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Intestinal helminth infections are most prevalent in peri-equatorial regions of the world and

have an overlapping geographical distribution with Mycobacterium tuberculosis (Mtb) infec-

tion—the causative agent of tuberculosis (TB). Importantly, approximately 40% of TB patients

are asymptomatically infected with helminth parasites. While experimental and epidemiologi-

cal evidence suggest that helminth infections alter the course of TB, other studies do not sup-

port this link [1]. Although the direct immunomodulatory effects of helminth infections on

adaptive host immunity have been studied extensively, these can only partially explain the

complex nature of helminth–TB interactions. Indeed, the potent immunomodulatory abilities

of helminths may even reduce TB-associated tissue pathology [1] and contribute to disease tol-

erance [2]. However, helminth infections also induce changes to the gut microbiota that can

have a systemic impact on heterologous infectious diseases [3]. Given previous studies demon-

strating that the gut microbiota can shape disease tolerance to pulmonary infections [4], here,

we discuss the current understanding of how the gut microbiota impacts TB and posit that hel-

minth-mediated changes to this vast microbial community may contribute to the clinical

course of TB in co-endemic regions (Fig 1).

What is the impact of helminth infection on TB progression?

Infection with Mtb results in various clinical outcomes ranging from complete bacterial clear-

ance or asymptomatic infection to active TB. The spectrum of this disease is largely dictated by

2 unique, but not mutually exclusive, host defense strategies: host resistance and disease toler-

ance. Host resistance to Mtb results in a decrease or elimination of the pathogen, an outcome

that may result in irreversible, tissue damage. In contrast, disease tolerance pathways are

engaged in controlling tissue damage rather than altering pathogen load [2]. While this latter

strategy promotes host health and survival, it also leads to chronic infection. As 90% to 95% of

exposed individuals remain asymptomatic, disease tolerance may be the most prevalent form

of host defense against Mtb infection. However, a fraction of TB patients (5% to 10%) still

maintain a lifetime risk of developing active disease. Thus, Mtb has coevolved with humans to

achieve an evolutionary trade-off that infrequently compromises host health for survival.

While it is unclear if the development of active TB results from a breakdown of host resistance

and/or disease tolerance, we have recently shown in a preclinical animal model of TB that T

cells play a key role in disease tolerance in TB [5]. Importantly, several additional factors have
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been linked to the progression from asymptomatic infection to active TB, including coinfec-

tion with helminths [6].

Several epidemiologic studies have established an association between TB progression and

helminth infection [1,7,8]. However, the mechanistic rationale for this association is largely

based on the fact that helminths induce a type 2 immune response, conventionally thought to

be detrimental in TB. Helminth-induced type 2 immunity involves robust production of inter-

leukin (IAU : PleasenotethatILhasbeendefinedasinterleukininthesentenceHelminth � inducedtype2immunityinvolves::::Pleasecheckandcorrectifnecessary:L)-4, IL-5, and IL-13 by CD4+ T helper type 2 (Th2) cells and type 2 innate lymphoid

cells (ILC2s). Type 2 cytokines inhibit the generation of interferon gamma (IAU : PleasenotethatIFNghasbeendefinedasinterferongammainthesentenceType2cytokinesinhibit::::Pleasecheckandcorrectifnecessary:FNγ) and IL-17–

producing T cells that are classically associated with resistance to TB. Indeed, coincident hook-

worm infection has been shown to suppress Mtb-specific T helper type 1 (TAU : PleasenotethatTh1hasbeendefinedasThelpertype1inthesentenceIndeed; coincidenthookworminfectionhas::::Pleasecheckandcorrectifnecessary:h1) and T helper

type 17 (TAU : PleasenotethatTh17hasbeendefinedasThelpertype17inthesentenceIndeed; coincidenthookworminfectionhas::::Pleasecheckandcorrectifnecessary:h17) responses with an increase in regulatory T cells (Tregs) and Th2 cells in

infected, asymptomatic patients [9]. However, O’Shea and colleagues found no impact of

Fig 1. Helminth infections, eliciting robust type 2 immune responses, might contribute to Mtb disease tolerance by inhibiting type 1 and

type 3 immune responses, thus reducing inflammation and pathology while maintaining bacterial burden. An alternative, but not mutually

exclusive, possibility is that helminth-mediated changes to the gut microbiota shape TB outcomes. The robust regulatory capacity of the gut

microbiota (via immune suppression, metabolite processing, and niche competition) is an appealing mechanism to explain the contradicting

data regarding the exact role of helminth infections in TB disease progression and disease tolerance in asymptomatic infected patients. This

figure was created with BioRender.com. MAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutFig1:Pleaseverifythatallentriesarecorrect:tb, Mycobacterium tuberculosis; TB, tuberculosis.

https://doi.org/10.1371/journal.ppat.1009690.g001
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coincident hookworm infection on progression from latent to active TB [10], and McLaughlin

and colleagues recently showed that Mtb-specific Th1 cytokine production capacity is main-

tained in helminth-infected individuals [11]. In addition, IL-4 and IL-13 signals promote alter-

native activation of macrophages, the primary cell type infected by Mtb, which may prevent

sterile immunity, but also limit dissemination to peripheral organs [12]. By contrast, other

studies have shown that helminth infection can be protective during the early stages of Myco-
bacterium bovis BCG infection [13]. Therefore, definitive data that these parasites promote

progression from asymptomatic TB to active disease via T-cell immunomodulation are lack-

ing. Alternatively, the immunoregulatory power of helminths may promote disease tolerance

to TB. Support for this hypothesis is based on the ability of helminth infections to influence

other diverse lung diseases. For instance, mice chronically infected with helminths are less

prone to allergic airway inflammation and show reduced lung pathology by eliciting more

Tregs [14]. Consistently, Tregs have been shown to induce better protection in chronic Mtb-

infected mice by reducing lung pathology without any impact on bacterial burden [15]. Taken

together, the outcomes of helminth–TB coinfected individuals may not be simply explained by

an imbalance of Th1/TAU : PleasenotethatTh2hasbeendefinedasThelpertype2inthesentenceTakentogether; theoutcomesof ::::Pleasecheckandcorrectifnecessary:h2 cells. Many other factors might contribute to this complex heterolo-

gous infection including the timing of coinfection, anatomical location of the helminth, para-

site load, or additional immune-regulatory factors such as the intestinal microbiota. Although

these studies have led to important advancements in our understanding of Mtb–helminth

coinfection, a more holistic approach involving the investigation of the intestinal microbiota

in these conditions may shed new light on this complex interaction and resolve discrepant

findings.

What is the impact of helminths on commensal microbes and

concurrent infections?

Many helminth species cohabitate with a vast collection of microbes (bacteria, viruses, and

protozoa, aka, the microbiota) within the intestinal lumen. As such, the intestinal microbiota

and helminths share the agenda of avoiding their expulsion from the mammalian gut. Thus,

both have evolved mechanisms to modulate host immunity. Further, helminths are able to

shape the intestinal microbiota via antimicrobial activity of their excretory–secretory products

or modulation of host-derived antimicrobial peptides [16].

While in animal models, helminth infections have been shown to increase microbial

diversity, data from human studies are more complex. Several studies assessing helminth-

induced intestinal microbial changes have indicated an increase in microbial diversity and

abundance, while others report no significant changes [17]. Nevertheless, the most com-

mon feature of worm infections is increased abundance of Lactobacilli species, which are

capable of inducing host regulatory responses [16]. More specifically, intestinal helminths

were shown to promote Salmonella coinfection by altering the intestinal metabolome. In

addition, by using a fecal transplant approach, Zaiss and colleagues demonstrated that

feces from Hpb-infected mice is enriched in short-chain fatty acids (SCFAs) and can reduce

the severity of allergic lung inflammation, likely via the enhancement of Treg cell differen-

tiation [3]. Indeed, SCFAs have also been shown to modulate host immunity to TB by

directly reducing the secretion of inflammatory cytokines in peripheral blood monocytes

[18]. In coinfection models, mice infected with Hpb had reduced respiratory syncytial virus

(RAU : PleasenotethatRSVhasbeendefinedasrespiratorysyncytialvirusinthesentenceIncoinfectionmodels;miceinfectedwith::::Pleasecheckandcorrectifnecessary:SV) viral load and lung pathology in a microbiota-dependent manner [19]. Taken

together, helminth-induced changes to the intestinal microbiota are an intriguing culprit

that may modulate Mtb infection outcomes.
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Can microbiome alterations regulate TB progression?

Several studies indicate that changes to the microbiota modulate both host susceptibility to ini-

tial Mtb infection and the progression from asymptomatic to active disease [20]. Using a

mouse model of antibiotic treatment to eliminate the intestinal microbiota, we and others

found that changing the gut biodiversity compromised innate immunity to aerosol Mtb chal-

lenge [21–23]. Similarly, Majlessi and colleagues showed that intestinal Helicobacter hepaticus
infection led to dysbiosis and an increase in Mtb burden [24]. Several clinical studies have also

indirectly implicated the intestinal microbiota in promoting TB progression. In one study,

Mtb-infected, asymptomatic patients with the presence of Helicobacter pylori in their gut flora

were less likely to develop active TB disease, while another study showed that the commensal-

associated metabolite, indole-3-propionic acid, exhibited antitubercular activity [21]. Taken

together, these studies indicate that diverse perturbations to the intestinal microbiota regulate

host susceptibility to Mtb infection. Whether helminth-associated intestinal microbiota alter-

ations impact TB progression in coinfected individuals has not been addressed to date.

Summary and conclusions

Mtb and helminth infections are co-endemic in major areas of the world, together affecting

more than a quarter of the global population. In many cases, coinfected individuals exhibit

altered TB disease progression, yet the exact role of helminth infections in TB outcomes high-

light an important knowledge gap. In this Pearl, we suggest helminth-associated intestinal

microbiota modulation as a potential mechanism underlying disease tolerance to Mtb infec-

tion or, at the very least, confound studies examining the impact of helminth infection on TB

outcomes. Thus, investigating changes in the composition and/or functional output of the

intestinal microbiota, with its far-reaching regulatory capacity (via immune suppression,

metabolite processing, and niche competition), is needed to determine the relative contribu-

tion of diverse intestinal residents on Mtb infection. To this end, several approaches can be

taken including the transfer of helminth-modified microbiomes in Mtb infection models, the

use of Mtb/helminth coinfection models in germ-free mice, and critical microbiome analysis

of TB patient cohorts before and after deworming treatment. These studies could advance our

understanding of TB progression and pave the way toward designing more effective vaccines.
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