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Rupture of the extraembryonic membranes that form the gestational sac in humans is a typical feature of human
parturition. However, preterm premature rupture of membranes (PPROM) occurs in approximately 1% of preg-
nancies, and is a leading cause of preterm birth. Conversely, retention of an intact gestational sac during parturi-
tion in the form of a caul is a rare occurrence. Understanding the molecular and evolutionary underpinnings of
these disparate phenotypes can provide insight into both normal pregnancy and PPROM. Using phylogenetic
techniqueswe reconstructed the evolution of the gestational sac phenotype at parturition in 55mammal species
representing all major viviparous mammal groups. We infer the ancestral state in therians, eutherians, and pri-
mates, as in humans, is a ruptured gestational sac at parturition. We present evidence that intact membranes
at parturition have evolved convergently in diverse mammals including horses, elephants, and bats. In order to
gain insight into the molecular underpinnings of the evolution of enhanced membrane integrity we also used
comparative genomics techniques to reconstruct the evolution of a subset of genes implicated in PPROM, and
find that four genes (ADAMTS2, COL1A1, COL5A1, LEPRE1) show significant evidence of increased nonsynonymous
rates of substitution on lineageswith intactmembranes as compared to thosewith rupturedmembranes. Among
these genes, we also discovered that 17 human SNPs are associated with or near amino acid replacement sites in
those mammals with intact membranes. These SNPs are candidate functional variants within humans, which
may play roles in both PPROM and/or the retention of the gestational sac at birth.
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1. Introduction

Preterm premature rupture of membranes (PPROM) is a leading
cause of preterm birth, occurring in approximately 1% of all pregnancies
(Parry and Strauss, 1998). A less common occurrence in human delivery
is birth in a caul (i.e. intact membranes), and cases have been reported
with no ill effects, including an infant born in complete caul that sur-
vived 25 min of extrauterine life in intact membranes (Heggarty et al.,
1975). Thus, some humans are born with premature membrane rup-
ture, others are born with ruptured membranes at term, while still
others fail to have their membranes rupture at the time of delivery. Ge-
netic variation is one possibility to explain differences in the timing of
membrane rupture within a species. Indeed, previous work has impli-
cated several genes in PPROM (Anum et al., 2009).

PPROM is a relatively common obstetrical syndrome in humans;
however it is unclear whether the syndrome is common in nonhuman
therian species (marsupials and placental mammals). It is apparent
that a great range of variation in the timing and extent of membrane
rupture exists in this group. As in humans, closely related nonhuman
primates such as chimpanzees (Lindburg and Hazell, 1972) and Old
World monkeys have ruptured membranes at the time of birth.
Conversely, common domesticated animals such as cows and horses
typically deliver offspring that emerge in intact or partial gestational
sacs (Frazer et al., 1999; Schuenemann, 2012). Additionally, the gesta-
tion length in therian mammals ranges from two weeks to nearly
two years (Asdell and Hubbs, 1964). Therefore, the variability in the
timing of membrane rupture in humans is actually less extreme than
is observed among mammals as a whole. Fig. 1 shows the typical
Fig. 1.Examples of intact and rupturedgestational sac at parturition. A. Sonogramof a human fet
by thewhite arrow (Devlieger et al., 2003). Image by permission ofWiley InterScience. B. Chimp
of The Royal Society (http://www.youtube.com/watch?v=dfd0fzX9M5g). C. Harbor seal and n
with intact gestational sac. Photo courtesy of Orlando Alamillo. (http://www.youtube.com/wat
pattern of gestational sac rupture in humans and three other nonhuman
mammalian species. The primates in this figure are born with ruptured
membranes; the seal (i.e. Carnivora) and horse (i.e. Perissodactyla)
are born with membranes intact. Recent research suggests that
Euarchontoglires (a superordinal clade that includes Primates and
Rodentia) and Laurasiatheria (a superordinal clade that includes Car-
nivora and Perissodactyla) last shared a common ancestor approxi-
mately ~92 million years ago (mya) (Meredith et al., 2011). It is not
possible to accurately reconstruct whether this ancestor had the intact
or ruptured gestational sac based solely on these taxa. Instead, an accu-
rate reconstruction of the evolution of fetal membrane integrity at birth
would require knowledge of the observed pattern of a diverse range of
mammals in addition to each of the two groups depicted in Fig. 1.

Observingmammals giving birth is generally difficult because females
tend to retreat from view. This is probably why so little has been pub-
lished in this area. However, the advent of video sharing websites on
the internet has brought an amazing amount of new observations that
for themost part are ignored by the scientific community. Recently, social
media sites have served as the basis for a wide range of scientific studies
(Hua et al., 2013; Lewis et al., 2011; Patel et al., 2009); however video
evidence has not yet seen extensive use. From video evidence, we
reconstructed the evolution of membrane rupture in 55 species
representing all major groups of mammals. This reconstruction served
as the framework for a comparative genomics analysis in which we ex-
amined a subset of human genes that have been implicated in PPROM.

With the increasing numbers of available mammalian and human
genome sequences we find ourselves in a “golden age of human evo-
lutionary genomics” (O'Bleness et al., 2012). This explosion of
us in the uteruswith premature preterm rupture of fetalmembranes (PPROM)as indicated
anzee and neonatewith ruptured gestational sac (Hirata et al., 2011). Image by permission
eonate with intact gestational sac. Photo courtesy of Mauricio Mena. D. Horse and neonate
ch?v=BHzWgrr7MHI).

image of Fig.�1
http://www.youtube.com/watch?v=dfd0fzX9M5g
http://www.youtube.com/watch?v=BHzWgrr7MHI
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comparative data not only allows the determination of unique fea-
tures of the human genome (O'Bleness et al., 2012) but also enables
the determination of convergent features that our species shares
with other lineages (Goodman et al., 2009; McGowen et al., 2012).
Comparative genomics studies have pointed to mutations that have
been implicated in human health and disease, including obstetrical
syndromes. By comparing human gene sequences to sequences
from other mammals it has become clear that many important
human genes associated with health and disease show evidence of
positive selection, including the MHC Class I and II genes (Hughes
and Nei, 1988, 1989), immunoglobulin genes (Tanaka and Nei,
1989), and the breast cancer associated gene BRCA1 (Huttley et al.,
2000). The comparative analysis of genes across mammals has
been used to investigate human diseases to provide clues regarding
their dysfunction (i.e. Crespi et al., 2007). This approach has been
applied successfully to human parturition, including the adaptive
evolution of placenta-specific genes (Hou et al., 2009), a comparison
of genes involved in preeclampsia (Crosley et al., 2013), and the
identification of genes involved in human birth timing (Plunkett
et al., 2011).

Our purpose was to test whether genes involved in PPROM showed
evidence for adaptive evolution (i.e. positive Darwinian selection) on
mammalian lineages at times coincident with evolutionary modifica-
tion of the pattern of gestational sac integrity. We reasoned that evi-
dence for adaptive evolution at these times would strengthen the
assertion that these genes are indeed involved in promotingmembrane
integrity. Moreover, we further considered that our evolutionary ap-
proach would have implications in translational medicine. If our hy-
pothesis was correct we could identify specific functionally important
amino acid replacements and identify variants in human genes that
correspond to these functionally important sites that may play a role
in gestational sac rupture timing defects.

2. Methods

2.1. Observation of live births

We searched video sharingwebsites such as YouTube for video foot-
age of parturition in a wide range of mammals using search terms of
specific species included in every order of mammals as defined by
Meredith et al. (2011). Although the recorded documentation of the
presence of the gestational sac is rare, we were able to document
the live birth of 55 mammal species from 12 out of approximately 22
orders of extant therian mammals (Primates, Rodentia, Lagomorpha,
Eulipotyphla, Carnivora, Chiroptera, Perissodactyla, Cetartiodactyla,
Proboscidea, Xenarthra, Dasyuromorphia, Diprotodontia) (Supplemen-
tal Table 1). These orders provide a broad sampling across themamma-
lian tree, including at least one representative of all fourmajor clades of
eutherian mammals (Laurasiatheria, Euarchontoglires, Afrotheria,
Xenarthra), as well as two orders of marsupials. Viewers recorded
whether upon birth, the gestational sac was present and intact (0),
present and ruptured (1), or absent (2). For each species anywhere
from 1 to 6 births were recorded; species with more than one character
state were recorded as polymorphic.

2.2. Reconstruction of evolutionary history

Character state evolution was reconstructed using a maximum par-
simony algorithm in the software Mesquite v.2.75 (Maddison and
Maddison, 2011). Character states were considered unordered, mean-
ing that a transition from any character state to any other was consid-
ered as a single step, and the minimum number of steps was
considered the most parsimonious reconstruction of evolutionary his-
tory. We traced the evolution of character states using a recently in-
ferred mammalian phylogenetic tree (Meredith et al., 2011). We
pruned the tree of Meredith et al. to include only taxa from which we
were able to obtain video evidence.
2.3. Molecular evolution of genes implicated in PPROM

The protein coding DNA sequences for 11 genes known to poten-
tially predispose fetuses to preterm birth due to PPROM (Anum et al.,
2009) were downloaded from available mammalian genomes in
Ensembl (Flicek et al., 2012) or from GenBank. The genes analyzed
included: COL5A1, COL5A2, COL3A1, COL1A1, COL1A2, PLOD1,
ADAMTS2, CRTAP, LEPRE1, TNXB, and ZMPSTE24. A complete list of
genes, species and accession numbers is provided in Supplemental
Table 2. We downloaded sequences for species from which we had
recorded an observation of gestational sac rupture and related taxa,
which resulted in a minimum of 13 species (COL5A1) and a maxi-
mum of 20 species (COL1A2) per gene. The genome assemblies in
some species do not contain all 11 PPROM-related genes. For a gene
to be analyzed we required that orthologous sequences for at least
one marsupial and one afrotherian were present. We then included all
remaining placental mammals that did not have an excess of missing
data. The species selected for subsequent analysis include human
(Homo sapiens), chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla),
orangutan (Pongo abelii), rhesus macaque (Macaca mulatta), rabbit
(Oryctolagus cuniculus), guinea pig (Cavia porcellus), mouse (Mus
musculus), rat (Rattus norvegicus), panda (Ailuropoda melanoleuca),
dog (Canis lupus familiaris), cat (Felis catus), alpaca (Vicugna pacos),
pig (Sus scrofa), cow (Bos taurus), dolphin (Tursiops truncatus), horse
(Equus caballus), megabat (Pteropus vampyrus), hedgehog (Erinaceus
europaeus), elephant (Loxodonta africana), hyrax (Procavia capensis),
and Tasmanian devil (Sarcophilus harrisii).

Sequences were aligned using MUSCLE (Edgar, 2004) via the
European Bioinformatics Institute. Alignment files for each gene were
imported into Mesquite and manually edited to match the predicted
protein sequence. With this data set, we generated alignment files
using 13 to 20 species for all the genes listed except the highly variable
TNXB, whichwas removed from analysis due to the difficulty in aligning
across multiple species.

We then conducted branch-specific tests of adaptive evolution on
the remaining 10 genes using the codeml package of PAML (Yang,
2007) to determine whether on specific lineages a gene showed evi-
dence for an increase in rates of nonsynonymous nucleotide substitu-
tion. Specifically, the ratio of the rate of nonsynonymous substitution
per site to the rate of synonymous substitution per site (ω = dN/dS)
was used as an indicator for potential adaptive evolution in each gene.
In the free-ratio model, a branch which has a ω b 1 is considered to be
under purifying selection, a branch with ω = 1 is said to be neutrally
evolving, and a ω N 1.0 implies that positive selection may have oc-
curred (Yang and Nielsen, 1998). Moreover, statistical evidence for
accelerated nonsynonymous rates was obtained by conducting like-
lihood ratio tests among nested branch models (Yang, 2007). The
amino acid tree topology of Meredith et al. (2011) was used for all
analyses, with excluded species pruned from each tree.

We tested three branchmodels, a one-ratiomodel (m0)with a fixed
ω for all branches, a free-ratio model (m1) where ω is allowed to vary
between all branches, and a two-ratiomodel (m2),where the twoωpa-
rameters are used to for two sets of branches corresponding to the pres-
ence of an intact or partially intact sac (ω0) or a ruptured sac (ω1). We
used the reconstruction of character states in the phylogenetic analysis
of the presence of the gestational sac to classify internal branches. In
cases where branches were reconstructed as polymorphic or equivocal
in character state, branches were classified as having an intact/partially
intact sac. A likelihood ratio test was used to compare the models m0
versus m2 and m0 versus m1 (Yang, 2007). The resulting statistic was
compared using a chi-square distribution to determine the model that
best fits the data.



Fig. 2.Evolution of intact and ruptured gestational sacs at parturition. Reconstruction of the evolution of the gestational sac at parturition on a phylogenetic tree of 55mammal species from
12 orders using maximum parsimony. Blue = species with intact membranes; green = partially intact; black = ruptured membrane at birth; Pac. wh.-sided dolphin = Pacific white-
sided dolphin.
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2.4. Mining human SNP data for functional variants implicated in membrane
integrity

Variationwithin nonhumangenomes can potentially inform investi-
gations into the functional evolution of human genes (Schaner et al.,
2001). We therefore further investigated single nucleotide polymor-
phisms (SNPs) in genes that were shown to differ significantly between
species with intact vs. ruptured gestational sacs. We downloaded a list
of human missense SNPs within these genes from the 1000 Genomes
Project (Altshuler et al., 2012). The location of these SNPs in alignments
of each gene was cross-referenced against a list of nucleotide changes
inferred on the branches leading to each of the species with intact
gestational sacs at birth. Nucleotide substitutions were inferred using
marginal reconstruction of ancestral sequences in codeml. To exam-
ine patterns of convergent evolution between human variants and
nonhuman amino acid replacements, we determined whether these
nonhuman substitutions/replacements occurred in gene regions near
(within five codons) each human SNP in the human sequence.
3. Results

3.1. Evolution of membrane integrity at parturition

We mapped the presence of an intact gestational sac on a tree of
55 species spanning the phylogenetic breadth of therian mammals
(Fig. 2). We infer that a ruptured gestational sac upon birth is ances-
tral for therian and eutherian mammals. Based on the data here, we
infer that an intact or partially intact sac evolved a minimum of 13
and a maximum of 16 times in mammals. In addition, parturition
with purely intact membranes has evolved independently at least
eight times. A ruptured gestational sac is ancestral for primates,
and all primates with the exception of humans in caul are born
with a ruptured sac. Humans are coded here for a sac that is both rup-
tured and partially intact (although partially intact membranes are
rare in humans). A partially intact or intact gestational sac is a consis-
tent feature of the Ruminantia within the order Cetartiodactyla, and
is inferred as the ancestral state of this clade.

image of Fig.�2


Fig. 3. Adaptive evolution in COL1A2. Phylogenetic tree of mammals used in this studywith COL1A2 branch-specific dN/dS above each branch, N*dN and S*dS values below each branch.
COL1A2 shows evidence of adaptive evolution (dN/dS N 1.0) on three branches highlighted in red. Names of each species are colored with blue for intact gestational sac, green for partial
gestational sac, and black for ruptured gestational sac. Abbreviations: dN/dS = ratio of non synonymous substitution rate/synonymous substitution rate; N*dN = nonsynonymous
changes; S*dS = synonymous changes.
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3.2. Molecular evolution of genes implicated in PPROM

We tested for the presence of adaptive evolution in 10 of the 11
genes related to PPROM using both a one-ratio and free-ratio model.
The free-ratio model (m1) is a significantly better fit (Chi-square
p b 0.05) to the data than the one-ratio model (m0) for 9 of the 10
genes analyzed. The free-ratio model is one in which each individual
branch of the tree has a distinctω; therefore, rates of nucleotide substi-
tution vary across the tree in a majority of the genes tested. ω did not
significantly vary across the tree in only one gene (ZMPSTE24).

Using the free-ratiomodel, adaptive evolution can be detectedwith-
in individual branches in the phylogenetic tree used in the analysis. One
gene, COL1A2, showed clear evidence for adaptive evolution, (i.e. dN/
dS N 1.0) on three branches, all within the Laurasiatheria (Fig. 3).
These three branches are the stem branch of Carnivora, the stem branch
of both the Perissodactyla and Cetartiodactyla, and the stem branch of
Cetruminantia (cow and dolphin in the present study). Of the eight an-
alyzed extant species included within these adaptively evolving clades,
four are born with intact membranes and four are born with ruptured
membranes. Free-ratio values for the remaining nine analyzed genes
are provided in Supplemental Table 3. Five of these genes (COL3A1,
CRTAP, LEPRE1, PLOD1, and ZMPSTE24) have limited evidence for posi-
tive selection but are not discussed here as dS = 0 on these branches.

We also examined a two-ratio (m2)model, where dN/dS ismodeled
to vary between two character states (i.e. one rate for intactmembranes
and another rate for rupturedmembranes). This model is a significantly
better fit (Chi-square p b 0.05) to the data than the one-ratio (m0)
model in five genes (ADAMTS2, COL1A1, COL5A1, CRTAP, LEPRE1). Four
of these five genes showed a higher dN/dS ratio in species with intact
membranes (ADAMTS2, COL1A1, COL5A1, and LEPRE1) than those with
ruptured membranes. Complete results are shown in Table 1. COL1A1
had a highly significant result when comparing model m0 and m2,
and it also had the largest difference between the dN/dS ratio of the spe-
cies with intact and rupturedmembranes (Table 1). However, there is a
large section of the horse sequence that is significantly divergent from
the other species. When the horse is removed from the alignment the
m2 and m0 models do not significantly differ for this gene.

3.3. Human SNPs in adaptively evolving PPROM-related genes

In order to gain insight into the evolution of membrane integrity at
parturition in mammal species we tested for adaptive evolution in

image of Fig.�3


Table 1
Comparison of substitution rates in species with intact vs. ruptured gestational sac. List of genes used in the branch model tests and their corresponding p-values of the likelihood ratio
tests. In the one-ratio (m0) branch model, the dN/dS value (ω) is fixed across all branches. In the two-ratio (m2) branchmodel, two differentω parameters are used, each corresponding
to an intact or a ruptured membrane at birth. In the one-ratio (m1) branch model,ω is allowed to vary at each branch point. Bolded numbers represent significant p values b 0.05.

Gene name Gene symbol ln likelihood p value dN/dS

m2 m0 Ruptured Intact

Collagen, type I, alpha 1 COL1A1 −15104.92 −15150.63 1 E-21 0.1656 0.4215
ADAMmetallopeptidase with thrombospondin type 1 motif, 2 ADAMTS2 −12701.67 −12707.51 6E-04 0.0505 0.0741
Cartilage associated protein CRTAP −3281.68 −3286.72 0.001 0.0794 0.0324
Collagen, type V, alpha 1 COL5A1 −12961.53 −12966.03 0.003 0.0368 0.0611
Leucine proline-enriched proteoglycan (leprecan) 1 LEPRE1 −3671.43 −3674.38 0.015 0.0590 0.1005
Collagen, type III, alpha 1 COL3A1 −20778.47 −20779.32 0.191 0.1652 0.1473
Collagen, type I, alpha 2 COL1A2 −19872.86 −19873.32 0.339 0.1669 0.1524
Zinc metallopeptidase STE24 homolog (S. cerevisiae) ZMPSTE24 −3616.79 −3616.99 0.530 0.0751 0.0878
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 PLOD1 −8417.60 −8417.69 0.672 0.0474 0.0445
Collagen, type V, alpha 2 COL5A2 −14036.80 −14036.85 0.753 0.0778 0.0749
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PPROM related genes. This analysis enabled us to determine the specific
amino acid replacements that occurred in lineages and genes that
evolved membrane integrity at parturition. We next asked whether
these or nearby amino acid positions were variable in human popula-
tions. We reasoned that if such human sites were variable then they
would potentially play a functional role for membrane integrity. We
therefore examined the SNP data generated from the 1000 Genomes
Project (Altshuler et al., 2012), and searched for human missense SNPs
in such proximity. Among the five genes we analyzed, we identified
17 humanmissense SNPs proximate to nucleotide substitutions in line-
ages that evolved the character state of intact membranes during partu-
rition. Table 2 summarizes the number of missense SNPs per gene as
well as the number of nearby nonsynonymous substitutions among
species with intact membranes at birth.

In our survey of the five genes with significant evidence for positive
selection (ADAMTS2, COL1A1, COL5A1, CRTAP, LEPRE1), there were four
to ten human missense SNPs per gene (Table 2). Four out of five genes
had replacements in lineages leading to specieswith an intact gestational
sac within five codons of a human SNP (Table 2). Of these, ADAMTS2 had
the most (n = 33) and COL5A1 had the fewest (n = 1). In ADAMTS2,
there were eight amino acid replacing substitutions within the same
codon of a human SNP. These included changes in the terminal lineages
leading to the guinea pig, cow, elephant, dog, and rabbit. For example,
the human ADAMTS2 SNP rs59567206 results in a GAC(D) → GGC(G)
substitution. In both the guinea pig and cow, a substitution at this
same nucleotide results in a GGC(G) → GAC(D) replacement, a situation
opposite that of thehuman.CRTAPhas six replacements close to a human
SNP including one within the same codon. This SNP (rs114245114) re-
sults in a AAG(K) → AGG(R) replacement. This identical substitution oc-
curs in the cow. LEPRE1 has 16 replacements close to a human SNP
including one within the same codon. This SNP (rs146982397) results
in a CGT(R) → TGT(C) substitution. In elephants, there is a change at
the same codon, but a different nucleotide with a different amino acid
change, CGT(R) → CAT(H). A full list of replacements at each SNP is
available in Supplemental Table 4.
Table 2
Number of replacement substitutions in lineages leading to species with an intact gestational sa
SNPs obtained from the 1000 Genomes Project. SNPs listed correspond to amino acid repla
Replacement substitutions are those missense amino acid changes that occurred along the l
horse, dog, and elephant).

Gene name Gene symbol Num

ADAMmetallopeptidase with thrombospondin type 1 motif, 2 ADAMTS2 9
Collagen, type I, alpha 1 COL1A1 6
Collagen, type V, alpha 1 COL5A1 10
Cartilage associated protein CRTAP 4
Leucine proline-enriched proteoglycan 1 LEPRE1 4
4. Discussion

4.1. Principal findings

The present study examined the evolution of membrane integrity at
term in 55 species. Tracing the evolution of this feature allows us to con-
fidently infer that the last common ancestral population of 1) viviparous
mammals, 2) placental mammals, and 3) Primates typically gave birth
to individuals with ruptured extraembryonic membranes. The transi-
tion from ruptured membranes at parturition to intact membranes at
parturition occurred frequently duringmammalian evolution; however,
the transformation from intact to ruptured membranes occurred less
frequently. Parturition with intact membranes has evolved indepen-
dently at least eight times. We next examined the molecular evolution
of genes implicated in PPROM and from these analyses we describe
two principal findings. First, 50% of these genes show significant evi-
dence for different rates of evolution in lineages that have intact vs. rup-
tured membranes at parturition. Moreover, four of the five genes that
have significantly different nucleotide substitution rates between the
two groups evolved more rapidly in the lineages that evolved intact
membranes. When the 17 human missense SNPs in these genes are in-
terrogated we find that 10 codons are variable in humans and have un-
dergone nonsynonymous substitutions at the same position in at least
one lineage that has evolved intact membranes.

The evolution of an intact gestational sac at parturition raises the
possibility of morphological adaptation. Alternatively, the accelerated
evolution of connective tissue genes may reflect selective pressure on
tissues and phenotypes other than the gestational sac. However, we
may speculate that the utility of intact membranes at delivery could re-
late to both the protection of the newborn against injury. An intact ges-
tational sac may help to cushion the newborn upon expulsion from the
birth canal, especially in animals that give birth standing up, such as the
giraffe, alpaca, and the elephant. Mammals that are bornwith a sac tend
to be precocial, such as those in Ruminantia, some carnivores, and the
guinea pig. The ability to break out of an intact gestational sac may be
c at birth close to the site of a human SNP. The number of SNPs as listed includesmissense
cements that occurred in significantly adaptively evolving genes implicated in PPROM.
ineages leading to mammals born with intact gestational sacs (guinea pig, rabbit, cow,

ber of SNPs Replacements within 5 codons Replacements within same site

33 8
0 0
1 0
6 1

16 1
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a result of the limb strength that allows these newborns to walk imme-
diately following birth.

4.2. Translational implications

Alexander Pope famously noted in Essay on Man (1734) that, “the
proper study of mankind is man.” There is still a strong argument that
in order to understand human biology it is best to focus on the study
of humans. Indeed, this perspective drives the vast majority of clinical
research. However, the advent of transgenic and other animalmodel ap-
proaches have also been shown to have value in understanding normal
and abnormal phenotypes, and FDA drug approval often requires pre-
liminary animal studies (Conn, 2013). At first glance it seems unlikely
that the study of horses, elephants, guinea pigs, dogs, and other species
used less frequently as model organisms can inform understanding of
PPROM. However, it is well appreciated that an understanding of evolu-
tion can informour understanding of humanmedicine (Gluckman et al.,
2009). From a translational perspective it is possible to look at human
variants at codons that have evolved adaptively in nonhuman mam-
mals. Perhaps these sites are functionally relevant to humanmembrane
integrity during gestation. Future work could test this idea by compar-
ing these variants in PPROM cases vs. controls. In the present study
we asked which species had intact vs. ruptured membranes at parturi-
tion. We found that ruptured membranes represented the ancestral
state, and that intact membranes had evolved multiple times on
different mammalian lineages. Thus, the evolution of intact membranes
is a good example of convergent evolution. Convergent evolution of phe-
notypic traits is a common occurrence, and probably the most famous
example of convergent evolution is the multiple origins of eyes across
the animal kingdom (Fernald, 2000). Both the octopus (a mollusk) and
the human (a vertebrate) possess eyes, yet their last common ancestor
did not possess this feature. Eyes have independently evolved dozens
of times, and interestingly it appears that the evolution of the eye is
strongly influenced by the actions of a single gene, PAX6, a transcription
factor involved in morphogenesis (Gehring and Ikeo, 1999). It is thus
reasonable to ask whether the evolution of membrane integrity could
also be under the control of a limited number of genes because like
eyes, membrane integrity appears to evolve convergently.

The extraembryonic membranes that constitute the gestational sac
include two fetally derived tissues (amnion, chorion) and onematernal-
ly derived tissue (decidua) (Mossman, 1987). This factmakes determin-
ing the genetic underpinnings of PPROMdifficult because both fetal and
maternal alleles can confer risk or resilience to PPROM and associated
obstetrical syndromes. Therefore, when consideringhuman genetic var-
iants in the context of PPROM it is important to consider both maternal
and fetal effects, and to note that genomic conflict theory predicts that
maternal and fetal adaptationsmay at times be at odds with one anoth-
er (Haig, 1993). Therefore, any clinical study testing convergently evolv-
ing PPROM variants would need to account for the genotypes of both
mothers and their offspring.

4.3. Study limitations

While the results yielded in the current study are promising, a num-
ber of important caveats temper the interpretations of our results. First,
we are basing our analyses of adaptive evolution on sequences derived
from reference genome draft assemblies. Second, our video analyses are
based on one or a few individuals per species. Because our study is
not population based it is entirely possible that variation exists both
phenotypically and genotypically within our study taxa. In that case
wehave likelymissed several interesting aspects of this variation.More-
over, the current study examined only protein coding changes. It is
well appreciated that much functionally important evolution occurs
outside of protein coding regions (e.g. gene regulatory sequences)
(Prud'homme et al., 2007), and the present study did not examine this
and other important classes of nucleotide sites. Additionally, we used
genes that were annotated as orthologs according to Ensembl. The algo-
rithm used to identify orthologous sequences is based upon reciprocal
BLAST strategies. If the “true” orthologous gene is located in an
unassembled portion of the genome it is possible that a paralogous
gene would be falsely identified as orthologous, and this could result
in an erroneous inference of positive selection. As genome assemblies
are refined and new drafts are released it will be crucial to repeat the
analyses presented in the present paper. Finally, there are more than
5000 extant species of mammals, and our relatively small sample size
may incorrectly infer the timing of some of the major transitions in
membrane integrity at parturition. Despite these limitations, we are
confident that a comparative approach can identify key genes and line-
ages that provide insight into the evolution of mammalian parturition.

4.4. Conclusions

Our survey of the evolution of membrane integrity has identified a
large number of potential mammalian models for the study of mem-
brane rupture in humans. We propose that the disparate taxa that have
evidence for convergent and adaptive evolution of intact membranes
during parturition may share similar underlying molecular mechanisms
in strengtheningmembranes, particularly pathways involving collagens.
DNA substitutions in genes associated with membrane strength in these
species may provide clues toward identifying fetuses at risk for PPROM.
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