
Infants under one year of age
diagnosed in hospital with
Bronchiolitis
(USA)

Nasopharyngeal
Microbiota

Singleplex real-time PCR 91 12 91 RSV 580 Parental
History

Toivonen
et al. (146)

Children (1-59 months) hospitalised
with Pneumonia/Controls (Africa)

Nasopharyngeal/
Oropharyngeal
swabs

Quantitative real-time PCR
assay

199 31 185 N/A Unknown Baillie et al.
(192)

Children aged between 24-72
months presenting to the hospital
emergency department with
respiratory wheeze
(Australia)

Nasopharyngeal
Swabs

Quantitative real-time PCR 64 N/A 207
Sole Pathogen
in 191 of RV-
C samples

RSV 42 hPIV
30

Yes Sikazwe
et al. (17)
Nove
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vulnerable epithelium and its dysregulation in acute wheezing
illness and paediatric asthma, it is important to examine what is
known about the epithelial response to injury in EoE.
WHAT CAN WE LEARN FROM
EOSINOPHILIC OESOPHAGITIS (EOE)
AND THE IMPORTANCE OF THE
EPITHELIUM IN DRIVING ATOPIC
CHRONIC INFLAMMATION?

Eosinophilic Oesophagitis (EoE) is an increasingly prevalent
atopic condition defined by eosinophilia of at least 15
eosinophils per high power field (eos/hpf) and symptoms of
oesophageal dysfunction (194, 195). As an auto-immune disease,
EoE is potentiated by abnormal host response to a trigger, yet still
exhibits typical allergy symptoms similar to asthma (Figure 2).
Although not inherently linked, EoE and asthma are two distinct
allergic diseases that have parallel disease processes. Thus, the
similarities and differences identified can be drawn upon
to expand the knowledge of each disease and further
the understanding of the mechanisms behind them.
Increasing evidence suggests that genetic predisposition and
environmental triggers contribute to disrupted oesophageal
Frontiers in Immunology | www.frontiersin.org 10
epithelial integrity, initiate an innate pro-Th2 immune
response and lead to Th2 chronic inflammation with
consequent oesophageal dysmotility and fibrosis (196). Airways
dysmotility and fibrosis are common features in asthma as well,
and therefore EoE may be a representative model for possible
similar pathogenic pathways.

Fibrosis is responsible for EoE symptoms such as dysphagia
and food impaction. However, children tend to present with less
specific symptoms related with oesophageal inflammation and
oesophageal dysmotility such as feeding difficulties, gagging and
vomiting (196, 197). Confirming what is suspected by examining
the differences in symptoms in adult and children, prospective
studies suggest that inflammation progresses to fibrosis in the
majority of untreated patients (198). Food allergens drive the
majority of cases of EoE, but food allergy (FA) in EoE presents
differently from IgE mediated FA, in that it appears to start not in
infancy but instead seems to be due to a break in tolerance of
previously well tolerated common foods such as milk and wheat
(199–202). Many lines of evidence suggest that such disruption is
due to the epithelial barrier insults and consequent induction of a
Pro-Th2 inflammation in genetically predisposed individuals.
What such an insult is still largely unknown. Viral infections
have often been suspected, but difficult to prove in a disease that
needs an endoscopy to be diagnosed. However, a high incidence
of EoE (30%) in immunocompetent atopic individuals
FIGURE 2 | Structural Morphology and Barrier Functions of the Oesophageal Epithelium. An overview of the structural morphology of the oesophageal epithelium
and it’s multifaceted barrier functions including structural, mucosal and immunomodulatory barrier functions in response to injury. (A) Tight Junction Complex, (B)
Adherence Junction Complex, (C) Desmosomes, (D) Hemidesmosomes. OSL, Oesophageal Surface Liquid; Ep, Epithelium; BM, Basement Membrane; ECM,
Extracellular Matrix; En, Endothelium; BS, Bloodstream. Created with BioRender.com.
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recovering from Herpes Virus Simplex esophagitis, suggests that
viral infection may indeed play a role in EoE (203). If the initial
insult has not been clarified, the last 10 years of research have
clearly demonstrated the central role of the oesophageal
epithelium in driving and maintaining chronic pro
inflammatory inflammation in EoE. Eosinophils define the
disease in EoE, but the inflammation in EoE is more complex
and all the other cell types of atopic inflammation such as
basophils, mast cells, IgE producing B cells, innate
Lymphocytes type 2 (IL2), invariant natural killer cells (iNKTs)
have been shown to be important players (197, 204). This is not
surprising considering that like many other diseases, EoE is
highly associated with atopic comorbidities and may just be
the last step on a slow evolving atopic march (205–208). Food
allergens such as milk and wheat and likely environmental
allergens are the major drivers of EoE (202, 208–210).
Allergens may stimulate Th2 lymphocytes directly, as
demonstrated in a small group of patients with milk allergy
(209). Although a large proportion of asthmatics have elevated
eosinophils and concurrent allergic disease, similar to suffers of
EoE, the response to treatments targeting these factors have had
difference levels of response in each of these diseases. Differently
from other atopic diseases, IgE and eosinophils appear not to be
central in the pathogenesis of EoE (208). Indeed, biologics
directed against IgE (omalizumab) and eosinophils (anti-IL-5
reslizumab and mepolizumab) have been shown to control
asthma in patients with allergic sensitisation and an
eosinophilic endotype (211, 212) but have not been proven to
be helpful in EoE (213, 214). On the other hand, antibodies with
broader Th2 inhibition like antiIL-4/IL-13 or anti-IL-13 seem to
be more effective in controlling EoE (215, 216). Due to its genetic
predisposition, studies, particularly those involving sibling and
twins, have helped to understand how such inflammation
develops in EoE (217). Over the years, several genetic loci have
been linked to EoE, which confirm the central role of the
epithelium in driving EoE and are grouped into three major
gene categories: Th2 atopic inflammation, epithelial barrier and
fibrosis (218–221).

Several single nucleotide polymorphisms (SNPs) of epithelial
genes promoting Th2 inflammation such as eotaxin-3 (CCL26)
on 7q11.23, thymic stromal lymphopoietin (TSLP) on 5q22, and
Toll-like receptor 3 (TLR3) on 4q35.1, have been connected to
EoE by several independent groups (218, 221, 222). Blanchard
et al., found a genetic polymorphism in CCL-26 (eotaxin-3), a
gene important for eosinophil chemotaxis, present in about 13%
of patients with EoE, who overexpressed CCL-26 by 50-
foldcompared with healthy controls (218, 221, 223). Similarly,
a risk allele (AA) on the TSLP gene has been shown to be
correlated with increased epithelial TSLP expression, EoE
development and increased mucosal basophils (218, 221, 224).
Animal studies have also shown that TSLP is pathogenetic for
EoE development as its inhibition prevents EoE development
(224). Therefore, TSLP, an epithelial derived cytokine that can
strongly induce a Th2 effector response from adaptive and innate
cells, appears to be important in EoE pathophysiology like other
atopic diseases (225). Other epithelial signalling related
Frontiers in Immunology | www.frontiersin.org 11
polymorphisms such as the TLR3 SNP (CC or CG at
rs3775292), are found more frequently in allergic EoE
patients (222).

Th2 inflammation leads to fibrosis in asthmatic patients as
well in EoE patients. In EoE, the pro-fibrotic factor transforming
growth factor-beta (TGF-b) on 19q13 has been connected with
EoE (226, 227). EoE is highly prevalent in patients with
connective tissue disorders such as Ehlers- Danlos or Loeys-
Dietz or Maran’s Syndromes where dysregulation in TGF-b
signalling is well known. Similarly, EoE patients with reduced
fibrosis after steroid therapy are more likely to have a certain
SNP (the CC genotype at the -509 position) in the TGF-b
promoter (226–228). Autosomal dominant Hyper-IgE
Syndrome due to dominant-negative STAT3 mutations in
which there is an upregulation of TGF-b have higher incidence
of EoE (229, 230).

Inflammation is also known to lead to epithelial barrier
dysfunction and genes that build the epithelial barrier have
been implicated in EoE pathogenesis. These include calpain 14
(CAPN14) on chr2p23.1, Filaggrin (FLG) on 1q21 and epithelial
serine protease inhibitor SPINK5 on 5q32. Like other atopic
diseases such as asthma or eczema, genetic polymorphisms may
predispose the epithelium to be more permeable and more
vulnerable to damage by the Th2 inflammation. This is
thought to increase the amount of contact between antigens
and the immune system, and predispose to inappropriate loss of
tolerance for these antigens (231). Calpain 14 (CAPN14) is a
protease in the calpain family that is expressed at the highest level
in the esophageal epithelium and upper GI tract. IL-13 induces
CAPN14 expression in the esophageal epithelium with
consequent loss of barrier function (218). Netherton’s
syndrome, which is caused by a defect in the epithelial serine
protease inhibitor SPINK5, has also been described as an EoE
risk as well as for severe atopic dermatitis (232, 233).

Although at the moment there is no data that RV or any
other virus may induce the epithelium changes that eventually
lead to food sensitisation and EoE, it is possible that viruses
such as herpes virus or others could act similarly to RV in
initiating EoE after infection directly or indirectly through
upper airways infection. Indeed, the common cold can involve
one or all the sinuses, nasopharynx, oropharynx and larynx.
EoE is commonly associated with Eosinophilic Laryngitis and
Aerodigestive Dysfunction in children (234). At the molecular
level, CAPN14 is highly expressed in the oesophagus and
pharyngeal cells (218). In asthma models, viruses like RV
can induce TSLP, and by doing so antagonise tolerance to
inhaled antigen (235), or create steroid resistance (176, 236,
237). The cellular constituents are vastly different between the
airway epithelium and the oesophageal/gastro-intestinal (GI)
epithelium, particularly as the GI epithelium secretes digestive
molecules. Nevertheless, they are both endoderm-derived
epithelia and both exhibit characteristic allergic features such
as inflammation, mucus production, and eosinophil
recruitment in response to injury. As a result, it is possible
that both the airway epithelium and oesophageal (GI)
epithelium may react in the same way to the same stimuli
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and therefore may also respond to similar therapies. More
studies are needed to find any possible connection between
viruses and EoE, but these studies and studies on epithelial
host response similarities between the two disease processes
may be essential and lead to novel common pathogenic
mechanism for the induction of multiple inflammatory
centered comorbidities.
FUTURE PERSPECTIVES AND THERAPIES
IN REGARDS TO EPITHELIAL
VULNERABILITY – WHAT DO WE KNOW
AND WHERE DO WE GO FROM HERE?

It is inherently clear that RV infection is of critical importance in
wheezing illnesses leading to asthma development and diagnosis.
RV has been shown to have a dysregulatory effect on the barrier
function and integrity of the paediatric airway epithelium,
particularly in asthmatic children who may already have
intrinsic epithelial vulnerabilities. Many of the effects of RV are
related to the child’s epithelial host response which is unable to
effectively fight the virus (23). Moreover, the plethora of anti-
viral and pro-inflammatory responses to RV have been shown to
overlap with atopic mechanisms and play a role in other severe
allergic diseases including EoE. This highlights the importance of
‘epithelial vulnerability’ with dysregulated epithelial barrier
function and integrity at the forefront of allergic disease, and
many of them presenting as comorbidities. For example, in one
cohort of children with EoE, 59.8% of them also had asthma
(205). It also suggests commonality in elucidating effective
therapeutics to tackle not only the symptoms of these diseases
but their root cause. There are various pharmacological therapies
used in the management of wheezing and asthma, EoE and other
allergic diseases, although the search continues for more effective
therapeutics with improved efficacy, especially considering the
health burden for these diseases is large. Particularly, asthma and
wheezing exacerbations may still occur regardless of
maintenance with ongoing treatment or treatment type, with
this echoed in EoE. Most current asthma therapeutics are aimed
at treating the visible symptoms to reduce frequency and severity
of exacerbations (238, 239). Similarly, as previously mentioned,
the focus of treatment for EoE targets resultant fibrosis, but does
not prevent or target the underlying cause of the disease.
Preventing exacerbations in allergic diseases is challenging as
there is a need to first understand the underlying mechanisms.
The biological mechanisms as to why allergic diseases such as
asthma and EoE occur in children remains to be fully understood
and thus, broad therapies including short acting beta agonists,
long acting beta agonists, and corticosteroids for asthma; and
steroids, biologics directed against IgE and eosinophils and
elimination diets for EoE cannot yet be replaced in favour of
much more targeted treatment. In addition, some children
respond less rapidly to these types of treatment and thus they
are less effective (240). Excitingly, studies that have identified
novel and re-purposed therapeutics as well as targetable
biological pathways that potentially have anti-viral and
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epithelial barrier integrity aiding effects (61, 241–244). Two in
particular include celecoxib, a COX-2 inhibiting non-steroidal
anti-inflammatory drug, and azithromycin, a macrolide class
antibiotic (61, 243). Celecoxib has been shown to restore wound
repair capacity to the airway epithelium and azithromycin has
shown to decrease the frequency of asthma exacerbations in
adults (61, 243). The effects and full potential of these drugs are
still being investigated. Nevertheless, it is postulated that as well
as being useful in treating asthma exacerbations they may also be
useful in other allergic diseases such as EoE due to their epithelial
barrier function-restoring abilities. Furthermore, as TSLP plays
an important role in both EoE and RV induced wheezing,
Tezepelumab, a TSLP inhibiting agent may help attenuate
exacerbations of both diseases though more evidence for this is
needed (245). Although these emerging therapeutics are
promising, RV infection, particularly RV-C infection in
asthma, and epithelial dysregulation and vulnerability in
allergic diseases need to be characterised fully in paediatric
patients to determine the most effect strategy to improve the
quality of life for these children, and thus are of active interest.

This review highlights the growing significance and clinical
relevance of an innately vulnerable epithelium in different
prevalent allergic-type epithelial diseases, and the effect of viral
infection, particularly RV-C infection on airway epithelial barrier
function and integrity in paediatric asthma, and viral and injury-
induced effects on the oesophageal epithelium in EoE. In asthma
specifically, it is postulated that innate epithelial vulnerability
further potentiates RV-C infection, due to dysregulated host
response to the virus. In addition, RV-C may further potentiate
this vulnerability and barrier dysregulation compared to other RV
species, leading to a persistent cycle of infection. Furthermore, it is
suggested that consecutive or repeated insults to the airway of a
child with a vulnerable epithelium culminates in persistent
wheezing illnesses and eventually asthma development and
diagnosis. This is one current research focus. Subsequently, once
this has been identified, therapeutic development pipelines can be
developed and potentially be extrapolated to and used in other
allergic diseases such as EoE. It is important to compare diseases
such as paediatric asthma and EoE as they have parallel disease
pathologies and there are lessons that can be learnt from identifying
commonalities such as epithelial vulnerabilities in children.
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