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Value of radiomics model 
based on enhanced computed 
tomography in risk grade 
prediction of gastrointestinal 
stromal tumors
Hairui Chu1, Peipei Pang4, Jian He1, Desheng Zhang1, Mei Zhang3, Yingying Qiu3, Xiaofen Li3, 
Pinggui Lei5, Bing Fan2* & Rongchun Xu3*

To explore the application of computed tomography (CT)-enhanced radiomics for the risk-grade 
prediction of gastrointestinal stromal tumors (GIST). GIST patients (n = 292) confirmed by surgery or 
endoscopic pathology during June 2013–2019 were reviewed and categorized into low-grade (very 
low to low risk) and high-grade (medium to high risk) groups. The tumor region of interest (ROI) was 
depicted layer by layer on each patient’s enhanced CT venous phase images using the ITK-SNAP. 
The texture features were extracted using the Analysis Kit (AK) and then randomly divided into the 
training (n = 205) and test (n = 87) groups in a ratio of 7:3. After dimension reduction by the least 
absolute shrinkage and the selection operator algorithm (LASSO), a prediction model was constructed 
using the logistic regression method. The clinical data of the two groups were statistically analyzed, 
and the multivariate regression prediction model was constructed by using statistically significant 
features. The ROC curve was applied to evaluate the prediction performance of the proposed model. 
A radiomics-prediction model was constructed based on 10 characteristic parameters selected from 
396 quantitative feature parameters extracted from the CT images. The proposed radiomics model 
exhibited effective risk-grade prediction of GIST. For the training group, the area under curve (AUC), 
sensitivity, specificity, and accuracy rate were 0.793 (95%CI: 0.733–0.854), 83.3%, 64.3%, and 72.7%, 
respectively; the corresponding values for the test group were 0.791 (95%CI: 0.696–0.886), 84.2%, 
69.3%, and 75.9%, respectively. There were significant differences in age (t value: − 3.133, P = 0.008), 
maximum tumor diameter (Z value: − 12.163, P = 0.000) and tumor morphology (χ2 value:10.409, 
P = 0.001) between the two groups, which were used to establish a clinical prediction model. The area 
under the receiver operating characteristic curve of the clinical model was 0.718 (95%CI: 0.659–0.776). 
The proposed CT-enhanced radiomics model exhibited better accuracy and effective performance than 
the clinical model, which can be used for the assessment of risk grades of GIST.

Being the most common mesenchymal tumors of the digestive tract, gastrointestinal stromal tumors (GIST) 
are potential malignancies that readily metastasize to the liver and abdominal cavity with a high postoperative 
recurrence  rate1–3. With reference to the 2008 National Institutes of Health (NIH) classification system, GISTs 
with different biological behaviors can be categorized into 4 grades: high-risk, intermediate-risk, low-risk, and 
very low-risk4. Treatment of patients with low/very low-risk GIST mainly involves surgical resection. For the 
early-stage and small tumors, the treatment options include minimally invasive surgery with smaller surgical 
wounds, rapider postoperative recovery, and fewer complications, whereas varying degrees of imatinib adjuvant 
treatments have been deemed necessary for high-risk tumors after  surgery5. Therefore, the accurate diagnosis 
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and risk stratification of GISTs before surgery is considered crucial for the determination of appropriate treat-
ment options and patient prognosis.

With the increase in the availability of image recognition tools and the advancement in computer technology, 
the uses of medical images are no longer limited for visual judgment. The digital information contained therein 
can be mined and quantified to facilitate clinical decision-making6. As a novel method, radiomics has been 
employed to obtain these implicit data and transform them into information that can facilitate the prediction 
and evaluation of diseases to guide treatments  approaches7–10. The present study aims to discuss the application 
of CT-enhanced radiology model for the risk-grade prediction of GIST.

Data and method
Clinical data. This study was approved by the ethics committee of the Huzhou Central Hospital (Affiliated 
Central Hospital Huzhou University), and all patients signed informed consent. A total of 384 GIST cases regis-
tered during June 2013–2019 were reviewed. A total of 37 cases with no enhanced CT examination, 45 cases with 
a previous treatment history, and 10 cases with poor image quality were excluded, and, finally, 292 cases were 
included in this study based on the following inclusion criteria:

1. Pathologically confirmed GIST patients who underwent enhanced CT examination;
2. Patients who did not receive any type of treatment (such as surgery, biopsy, radiotherapy, chemotherapy, or 

hormone therapy) before their enhanced CT examination;
3. Patients with high-quality CT imaging data with no artifact, where the lesion was clearly evident; and
4. Patients whose detailed pathological report with explicit risk classification was available.

Methods. Routine plain scan and multi-phase enhanced scan were performed with the Aquilion 16 Slice 
Spiral CT (Toshiba, Japan) using the following scanning parameters: tube voltage: 120 kV, tube current: 150 
MAS, scanning layer thickness: 0.5 mm, reconstruction layer thickness: 5 mm, layer spacing: 2 mm; 18-G venous 
indwelling needle embedded in the elbow vein, and non-ionic contrast agent iodofol injected at 2.5 mL/s with 
the injection volume of 1.5 mL/kg.

Radiomics analysis. The Artificial Intelligence Kit (AI-Kit, Version: 3.0.1.A) was used for the analysis. Fol-
lowing the radiomics methods, the software delivered a series of imaging features by analyzing the heterogenic-
ity of the target region.

Lesion segmentation. The venous phase images of all patients were imported into the image processing software 
ITK-SNAP (version 3.6.0, http:// www. itksn ap. org/)7 in the DICOM format. Two doctors unaware of the pathol-
ogy manually delineated, segmented, and fused all layers of the lesions for a layer by layer display, followed by 
merging them into the 3D volume of interest (VOI) (Fig. 1a,b). In case of a disagreement, the two doctors had 
a discussion with each other until reaching a consensus. Given the density of GIST and the characteristics of 
the enhancement technique, the venous phase was selected for tumor delineation in order to identify the tumor 
boundary and avoid error.

Extraction of radiomics features. The ROI file and the original of image of the segmented tumor were synchro-
nously imported into the AK software in order to calculate the parameters of quantitative radiology features, 
including VOI. A total of 396 features of 5 categories, including the histogram feature, morphology feature, gray 
level co-occurrence matrix feature, run length matrix feature, and gray area size matrix feature were extracted 
for each patient.

Figure 1.  The image-processing software ITK⁃SNAP was used to manually delineate tumor ROIs along the 
lesion fringes on all the layers containing the tumors through the enhanced-CT venous phase images, and then 
the images were merged into 3D ROI images (red).

http://www.itksnap.org/
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Feature pre‑processing. The extracted features were pre-processed before feature screening, as follows: (1) the 
median number of the feature was used when the omissive or abnormal values developed. (2) The dataset was 
randomly divided into the training group (n = 205) and the test group (n = 87) in the ratio of 7:3. The data of the 
training group were used for model construction, while those of the test group were used to validate the model 
accuracy and test its generalization power. (3) The features were standardized with the Z-score (minus the mean 
value divided by the standard deviation) in order to eliminate the interference between the feature dimensions.

Feature screening and modeling. For the training group, Spearman correlation analysis was first conducted in 
order to calculate the redundancy among feature parameters, and the threshold value of 0.9 was set to eliminate 
the strongly correlated feature parameters and only one of them was retained. Next, tenfold cross validation was 
performed via LASSO regression, and the features with non-zero coefficients were selected. To detect the multi-
collinearity between variables in the combined model, the variance inflation factor (VIF) was used to perform 
the collinearity diagnosis with the VIFs > 5 indicating a severity collinearity.The parameters of the selected fea-
tures were used to establish the model for GISK risk grading through logic regression analysis.

Statistical analysis. The R (Version: 3.4.4) and SPSS (SPSS23.0) software were used for statistical analyses. 
The Kolmogorov–Smirnov test was performed to determine whether the data obeyed normal distribution. The 
t-test (normal distribution) and the Mann–Whitney U (skewed distribution) test were employed for comparison 
between the two groups of data. The data were represented as mean ± standard deviation (x ± s). The χ2 test was 
used to compare the data between the two groups of patients. The parameters such as accuracy, sensitivity, speci-
ficity, and area under curve (AUC) were used to evaluate the predication power of the model.

Ethical approval. All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the institutional (Huzhou Central Hospital, Affiliated Central Hospital Huzhou 
University) and/or national research committee and with the 1964 Helsinki declaration and its later amend-
ments or comparable ethical standards.

Informed consent. Informed consent was obtained from all individual participants included in the study.

Results
General demographics. A total of 292 patients (men: 140, women: 152, age: 29–90 years; average age: 
61 ± 12  years) were categorized into the low-risk group (n = 127; very-low-risk cases: 32, low-risk cases: 95) 
and the high-risk group (n = 165; intermediate-risk cases: 46, high-risk cases; 119). A comparison between the 
general information of the two groups is listed under Table 1. No significant difference was noted with respect 
to the patient gender between the two groups. However, difference in the onset age exhibited a certain degree 
of significance. For instance, the onset age in the high-risk group was greater than that in the low-risk group. 
No significant difference in the degree of tumor enhancement was noted between the two groups, although the 
parameters of maximum tumor diameter and tumor morphology showed certain statistical significance.

A clinical model for GIST risk grading was constructed with age, maximum tumor diameter and tumor 
morphology, which showed an AUC of 0.718 (95%CI: 0.659–0.776), with the sensitivity, and specificity of 66.1% 
and 61.9%.

Radiomics model. A total of 396 quantitative imaging feature parameters were extracted using the AK 
software, and the inter-feature redundancy was first eliminated with the Spearman method to yield 20 features. 
These features were screened with the LASSO regression, and 10 features with higher predicative values were 
retained (Fig. 2a,b), which included 2 morphology features, 6 Gy-level co-occurrence matrix features, and 2 
run-length matrix features. The feature parameters and their corresponding coefficients are listed under Table 2. 
All VIF values were less than 5. The radiomics score for each patient was calculated with the following formula:

Rad score = 0.676 − 0.091 × feature 1 + 2.535 × feature 2 − 0.298 × feature 3 + 0.368 × feature 4 + 0.234 × feature 
5 − 0.076 × feature 6 + 0.104 × feature 7 + 0.076 × feature 8 + 0.051 × feature 9 + 0.031 × feature 10.

Statistical significance was recorded for the rad score in differentiating between the high- and low-risk GIST 
for both the training and test groups, and the rad score was found to be higher in the high-risk group than in 
the low-risk group (Fig. 3a,b).

A predicative model for GIST risk grading was constructed from these feature parameters via the logic 
regression analysis. For the training group, the model showed an AUC of 0.793 (95%CI: 0.733–0.854), with the 

Table 1.  A comparison between the general information of the two groups. a  χ2 value, b t value, c Z value.

Group Cases

Gender
Age
(x ± s)

Maximum 
tumor diameter 
(cm, x̄ ± s)

Tumor morphology Enhancement degree

Male Female Quasi-circular Irregular Significant Insignificant

Low-risk 127 54 73 59 ± 10 2.6 ± 1.4 119 8 115 12

High-risk 165 74 91 63 ± 12 7.1 ± 4.1 133 32 158 7

Validation value 0.158a  − 3.133b − 12.163c 10.409a 3.198a

P value 0.722 0.008 0.000 0.001 0.061
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sensitivity, specificity, and accuracy of 83.3%, 64.3%, and 72.7%, respectively. For the validation group, the model’s 
AUC was 0.791 (95%CI: 0.696–0.886), with the sensitivity, specificity, and accuracy of 84.2%, 69.3%, and 75.9%, 
respectively. The cumulative results indicated that the proposed model possesses better predicative power than 
the clinical model (Table 3; Fig. 4a–c).

Discussion
The study features. With the recent development of artificial intelligence, radiomics methods have wit-
nessed extensive application in disease diagnosis. Radiomics can extract feature data from images in a high-
throughput manner that can be quantitatively analyzed for the transformation of the conventional medical 
images into quantitative  data8–12. The results of this study yielded from the analysis of these data combined with 
the clinical and pathological information can be together used to guide clinical practices. As GIST risk grading 
is crucial for deciding the best clinical therapeutic option, and enhancement CT is advantageous owing to its 
convenience of use, intuitiveness, and non-invasiveness, the proposed approach serves as an important method 
of pre-surgical auxiliary  examination13–17.

In the present study, ROI delineation is a premise for feature extraction. Segmentation of tumor ROI influ-
ences the feature extraction directly, where some features are extremely sensitive to the segmentation boundary. 
Past studies have demonstrated that the local tumor components cannot fully represent the tumor in general and 
that analyses based on the global domains of tumors can indicate tumor heterogeneity in a more accurate and 
reliable  manner8,12,16. Therefore, in the current study, all layers containing the tumor parenchyma in the venous 
phase images of the enhanced CT were delineated layer by layer and then fused into a three-dimensional (3D) 
structure in order to ensure the generality and accuracy of the extracted feature parameters.

In addition to the conventional first-order histogram and morphology features, we employed the AK software 
to mine high-order texture parameters that are richer inside the tumors. The internal texture of GIST with dif-
ferent risk grading is mixed and locally irregular, but globally regular grey characteristics in the conventional 
CT images cannot be visually distinguished. These high-order texture parameters quantify the feature of gray 

Figures 2.  (a) Screening of the radiomics features was performed through LASSO regression. The cross-
validation for LASSO regression, where the parameter λ was adjusted to find the best function set, is shown. The 
vertical dotted line on the left panel represents the log(λ) corresponding to the optimal λ. The selection criterion 
was the minimum deviation value, i.e. -4.3. (b) Screening of the radiomics features was performed through 
LASSO regression. The coefficients of texture parameters changed with λ. The vertical line corresponds to the 10 
features selected with non-zero LASSO cross-validation coefficients.

Table 2.  Texture parameters after the dimensionality reduction.

Parameter Coefficient VIF values

Morphology features
Feature 1 Surface volume ratio  − 0.091 3.961

Feature 2 Volume 2.535 2.384

GLCM feature

Feature 3 Inertia_angle135_offset1  − 0.298 1.452

Feature 4 Sum Entropy 0.368 1.042

Feature 5 HaralickCorrelation_AllDirection_offset1_SD 0.234 1.819

Feature 6 GLCMEnergy_AllDirection_offset4_SD  − 0.076 1.431

Feature 7 Correlation_AllDirection_offset7 0.104 4.027

Feature 8 Correlation_angle135_offset7 0.076 3.098

RLM feature
Feature 9 LongRunHighGreyLevelEmphasis_angle0_offset1 0.051 1.929

Feature 10 LongRunLowGreyLevelEmphasis_angle135_offset1 0.031 0.098
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level change within the tumor area and between the adjacent organs for the quantitative analysis of the  tumor17, 
which provides additional valuable information for the auxiliary diagnosis or prognosis prediction.

Analysis of feature parameters. In this study, after feature screening, LASSO retained two morphol-
ogy features: surface-volume ratio and volume. The morphological features mainly described the 3D size and 
the shape of  tumors18,19, among which the surface-volume ratio equaled to the surface of the VOI divided by 
the volume, while the tumor volume was calculated by multiplying the pixel numbers of the tumor area by the 
pixel size, which provided information about the lesion size. Similar to previous  research20, our analysis showed 
that there was significant difference in age, maximum tumor diameter and tumor morphology between the two 
groups. The onset age in the high-risk group was greater than that in the low-risk group, so we speculated that 
higher grade tumors may present later in life. Among the final 10 features selected for model construction, the 
coefficient of volume was the largest, which indicated that the lesion size and the morphology of GIST were 
closely related to risk grading. The larger the volume, the smaller the SurfaceVolumeRatio, the higher the risk of 
GIST. These observation were further backed by the fact that only the parameters of maximum tumor diameter 
and tumor morphology exhibited statistical significance in the analysis of the general patient information.

The gray level co-occurrence matrix(GLCM) represents the joint probability of some pixel sets with a certain 
gray  value11. The GLCM Correlation reflects the local gray level correlation in the image. Nine GLCM parameters 
(such as inertia, total entropy, full angle energy, correlation, and full-angle diagonal correlation) are included in 
the feature-screening results. These features describe the 2D spatial distribution of gray  intensity10,19 that suggest, 
from another perspective, that the differences in the inner texture of tumors are important factors that influence 
tumor risk grading. The more uniform the GLCM matrix element value, the greater the correlation. The bigger 
the Inertia is, the higher the heterogeneity of pathological tissue; Entropy reflect inhomogeneity or complexity 
of the texture in the image, and its large value indicates a uniform texture pattern with regular changes. GLC-
MEnergy is the opposite, it reflects the uniformity of the gray distribution. LongRunHighGreyLevelEmphasis 
and LongRunLowGreyLevelEmphasis is the RLM features, which describe the roughness and smoothness of 
the  image8,12,17. In this study, the Volume, Entropy, Inertia and LongRunHighGreyLevelEmphasis in high-risk 
GIST were greater than low-risk GIST, which indicated that the more heterogeneous in enhanced CT imaging, 
the greater the possibility of high-risk. The Correlation, GLCMEnergy in high-risk GIST were less than low-risk 
GIST, which indicated that the more uniform the pixel value and the more uniform the gray distribution. Among 
all selected parameters in this study, the numbers of gray level co-occurrence matrix and the run length matrix 

Figure 3.  Radiomics score distribution of the 292 patients is shown for (a) the training group and (b) the 
validation group. The low-risk group is colored blue (0), and the high-risk group is colored yellow (1).

Table 3.  Diagnostic efficacy of the radiomics model in the training and test groups.

AUC (95%CI) Accuracy (95%CI) Sensitivity Specificity

Train 0.793 (0.733–0.854) 0.727 (0.660–0.787) 0.833 0.643

Test 0.791 (0.696–0.886) 0.759 (0.655–0.844) 0.842 0.694
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were the largest, which indicates that the texture distribution and spatial heterogeneity inside the tumors are 
closely related to tumor differentiation.

Limitations. This study has several limitations. First, in this study, ROI was selected only from the solid 
portion of the tumor instead of from the calcified, hemorrhagically necrotic portion inside the tumor, thereby 
ignoring the significance of these special components in distinguishing tumors. Second, other important clini-
cal indicators of GIST, such as the Ki67 expression, were not studied. Finally, the practicability of the predic-
tion model warrants further verification by the big data and multi-institutional validation to be collected from 
prospective studies.

Conclusions
The CT-enhanced radiomics model proposed in this paper demonstrated a good predicative power with signifi-
cant potential value for the evaluation of the GIST risk status.

Received: 28 November 2020; Accepted: 24 May 2021

Figures 4.  Evaluation of the radiomics model and clinical model for predicating GIST risk grading using the 
ROC curve. (a) It shows that the model’s AUC was 0.793 (95%CI: 0.733–0.854) for the training group (n = 205). 
(b) It shows that the model’s AUC was 0.791 (95%CI: 0.696–0.886) for the training group (n = 87). (c) It shows 
that the model’s AUC was 0.718 (95%CI: 0.659–0.776) for the clinical features (n = 292).
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