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Dataset of human intracranial 
recordings during famous landmark 
identification
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For most people, recalling information about familiar items in a visual scene is an effortless task, but 
it is one that depends on coordinated interactions of multiple, distributed neural components. We 
leveraged the high spatiotemporal resolution of direct intracranial recordings to better delineate the 
network dynamics underpinning visual scene recognition. We present a dataset of recordings from a 
large cohort of humans while they identified images of famous landmarks (50 individuals, 52 recording 
sessions, 6,775 electrodes, 6,541 trials). This dataset contains local field potential recordings derived 
from subdural and penetrating electrodes covering broad areas of cortex across both hemispheres. 
We provide this pre-processed data with behavioural metrics (correct/incorrect, response times) and 
electrode localisation in a population-normalised cortical surface space. This rich dataset will allow 
further investigation into the spatiotemporal progression of multiple neural processes underlying visual 
processing, scene recognition and cued memory recall.

Background & Summary
Analysing and identifying previously encountered scenes and landmarks requires an interplay of activity 
between visual and memory regions of the brain. Category selective scene processing pathways exist across 
higher visual cortex1–3 and specialised, distributed memory networks exist for recall of scene and location spe-
cific information4–8. Neurobiological studies of higher-level image and scene processing in humans are usually 
derived using fMRI which, given its relatively low temporal resolution, provides a representation of the locations 
of neural processes but not their dynamics. Visual recognition and identification is accomplished by a combina-
tion of feedforward and feedback interactions between multiple substrates. While the traditional view of visual 
processing follows a hierarchical feedforward structure from low level visual features to high level category 
representations9, recurrent inputs from high level regions modulate activity in early visual regions enhancing 
sensitivity to certain higher order features10–12. Therefore, information about the temporal progression of fea-
ture sensitivity is required to disentangle these properties within visual processing networks and refine existing 
models of scene processing.

Given the special circumstances that it takes to obtain them, intracranial recordings remain a relatively rare 
but unique window into local and interactional cortical dynamics. We used a famous landmark identification 
task to probe multiple aspects of scene processing pathways; including visual processing of the scene stimuli, 
memory recall of the specific item and articulation of the response. These data were collected in a large popula-
tion of patients (52 datasets) with a large number of electrodes implanted across both hemispheres (n = 6,775) 
allowing broad coverage across multiple cortical regions. Some of these data have previously been used to elab-
orate category selective cortical organisation in the ventral occipitotemporal cortex13–15, and memory recall in 
medial parietal cortex and medial temporal lobe15. Given the very rich nature of this dataset there remains multi-
ple aspects of vision processing and memory recall that remain unaddressed and can be probed using these data.
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Methods
Participants. 50 patients (24 male, 18–51 years, 11 left-handed) participated in the experiments after giving 
written informed consent. Participants consented for anonymised data to be distributed for research use. All 
participants were semi-chronically implanted with intracranial electrodes for seizure localisation of pharma-
co-resistant epilepsy. Two patients participated in the experiments twice (TA632/TA632C, TS060B/TS060C), 
during two separate electrode implantations (52 implantations total), with a separation of approximately two 
years between implants. Participants with significant additional neurological history (e.g. previous resections, 
MR imaging abnormalities such as malformations or hypoplasia) were excluded. All experimental procedures 
were reviewed and approved by the Committee for the Protection of Human Subjects (CPHS) of the University of 
Texas Health Science Center at Houston as Protocol Number HSC-MS-06-0385.

electrode implantation and data recording. Data were acquired from either subdural grid elec-
trodes (SDEs; 10 patients) or stereotactically placed depth electrodes (sEEGs; 42 patients)15. SDEs were sub-
dural platinum-iridium electrodes embedded in a silicone elastomer sheet (PMT Corporation; top-hat design; 
3 mm diameter cortical contact), and were surgically implanted via a craniotomy16–18. sEEGs were implanted 
using a Robotic Surgical Assistant (ROSA; Medtech, Montpellier, France)19,20. Each sEEG probe (PMT cor-
poration, Chanhassen, Minnesota) was 0.8 mm in diameter and had 8–16 electrode contacts. Each contact 
was a platinum-iridium cylinder, 2.0 mm in length and separated from the adjacent contact by 1.5–2.43 mm. 
Each patient had 12–20 such probes implanted. Following surgical implantation, electrodes were localised by 
co-registration of pre-operative anatomical 3 T MRI and post-operative CT scans in AFNI21. Electrode positions 
were projected onto a cortical surface model generated in FreeSurfer22, and displayed on the cortical surface 
model for visualisation17. Population-level cortical maps were generated using a surface-based co-registration 
to address sparse-sampling, as well as intra- and inter-subject data variability, including the topological vari-
ability arising from each subject’s own complex cortical geometry. In brief, individual cortical surface models 
were inflated and warped to match the folding patterns on a spherical template mesh, derived from a population 
atlas (Colin 27), and then resampled to a new standardised mesh providing one-to-one vertex correspondence 
between vertex indices and anatomical locations across subjects23,24.

Intracranial data were collected during research experiments starting on the first day after electrode implan-
tation for sEEGs and two days after implantation for SDEs. Data were digitised at 2 kHz using the NeuroPort 
recording system (Blackrock Microsystems, Salt Lake City, Utah; acquisition filter 0.3–500 Hz), imported into 
Matlab, initially referenced to the white matter channel used as a reference for the clinical acquisition system and 
visually inspected for line noise, artifacts, and epileptic activity. Electrodes with excessive line noise or localised 
to sites of seizure onset were excluded. Trials contaminated by inter-ictal epileptic spikes are marked.

Stimuli and experimental design. Stimuli were presented using Python v2.7 at a size of 500 × 500 pixels 
on a 2,880 × 1,800, 15.4” LCD screen positioned at eye-level, 2–3′ from the patient (~7.5° visual angle). Each 
stimulus was displayed for 2,000 ms with an inter-stimulus interval of 6,000 ms. Participants were presented with 
colour photos of famous landmarks (scenes) and asked to verbally recall their location (Fig. 1a)13–15. Stimuli were 
presented in one recording session, containing presentation of 140–160 images, consisting of a mix of coher-
ent images and their spatially scrambled versions in a pseudorandom order. In trials with scrambled scenes the 
patients were asked to respond with “scrambled”.

audio recordings. Continuous audio recordings were carried out during all experiments with an omnidi-
rectional microphone (30–20,000 Hz response, 73 dB SNR, Audio Technica U841A) placed within 2 feet of the 
patient, and adjacent to the presentation laptop. These recordings were analysed offline to manually isolate artic-
ulatory onsets and assess patient responses. As voice recordings are biometric data protected under HIPAA, this 
dataset is released only with the manually picked articulation onset times and a binary correct/incorrect variable 
to denote the accuracy of the answer given. Incorrect responses included either an absence of speech, stating they 
did not recognise the object or incorrectly identifying the object.

Signal analysis. Example analyses presented here were performed by first bandpass filtering raw data of each 
electrode into broadband gamma activity (BGA; 70–150 Hz). A frequency domain bandpass Hilbert transform 
(paired sigmoid flanks with half-width 1.5 Hz) was applied and the analytic amplitude was smoothed (Savitzky - 
Golay finite impulse response, 3rd order, frame length 301 ms). BGA is presented here as percentage change from 
baseline level, defined as the period −500 to −100 ms before each stimulus presentation.

Data Records
The dataset25 was released in the Neurodata Without Borders (NWB)26,27 Version 2.2.5 format and is avail-
able online from the Data Archive for the BRAIN Initiative (DABI). The dataset is organised according to 
iEEG-BIDS28. Data from each recording session, including their associated pre-processing metadata and elec-
trode localisations were saved in a single HDF5 file (.nwb). Standard NWB file structure was used which com-
prises a hierarchical structure29. Top level data groups include subject information, electrode information, time 
series data and trial information (Table 1).

Subject information (general_subject). This data group contains basic patient demographics including 
age, sex and implant type.

Cortical surfaces (general_subject.corticalsurfaces). In order to allow cross-individual consolidation 
of data, all electrodes have been mapped onto a standardised cortical surface. Each electrode is assigned to a ver-
tex of the standard population surface. We have provided both inflated (std_inflated) and pial (std_pial) versions 
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of this standard surface. By knowing the hemisphere and vertex assignment of an electrode then the 3D location 
can be determined for either representation. The cortical surface map contains the vertices and faces of each hem-
isphere. For each vertex we provide a Human Connectome Project parcellation map assignment30 (HCP) and the 
local curvature value of the pial surface (curv).

electrode information (general_extracellular_ephys_electrodes). For each electrode we provide a 
3D location in standard inflated space (x,y,z). The assigned vertex of each electrode (vertex) and its hemispheric 
assignment (hemi) are also included. Based on this vertex assignment each electrode is given an HCP label (HCP, 
location). Electrodes with excessive line noise or localised to sites of seizure onset were marked (good = 0) and 
the time series data excluded.

Time series data. Each participant has continuous time series data, recorded from each of the electrodes 
for the duration of the experimental session. Time series data is provided referenced to the original clinical white 
matter reference electrode (either electrode 5 or 6) and grounded to electrode 7. We have included a virtual 
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Fig. 1 Experimental Design and Electrode Coverage. (a) Schematic representation of the landmark 
identification task. Participants were shown either coherent images of famous landmarks or spatially scrambled 
versions of the images. (b) Individual electrode locations (6,775 electrodes) and (c) representative coverage map 
(52 implantations).
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channel representing the common average of the good channels (labelled CAR) which can be subtracted from the 
raw data to allow easy re-referencing to a common average reference scheme.

Trial information (intervals_trials). The continuous data can be epoched using event markers (start_time). 
These markers index either stimulus onset times (articulation = 0) or articulation onset times (articulation = 1). 
Trials contaminated by inter-ictal epileptic spikes or disrupted with behavioural distractions are marked (good = 0). 
Trials with successful identification of the presented landmark were marked (correct = 1). Stimuli presented were 
either coherent images (scrambled = 0) or scrambled images (scrambled = 1) and the exact stimulus presented is 
noted (stimulus). JPEG versions of the presented stimuli are available for download alongside the datasets.

Technical Validation
Behavioural analysis. Mean identification accuracy (±s.d.) was 56 ± 17% for scenes and 97 ± 5% for 
scrambled images. All patients included in this dataset correctly identified at least 20 of the scene stimuli and 
responded to at least 80% of the scrambled trials, providing enough trials for both successful and unsuccessful 
identification analysis. Articulation latencies for this cohort were 1,495 ± 330 ms for scenes and 1,491 ± 341 ms 
for scrambled images (Fig. 2b).

Spatiotemporal mapping of cortical activations. We have previously used some patients from this 
dataset to create a 4D movie of whole brain cortical activation, contrasting correctly answered coherent scenes 

Surface Information (general_subject.corticalsurfaces)

vertices 3D coordinates of the vertices of the cortical surface

faces Vertex triplets that form a face of the cortical surface

HCP HCP atlas parcel index and area name30

curv Local curvature of the standard pial surface. >0 – Sulcus, <0 – Gyrus

Electrode Information (general_extracellular_ephys_electrodes)

x,y,z 3D electrode location in standard inflated surface space

vertex Assigned vertex in standard surface space

hemi Brain hemisphere assigned to

HCP HCP atlas parcel index30

location HCP atlas area name30

good 1 – Usable electrode, 0 – Removed electrode, values set to NaN

zone Electrode zone localisation. White, Gray, CSF, SDE.

pial_dist Euclidean distance from the pial surface in mm

Trial Information (intervals_trials)

start_time Event markers

articulation 0 – Stimulus onset locked, 1 – Articulation onset locked

rxn_time Time from stimulus onset to articulation onset (seconds)

good 1 – Usable trial, 0 – Excluded trial due to interictal spikes or task 
disruption

correct 1 – Correctly answered trial, 0 – Incorrectly answered trial

scrambled 0 – Coherent image presented, 1 – Scrambled image presented

stimulus File name of presented visual stimulus

Table 1. Summary of the data structure.

Fig. 2 Behavioural Analysis. (a) Number of coherent images presented per participant and the distribution of 
number of successful naming trials. (b) Response time (RT) distributions for correctly answered responses for 
coherent and scrambled trials.
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vs. scrambled images15 as a broad map of cortical activity during the task. Here, we present plots of BGA for cor-
rectly answered, incorrectly answered and scrambled trials across six exemplar ROIs, using HCP parcellations in 
early visual cortex, medial parietal cortex, and medial temporal lobe (Fig. 3). These ROIs display diverse response 
properties in their responses to coherent vs. scrambled images and correctly vs. incorrectly identified stimuli.

Usage Notes
Electrodes are named according to clinical convention within our site, based on the broad location covered 
(SDEs) or the approximate distal electrode target (sEEGs). This nomenclature scheme is for clinical purposes 
and may not always reflect actual electrode location. sEEG electrodes are numbered sequentially along the probe 
with the most distal (deepest in the brain) contact being electrode 1.

Articulation times have only been included for correctly answered trials. Pairing stimulus onset and articu-
lation onset markers should be performed by finding matching stimuli, as each stimulus was shown only once 
per patient. Baselining for articulation aligned data should be performed using the pre-stimulus baseline period 
rather than the pre-articulation period.

Electrical time series traces are provided as output from the NeuroPort recording system with no additional 
filtering applied beyond the acquisition filter (0.3–500 Hz). To convert the traces into μV the values should be 
divided by 4, after conversion from integers to floating-point values.

Users who wish to publish results of analysis performed on this data must include the following in their 
acknowledgements: “Data used to perform this analysis were collected with support from the National Institutes 
of Health under award numbers DC014589 and NS098981 and were accessed from the Data Archive for the 
BRAIN Initiative with support from the National Institutes of Health under Award Number R24MH114796.”

Access to the data is contingent on creating an account with DABI and agreeing to the terms of the data usage 
agreement (Supplementary Information).

Fig. 3 Spatiotemporal Profile of Cortical Activations. Locations (a) and BGA activations (b; mean ± s.e.) of six 
ROIs based on the HCP parcellation. V1 (Primary visual cortex; 84 electrodes, 15 patients), V4 (Fourth visual 
area; 56 electrodes, 12 patients), POS1 (Parieto-occipital sulcus area 1; 69 electrodes, 27 patients), 7 m (Area 7 m; 
56 electrodes, 20 patients), PHA1 (Parahippocampal Area 1; 27 electrodes, 14 patients), and EC (Entorhinal 
cortex; 60 electrodes, 25 patients). Vertical dashed lines denote stimulus onset and offset times.
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Code availability
Example scripts are provided with the dataset25. They contain code for reading and plotting the neural and 
behavioural data. Code examples are provided in Matlab and Python Jupyter Notebooks.
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