
Published online 19 November 2020 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 4 1
doi: 10.1093/nargab/lqaa091

FITs: forest of imputation trees for recovering true
signals in single-cell open chromatin profiles
Rachesh Sharma1,†, Neetesh Pandey2,†, Aanchal Mongia1, Shreya Mishra2,
Angshul Majumdar1,* and Vibhor Kumar 2,*

1Department of Electronic and Communication Engineering, Indraprastha Institute of Information Technology Delhi,
Okhla Industrial Estate, Phase-III, New Delhi 110020, India and 2Department of Computational Biology, Indraprastha
Institute of Information Technology Delhi, Okhla Industrial Estate, Phase-III, New Delhi 110020, India

Received June 30, 2020; Revised October 13, 2020; Editorial Decision October 19, 2020; Accepted October 21, 2020

ABSTRACT

The advent of single-cell open-chromatin profiling
technology has facilitated the analysis of hetero-
geneity of activity of regulatory regions at single-cell
resolution. However, stochasticity and availability of
low amount of relevant DNA, cause high drop-out rate
and noise in single-cell open-chromatin profiles. We
introduce here a robust method called as forest of im-
putation trees (FITs) to recover original signals from
highly sparse and noisy single-cell open-chromatin
profiles. FITs makes multiple imputation trees to
avoid bias during the restoration of read-count ma-
trices. It resolves the challenging issue of recovering
open chromatin signals without blurring out informa-
tion at genomic sites with cell-type-specific activity.
Besides visualization and classification, FITs-based
imputation also improved accuracy in the detection
of enhancers, calculating pathway enrichment score
and prediction of chromatin-interactions. FITs is gen-
eralized for wider applicability, especially for highly
sparse read-count matrices. The superiority of FITs
in recovering signals of minority cells also makes it
highly useful for single-cell open-chromatin profile
from in vivo samples. The software is freely available
at https://reggenlab.github.io/FITs/.

INTRODUCTION

High-throughput sequencing has enabled a wider applica-
tion of epigenome profiles for studying biological and clin-
ical samples. Different kinds of epigenome profiles such
as histone-modifications (1), chromatin-accessibility and
DNA-methylation patterns have been used to study active,
poised and repressed regulatory elements in the genome
(2). Especially, for characterizing noncoding regulatory re-

gions like enhancers, epigenome profiles have proved to be
very useful (3). In the previous decade, epigenome profiling
was mostly performed using bulk samples containing mil-
lions of cells. Bulk sample epigenome profiles do not help in
identifying poorly characterized cell populations and rare
cell types in samples of tumours or early developmental
stages. Even with in vitro experiments, where cells differ-
entiate, there is heterogeneity among single-cells in terms
of response to external stimuli. Such heterogeneity is of-
ten not captured by using bulk epigenome profile. More-
over, heterogeneity among cells can be in both transcrip-
tome and epigenome pattern of cells. Such as chromatin
poising or bivalency at many genes may not be clearly rep-
resented through single-cell RNA-seq (scRNA-seq) profile.
To explain such issues, researchers have developed tech-
niques to profile genome-wide epigenome patterns in single-
cells. Even though profiling of DNA methylation (4) and hi-
stone modification for single-cells is feasible (5), recent large
scale single-cell epigenome profiles (6) have been produced
using single-cell open-chromatin detection technique (7).

Single-cell open-chromatin profiling can be done using
different kinds of protocols like DNase-seq (Dnase I hy-
persensitive sites sequencing) (8), MNase-seq (Micrococcal-
nuclease-based hypersensitive sites sequencing) (9) and
ATAC-seq (Transposase-Accessible Chromatin using se-
quencing) (10). Single-cell open-chromatin profile has the
potential to reveal both active and poised regulatory sites
in a genome. Most importantly, it has recently lead to an
understanding of the regulatory action of transcription fac-
tors (TFs) when cells are in the state of transition (11). Be-
sides providing a view of heterogeneity among cell states,
single-cell open chromatin profiles have also proved to be
useful for determining chromatin-interaction patterns (12).
For analyzing single-cell open-chromatin profile, the first
step is to do peak-calling after combining reads from mul-
tiple cells or using matching bulk samples. Then for each
cell, the number of reads lying on the peaks is estimated.
While doing so, most often researchers use a large number
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of peaks, sometimes exceeding more than 100000 in num-
ber (6), to capture the signal at cell-type-specific regulatory
elements in heterogeneous cell-types. However, due to low
sequencing depth and a small amount of genetic material
from single-cells, the read-count matrix is often very sparse,
which creates a demand for imputation techniques. Using a
small number of hyper-active peaks to reduce sparsity may
highlight only ubiquitously open sites like insulators and
promoters of house-keeping genes which do not have cell-
type specificity. Thus with a large number of peaks, single-
cell open chromatin profiles have higher chances of includ-
ing cell-type specific sites but at the cost of a high level of
noise and sparsity. The sparsity in the read-count matrix of
single-cell open chromatin profile is due to two reasons. The
first reason is the high drop-out rate due to which many ac-
tive genomic sites remain undetected (false zeros). The sec-
ond reason is the genuine biological phenomenon that there
is a large number of silent sites because of their cell-type
specific activity. Thus, in comparison to scRNA-seq data,
there are higher fractions for both true and false zeros in
the read-count matrix of single-cell open chromatin pro-
file. Given such limitations with single-cell open-chromatin
profile, the classification and sub-grouping of cells is a dif-
ficult task, which is a pre-requisite for many imputation
methods.

Due to the reasons mentioned above, most of the imputa-
tion methods developed for single-cell RNA-seq (scRNA-
seq) profiles, could underperform on single-cell open-
chromatin datasets. Hence for proper quantification of
DNA accessibility using single-cell open-chromatin pro-
files, there is a need for a second-generation imputation
method which can overcome the weakness of other such
tools to handle high levels of noise and sparseness. Due
to a large number of noncoding sites with cell-type-specific
activity, the ideal signal-recovery method must enable de-
tection of such sites like enhancers. Especially with recent
droplet-based single-cell ATAC-seq (scATAC-seq) protocol
(13), providing profiles of large number of cells with low se-
quencing depth, the problem of imputation becomes more
eminent and challenging.

Even though there has been less attention on imputing
scATAC-seq profiles, it is worth noting that many imputa-
tion methods have been proposed for scRNA-seq datasets.
MAGIC (14) is the first available method for imputing
scRNA-seq profiles. MAGIC predicts missing expression
values by sharing information across similar cells, using the
approach of heat diffusion. The approach of MAGIC in-
volves creating a Markov transition matrix, constructed by
normalizing the similarity scores among single-cells (14).
While imputation of expression for a single-cell, the weights
for other cells is determined using the transition matrix.
MAGIC uses K nearest neighbor (KNN) approach for im-
puting, however unlike classical KNN-based imputation
methods (15) it uses a variable value for K. Methods like
MAGIC may introduce artefacts into the data and blur out
genuine biological variation due to their approach of con-
sidering all zero counts as missing values. Another imputa-
tion method called scImpute (16) also tries to perform im-
putation on drop-out genes. For this, scImpute first learns
the probability of drop-out for every gene in each cell based
on a mixture model for the distribution of read-counts.

scImpute predicts the missing values at false zeros by us-
ing the information of the same gene in other similar cells
which it finds using genes with non-zero expression. Meth-
ods like scImpute, which use parametric method to estimate
drop-out rate may not be successful for scATAC-seq in esti-
mating true parameters due to inconsistencies in the distri-
bution of tag-counts with very high drop-out rate and noise.
High level of sparsity and noise in scATAC-seq profile re-
duces the chance of finding the correct neighborhood and
sub-clusters of cells, which is an important step for most of
the imputation methods like scImpute and MAGIC. Most
recently, an approach based on deep-learning called Deep
Count Autoencoder (DCA) (17) has been proposed for de-
noising and imputing single-cell expression profiles. DCA
uses an auto-encoder to model and predicts the distribu-
tion of the genes using a zero-inflated negative binomial
prior. For DCA, the mean parameter of the distribution-
represents denoised reconstruction. Application of DCA on
single-cell open-chromatin profile seems to be a sensible ap-
proach. However, single-cell chromatin profiles are much
more sparse than single-cell RNA-seq data, hence modeling
the distribution of read-counts might not always be success-
ful.

Recently, a few methods have been proposed for visu-
alization and clustering of scATAC-seq profiles (18). A
method called SCALE (19) also uses auto-encoder to re-
cover missing read-count values in scATAC-seq profile,
whereas another tool scOpen rely on positive-unlabeled
(PU) learning approach for imputation (20). Similarly,
SCATE performs signal extraction and enhancement (21),
but it uses previously known information such as known
peaks in published bulk open chromatin profiles. Every
method has its own strength and weakness such as auto-
encoder-based learning is often influenced by the major-
ity group; hence there is a chance of losing information of
minor cell-types. Hence recovering missing signals in the
scATAC-seq profiles is still an open problem which needs
to be tackled for multiple applications of scATAC-seq in
addition to visualization and clustering.

For single-cell open chromatin profiles, we realized the
limitations due to improper classification and modeling of
the distribution of tag-counts to estimate the drop-out rate.
Therefore, we developed a method which can overcome
these limitations by avoiding suboptimal solutions, using
an ensemble of imputing trees. We call our ensemble-based
approach as Forest of imputation trees (FITs). We have
benchmarked FITs using scATAC-seq profiles of several
cell types using criteria which are useful for analysis for
single-cell open-chromatin. Using the scATAC-seq profile
of 5 cell types, first, we show that FITs correctly recovers
the chromatin accessibility of sites like enhancers with cell-
type-specific activity, without performing over-imputation.
We also show that FITs is more efficient than other meth-
ods in improving dimension reduction and clustering purity
for scATAC-seq profiles. Further, we show that unlike other
imputation methods, FITs can handle unbalanced scATAC-
seq datasets and helps to avoid detecting false heterogeneity
and improves detection of minor cell type. Next, we show
that FITs-based restoration of the read-count matrix also
helps in improving prediction in chromatin interaction us-
ing scATAC-seq profile.
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MATERIALS AND METHODS

Pre-processing of data

We first check the quality of data and remove the peaks
which do not have non-zero read-count in any cell. We nor-
malize scATAC-seq read-counts and take log transform of
data. Hence the read-count xi j on a site g j in cell i is repre-
sented as:

x̄i j = log
(
xi j /μi + 1.01

)
(1)

where μi is mean read-count in cell i . The log of the normal-
ized matrix of the read-count is provided as input to FITs.
Here we have used pseudocount of 1.01 instead of 1 just like
scImpute (16) to avoid the possibility of infinite values dur-
ing optimization.

Clustering using randomized features in a hierarchical man-
ner to improve imputation

Given the noise and sparsity in single-cell open-chromatin
profiles finding correct subclasses is not a trivial task. Thus,
we use a semi-randomized approach of clustering hand in
hand with imputing. Our method has two phases: The first
phase consists of making multiple imputed versions of the
raw matrix through repeated clustering in hierarchical tree
fashion and imputation at each node. Unlike other sug-
gested methods, we do not use all the features at a time to
perform clustering as well as we do not perform classifica-
tion using the raw read-count matrix. We use an iterative
approach in every tree such at every parent node we do pre-
liminary imputation followed by classification of cells. The
classification is not done only at the bottom nodes (at third
layer here).

In the second phase, a final imputed matrix is assembled
using the outputs from multiple trees in the first phase.

Phase-1: The first phase is described below

Given the transpose of a read-count matrix X such that cells
are represented by columns and peaks by rows, we use the
following approach to perform imputation in a tree:

Step1: Perform a preliminary imputation using a base
method, over matrix X, taking all cells in one class.

Step2: Select n sites(peaks) randomly and perform dimen-
sion reduction using t-SNE or singular value decomposi-
tion on imputed data. Here, the number of selected peaks
n is randomly chosen between 50–100% of all peaks. After
reducing the dimension, apply k-mean clustering to divide
cells among classes. The number of cluster k is randomly
chosen in the range of two to eight.

Step3: After finding classes using k-means clustering, the
raw read-count of cells in each class are assembled. Af-
ter assembling the raw read-count matrix for a class, some
peaks appear to have zero read-count (minimum) in all
cells of that class. Hence for imputation on the raw read-
count matrix of cells of a class, the peaks with all zero sig-
nals are considered as true zeros and dropped.

Step4: Imputation using base method is performed sepa-
rately for cells that belong to different classes.

Step5: The imputed matrix of every class is used further to
find sub-classes using the approach mentioned above in
step2 and step3. Again, we randomly choose peaks (fea-
tures) and value for k for the k-mean clustering.

Step6. The non-imputed raw read-count vectors of cells be-
longing to a subclass are assembled together in a separate
matrix. Once again, the peaks which have zero read-count
in all cells of a sub-class are dropped and imputation is
performed separately for a matrix of each sub-class.

Step 7: The imputed read-count matrix from each sub-class
is collected, and a full matrix is built. While doing so, the
sites dropped in cells belonging to a subclass are given the
value zero. Notice that a version of full matrix is also made
using imputation for different classes at first level. Thus
from every tree, we collect two versions of the imputed ma-
trix.

The above steps 1–7 are repeated many times to get an
ensemble of imputation trees.

The output from several trees from phase-1 is further pro-
cessed in phase-2 using the steps described below.

Phase-2: Following steps are taken in phase 2

For every cell correlations between its unimputed read-
count vector and imputed versions from Phase-1 are com-
puted. For every cell average of m most correlated imputed
versions, is taken as the final imputed vector. For m = 1,
one has just to take the topmost correlated imputed ver-
sion. The user decides the value of m, and it can range from
1 to the number of trees made in phase-1. Here we have used
the default value of m = 3 for benchmarking FITs on differ-
ent datasets. If the number of imputed version is less than
3, and the user does not provide an option (m = 1), it uses
all of them to make the final vector.

The reason and logic for some steps in phase-1 and phase-
2 are explained below:

i. At every node of the tree, initial imputation is done be-
fore dimension reduction and clustering, so that chance
of getting the correct cluster is high.

ii. Further, sub-classification is done so that cells belong to
a minor cell-type or cell-state could get chance to come
together to have more accurate imputation.

iii. The imputed version of read-count at level-1 of a tree is
also collected so that if a cell belongs to a majority class,
we should not force its imputation using smaller groups
of cells.

iv. In phase-2, we use spearman correlation to choose best
k imputed version. We tried several kinds of distance
measure to calculate the similarity between unimputed
and imputed read-count vectors and found that spear-
man correlation-based selection of the most suitable im-
puted version provided the best results.

The step of choosing imputed vectors, which have the
highest correlation with unimputed read-count, is inspired
by the minimization criteria followed by nearly all imputa-
tion methods. The classical imputation methods based on
finding lower rank matrix, the difference between imputed
and non-imputed matrices is minimized at observed fea-
tures, to avoid under and over-imputation. Thus, in other
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words, we can say that FITs applies the minimization crite-
ria two times, one during imputation at every node of trees
in phase-1 and other at the stage of phase-2.

The base imputation method of FITS

Even though FITs is designed to be robust to handle error
caused during imputation, it is worth describing the under-
lying base imputation method used by FITs. The base im-
putation method uses the approach of nuclear norm mini-
mization with singular value soft-thresholding, as explained
below.

Given a read-count matrix Y of a set of cells, where
columns represent peaks and rows are for individual cells.
The observed read-count matrix Y can be called a sampled
version of true ideal matrix X. It can be represented as:

Y = A(X) (2)

Here A is an operator matrix which causes sub-sampling,
and has 0’s where the elements of X is not observed, and
1’s where it is known. The problem of imputation here is to
recover complete matrix X, given the read-counts in Y, and
the sub-sampling mask A.

Most often approximate rank of the matrix X is not
known, so getting a solution for equation (2) is not easy. In
order to resolve these issues, researchers use an alternative
solution. For this purpose, researchers try to solve equation
(2) with a constraint that the solution is of low-rank. This
mathematical representation for this can be written as,

minrank (X) such that Y = A(X) (3)

However, this problem itself is NP-Hard. Therefore its
closest convex surrogate; nuclear norm minimization is used
by many studies (22,23) for matrix completion. The nuclear
norm minimization can be termed as:

min
X ||X||∗ such that Y = A(X) (4)

Here ||.||∗ represents the sum of singular values of data
matrix X and is called as nuclear-norm. This constraint of
minimum rank can be replaced with l1 norm of the vector
of singular values of X as a stringent and convex alterna-
tive. Hence as a solution, a modified version of the above
equation is proposed (23) as:

min
X || Y − A(X) ||2F + λ||X||∗ (5)

Here � is the Lagrange multiplier. There is no closed-
form solution for the problem in equation (5). Therefore, it
is solved in many iterations. To solve such problem, we use
majorization–minimization approach at iteration k, given
below

min
X || B − X||2F + λ||X||∗ (6)

Where BK+1 = XK + 1
a

AT (Y − A(XK )) (7)

Using the inequality min
X || M1 − M2|| 〉 ||s1 − s2|| where

s1 and s2 are singular values of matrices M1 and M2, we
can express the minimization problem as

min
X || sB − sX||22 + λ||sX||∗ (8)

Where sB and sX represent singular values of B and X,
respectively, and ||sX|| is the sum of absolute of singular val-
ues of X (24). Thus the minimization problem in equation
(7), is often solved by soft thresholding (24) in the following
manner

sX = sign (sB) max (0, |sB| − λ/2) (9)

It has been found that the algorithm is robust to the value
of � as long as it is reasonably small (25).

Estimating co-accessibility among sites and evaluating the
prediction of chromatin interaction

Given a read-count matrix of single-cell open-chromatin
profile, if we have to find co-accessibility among genomic
sites, we can calculate a covariance matrix. However, as
the number of elements to be calculated in the covariance
matrix is usually larger than the number of data-points in
the read-count matrix, estimating the true covariance ma-
trix is not a trivial task. Moreover, the covariance matrix
may not always represent direct interaction among genomic
sites. Therefore, Graphical Lasso (26) is quite suitable for
this kind of problem. The Graphical Lasso method helps
in estimating regularized covariance and inverse of the co-
variance matrix, which can be used to calculate partial cor-
relations between variables (genomic site) (26). The partial
correlation represents the measure of the degree of associa-
tion between two variables when the effect of other variables
is removed. Given the noise and small size of data, Graph-
ical Lasso aims to detect a small fraction of true partial
correlations among variables. It uses a penalty term which
cause shrinkage of partial correlations between many pairs
to value zero, if there is not enough strength in the estimate
of their association. Graphical Lasso aims to minimize:

logdet� − tr (U�) − ρ| | �|| 1 (10)

Where � is the inverse covariance matrix having the de-
pendence structure of variables and U is their covariance
matrix, and � is the penalty term for L1 norm-based reg-
ularization. Unlike Cicero (by Pliner et al. (12) we did not
use the technique of having a penalty term dependent on
the distance between genomic sites, as we did not want
to miss distal interaction. Moreover, our target here was
just to evaluate the improvement in the prediction of co-
accessibility by imputation. Here we used the value ρ =
0.01.

Before estimating co-accessibility, we merged peaks
which were within 25 kbp of each other and also added
their read-counts. In other words, read-counts in bins of
25 kbp were used. We performed this task on both imputed
and non-imputed read-count matrix before calculating their
covariance matrix and applying Graphical Lasso. We cal-
culated partial correlation values (co-accessibility scores)
between each pair of the genomic region (merged peaks
or bins), using the inverse covariance matrix estimated by
Graphical Lasso. We downloaded the processed chromatin
interaction files for K562 and GM12878 provided by Rao et
al. (27) in HiC data format (.hic format). Using files in .hic
format, we derived the interaction using Juicer (28) and con-
verted the output to six column bed format with scores. Out
of all interactions, we chose high confidence interactions
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with P-value < 1E-9. We used PGLtool (29) to find overlap
between high-confidence HiC-based chromatin interaction
and predicted interacting peak-pairs using co-accessibility.

Evaluation measures for separability and clustering

After t-SNE (t-distributed Stochastic Neighbor Embed-
ding) (30)-based dimension reduction of the imputed and
non-imputed read-count matrix, we performed k-means
clustering. We used two measures to judge the different
properties of clustering and imputation. The first method
called adjusted Rand index (ARI) has cost for false posi-
tive and false negatives, where ‘positive’ means that cells of
the same type are clustered into one cluster and ‘negative’
means that two similar cells are assigned different clusters.
Let, T = [t1, . . . , tP] represents the true p classes consisting
of ni number of observations in class ti and V = [v1, . . . , vK]
be the clustering result with ‘k’ clusters having nj number of
observations in cluster vj. ARI is calculated as:
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2

) (11)

Here, n = ∑k
j = 1 n j = ∑p

i = 1 ni

The second measure we used is called as cell type sepa-
rability (CTS). To calculate CTS, first, we find spearman-
correlation between read-counts of each possible cell pair.
Then we calculate the median correlation for pairs of cells
belonging to the same type to get the intra-cell-type me-
dian correlation. Then among two cell-types, we calculate
inter-cell-type median correlation by taking only those pairs
where one cell belong to one of the two types. The difference
between intra-cell-type and inter-cell-type median correla-
tions is called as CTS. Thus, CTS value is always calculated
between two cell-types.

Data description and availability

The datasets used in this manuscript are available in pub-
lic repositories. The reads for a scATAC-seq profile pub-
lished by Buenrostro et al. (10) were downloaded in SRA
format (SRA ID: SRP052977). The reads were aligned to
hg19 version of the human genome using Bowtie (31).
Peaks of ATAC-seq human cell types used here are pro-
vided in the same study by Buenrosto et al. at GEO database
(GSE65360). The peaks were merged using bedtools. The
read-count for every cell was then estimated for peaks in the
merged peak list. The scATAC-seq read-count for immune
cells was downloaded from GEO database (ID: GSE96772)
(32). Single-cell ATAC-seq read-counts for cells from Bone-
marrow and liver of adult mouse is available with GEO ID:
GSE111586. For the dataset of same GEO id: GSE111586
we also used pathway enrichment-score-based analysis. It
had annotations for approximately 39 major cell-types in-
cluding ‘collision’ and ‘Unknown’.

For evaluation, we used peak-list of bulk sample
ATAC-seq profile of three cell types BJ, GM12878,
H1ESC from other GEO database (GEO ID: GSE65360).
Other bulk ATAC-seq profile used here had GEO IDs
as such BJ: GSE113414, GM12878:GSM1155958,
H1ESC:GSM2083754, HL60:GSM2083754 and K562:

GSM1782764. For defining enhancers, ChIP-seq peaks of
histone modification H3K27ac were used. The H3K27ac
peak-list for H1ESC, GM12878 are made available by
ENCODE consortium and made available in UCSC
genome browser (1). The peak-list for H3K27ac ChIPseq
for HL60 is available with GEO IDs: GSM2418804 (33).
The chromatin interaction files for K562 and GM12878 cell
lines downloaded in .hic format have been made available
by Rao et al. (27) (GEO ID: GSE63525) (27).

RESULTS

Biologically similar cells would have similar activity level at
a regulatory site, and this fact can be used to impute the
missing values. Hence, if we group similar cells in a sub-
cluster, an imputation method has a high probability of
providing correct results. However, given the noise, spar-
sity and imbalance in single-cell open-chromatin dataset,
achieving correct sub-cluster is not a trivial task. Hence
our method uses randomization with multiple hierarchical
tree-based clustering hand-in-hand with imputations using
a base method (Figure 1). The base imputation method used
at every node in the tree uses a known procedure of soft
thresholding of singular values for matrix completion (see
‘Materials and Methods’ section). The hierarchical tree-
based approach used by our method is such that we first
perform an initial imputation for all the cells taking them
in one group. Using the initial imputed read-count matrix,
we classify the cells in into K classes (nodes). For cells be-
longing to each class, we perform imputation using their raw
read count and ignore the previously imputed matrix. How-
ever, when we assemble the read count of cells belonging to
a particular class, multiple peaks (genomic sites) have zeros
read count in all cells belonging to that class. This is ex-
actly as expected, and we utilize it to improve imputation.
We consider those peaks with zero read counts in all cells in
a class as true-zeros and drop them while doing class-wise
imputation. Again, we use the imputed read-count of non-
dropped peaks of cells belonging to a class for further classi-
fication. Thus, we get subclasses of cells and we again group
the raw read count of cells belonging to a subclass. One im-
portant point to be noted is that for every level of classifi-
cation, we randomly choose 50–100% of the non-dropped
peaks for classification. We also randomly choose the num-
ber of classes k in k-mean clustering at every step. Thus, we
perform many such hierarchical tree-based clustering and
imputation while randomly deciding k (number of classes)
and features for classification. After having final imputed
matrices from many such trees, we use the best jth column
of multiple imputed version of read-count matrix, for a cell
j based on correlation with raw read-count. It is based on
our observation that spearman correlation between unim-
puted read-count vectors of cells of the same type is higher
than the correlation between non-similar cells (see Supple-
mentary Figure S1). Hence, for a cell, if the imputation is
done by clubbing it with wrong neighbors, the imputed vec-
tor will have a lower correlation with the unimputed ver-
sion in comparison to correct imputation. The last step of
choosing the best m vectors from multiple imputed version
is a crucial filtering step which further helps FITs in avoid-
ing over-imputation (Figure 1). The motivation and logic of
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Figure 1. A description of FITs: FITs has two phases. In phase-1 many imputation trees are built to get different imputed versions of the read-count matrix.
In an imputation tree, at every node, first, an imputation is performed on the non-imputed read-count matrix using a base method, followed by dimension
reduction. Then k-mean clustering is performed to get k clusters of cells. The raw-read count of cells of each cluster is passed on to one daughter node
where the same procedure of imputation and further clustering is followed. At every node of an imputation tree, the sites with zeros in all the cells in the
raw read-count matrix, are dropped. In phase-2 of FITs, the vectors of multiple versions of imputed matrices (shown as red column) are compared to
corresponding vectors in the original unimputed matrix (shown as yellow column) using correlation. Finally, for every cell, only those imputed versions
are taken which have the highest correlation with its unimputed read-count vector.

different steps of FITs are provided in detail in the ‘Materi-
als and Methods’ section.

FITs recovers open chromatin signal and avoid over-
imputation

We compiled read-count matrix of scATAC-seq profile pub-
lished by Buenrostro et al. (10) (see ‘Materials and Meth-
ods’ section). Our compiled datasets had five cell types
(GM12878, K562, HL60, BJ, and H1ESC) and consisted
of 1622 cells and 92 447 peaks. We first evaluated if the ap-
plication of FITs, improves the data quality of single-cell
ATAC-seq by correlating it with the relevant bulk ATAC-
seq profile. We found that FITs-based signal-recovery in-
creased the correlation among bulk and single-cell ATAC-
seq profiles (Figure 2A). For different cell-types in the com-
piled dataset (GM12878, H1ESC and K562, BJ and HL60)
cells, there was almost 4-fold increase in correlation be-
tween scATAC-seq and bulk ATAC-seq profiles after appli-
cation of FITs. Next, we evaluated FITs using promoters of
markers genes which are expected to have open-chromatin
in a cell-type-specific manner. FITs was able to improve
the read-count signal of cell-type-specific promoters with-
out over-imputation in other cell-type. Such as for pro-
moter of CD79a, which has B-cell-specific expression (34),

FITs caused amplification of its read-count signal only in
GM12878 (Figure 2B). Similarly, for the promoter of the
SOX2 gene, the imputation by FITs caused an increase in
read-count value only for H1ESC (Figure 2C).

We further evaluated the performance of FITs in compar-
ison to KNNimpute, and three other methods (MAGIC,
scImpute and DCA) developed for single-cell RNA-seq
read-count matrices. For every genomic site in the used
scATAC-seq dataset, we first found in which of the five cell
types it overlapped with a genuine peak of bulk ATAC-seq
profile. We estimated the coverage for peaks of bulk ATACs-
seq in respective cell-types and calculated ROC-AUC for
every cell (Figure 3A). FITs-based signal-recovery resulted
in consistently higher median AUC than other imputation
methods for coverage for true peaks from bulk samples.

FITs improves detection of cell-type-specific sites

One of the main purposes of open chromatin profiling is to
study the activity of cell-type-specific regulatory elements
like enhancers (35). Few scientific groups have used the tech-
nique of highlighting cell-type-specific activity using open
chromatin signal to predict enhancers (8). We used a sim-
ilar technique and divided scATAC-seq read-counts on a
peak by its average read-count across all the cells. For vali-
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Figure 2. FITs improves signal in single-cell ATAC-seq profile. (A) Boxplot of correlations of imputed and non-imputed scATAC-seq read-count with bulk
ATAC-seq profile in relevant cell-types from other studies. Results for five cell types, GM12878, H1ESC, K562, HL60 and BJ are shown here. (B) Violin
plot of imputed and non-imputed read-count on the promoter of CD79a which is known to have expression more specifically in B-cells (GM12878 here).
(C) Violin plot of read-counts on the promoter of SOX2 gene. Among five cell types in our dataset, SOX2 gene is supposed to have expression only in
H1ESC. FITs-based imputation shows high read-count of SOX2 only in H1ESC cells.

dation, we used non-promoter peaks of H3K27ac ChIP-seq
profiles of bulk samples of cell-lines, as enhancers (1,33).
Further evaluation and comparison with the other four
methods revealed that imputation with FITs consistently
provided higher coverage for enhancers compared to other
methods (Figure 3B). DCA had a comparable performance
for H1ESC cells; however, for BJ cells, DCA seems to have
failed in recovering a genuine signal (Figure 3B). The per-
formance of MAGIC varied for different cell types, whereas
median AUC for scImpute for detection of enhancers re-
mained low in the range of 0.52–0.62 (Figure 3B).

Overall FITs restores signal at cell-type-specific sites in
scATAC-seq profiles without over-imputing, which can help
researchers to detect enhancers for downstream analysis.
The capacity of improving signal at cell-type-specific sites
can help in improving CTS. Here, CTS is defined as the
difference between the median intra-cell-type correlation
and inter-cell-type correlation (see ‘Materials and Methods’
section). We calculated CTS score among different pairs
of cell types (BJ versus GM12878; BJ versus H1ESC and
GM12878 versus H1ESC) and found that FITs-based im-

putation provided the best CTS among all four methods
used for comparison (Figure 3C). Among other methods,
DCA appeared to be second best, but the CTS values for
DCA were substantially lower than FITs.

FITs improves dimension reduction and clustering of single-
cell ATAC-seq profiles

One of the major tasks in the analysis of single-cell open-
chromatin profile is to reduce the dimension of read-count
matrix for visualization and classification. Due to the high
level of noise and sparsity in scATAseq read-count matrix,
researchers often resort to calculating accessibility score for
TF motifs for dimension reduction-based visualization and
classification (6). However, dimension reduction and clas-
sification of read-counts directly could reveal new classes
and states of cells which could be blurred out by using mo-
tif accessibility scores. We performed t-SNE (30)-based di-
mension reduction and visualization of scATAC-seq read-
count matrix for five cell lines published by Buenrostro
et al. (10). As expected, the application of t-SNE on raw
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Figure 3. FITs-based imputation improves coverage of true peaks and enhancers. For evaluation single-cell ATAC-seq dataset published by Buenrostro et
al. (10) was used here. (A) For every cell coverage for relevant bulk ATAC-seq peak according to intensity of read-count in the imputed read-count matrix
was calculated using the approach of ROC (receiver operating characteristic curve). Here positive value means that a site has a peak and negative represent
no-peak in relevant bulk ATAC-seq profile of the relevant cell. The area under the ROC (AUC) for each single-cell was calculated and box plots of AUC of
cells for different cell types are shown here. (B) Boxplot of AUC for coverage of enhancers using normalized read-count of scATAC-seq profile. The true
set of enhancers for a cell-type was compiled using H3K27ac ChIP-seq profile from the bulk sample. (C) CTS among cells of different cell-types calculated
using imputed read-count matrices.

(unimputed) read-count did not provide satisfactory re-
sults as cells of different types were co-localized together
in lower-dimensional space (Figure 4A). Similarly, apply-
ing t-SNE on read-count matrix imputed by other tools
methods also provided results which had a mixing of co-
ordinates for cells of different types. However, with read-
count matrix imputed by FITs, the coordinates provided by
t-SNE had clear separability among different cell types. It
is quite evident from t-SNE plots of imputed matrixes that
MAGIC and scImpute introduce artifactual grouping of
cells (Figure 4A). MAGIC and scImpute outputs had arte-
facts possibly due to complete reliability on one-time group-
ing and sub-classification of the raw read-count matrix for

imputation. In the output based on KNNimpute, GM12878
and K562 cells appeared to have overlapping locations in t-
SNE-based visualization. On the other hand, DCA seems to
have mixed the profile of H1ESC and GM12878 during im-
putation (Figure 4A). Further, we compared the accuracy of
clustering using the imputed scATAC-seq profiles. For this
purpose, we used the ARI after applying k-means clustering
on t-SNE-based coordinates for imputed read-count matri-
ces. FITs had highest ARI score among the tested methods.
The ARI scores for output of other methods were two to
three times lower than FITs. When k-means clustering was
used after spectral embedding (36), to get the same number
of clusters, the results were similar and FITS had better ARI



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 4 9

Figure 4. Performance of different imputation methods based on t-SNE-based dimension reduction. (A) Scatter plot of result of t-SNE for outputs from
different imputation methods for single-cell ATAC-seq profile from Buenrostro et al. (10) (B) Visualization of t-SNE results for unimputed and imputed
read-count matrices for hematopoietic cell dataset. (C) Boxplot of Relative ARI to enumerate clustering quality when k-means clustering is applied on t-
SNE-based reduced dimension. The results clustering of ATAC-seq profile from Buenrostro et al. (10) is shown here. To make boxplot, ARI was calculated
at different values of k in the range of 3 to 10. The absolute values of ARI at k = 5 are; Unimputed: 0.066674, MAGIC:0.017608, scImpute:0.057308,
KNNimpute:0.16264, DCA:0.10685, FITS: 0.20714. (D) Boxplot of ARI relative to FITs for evaluation of classification of hematopoietic cells. The relative
ARI values were calculated at different values of k (between 5 and 12) for k-mean clustering. The absolute values of ARI for immune cells data at k = 10
are; Unimputed:0.033804, MAGIC:0.012723, scImpute:0.17961, KNNimpute:0.024815, DCA:0.19065, FITS:0.37533.

score than other imputation method-based result (Supple-
mentary Table S1).

We simulated higher drop-out rate using the same
scATAC-seq dataset of 5 cell lines (by Buenrostro et al. (10)
and randomly dropped 10–30% of read-counts. At all sim-
ulated additional drop-out level FITs output provided clear
separability among different cell-types in t-SNE-based vi-
sualization (Supplementary Figure S2A–C). With a higher
drop-out rate in five cell-line datasets, the performance gap
between FITs and other methods further increased in terms
of clustering purity achieved after imputation. As can be
seen in Supplementary Figure S2D, the ARI score for FITS
output is three to four times greater than all other meth-
ods compared for simulated drop-out. Further, we used a
dataset which had a severe problem of drop-out as well as
overlap among the activity of regulatory sites among differ-
ent cells. We also used scATAC-seq dataset generated using
phenotypically-defined human hematopoietic cells, includ-
ing early hematopoietic-progenitors and cells of myeloid
and lymphoid lineage (32). This dataset of immune cells had
cell-type labels for every cell. After applying different impu-
tation methods followed by t-SNE-based visualization, we
achieved similar results such that FITs had more separa-
bility among non-similar cell-types (Figure 4B). Whereas,
unimputed version and outputs of MAGIC and KNNim-
pute had completely mixed co-localization for different cell
types. In terms of ARI even scImpute and DCA were not

comparable to FITs (Figure 4D). ARI scores calculated af-
ter spectral-embedding-based clustering (36) also showed
better performance of FITs compared to other five impu-
tation methods (Supplementary Table S1). On careful ob-
servation, we found that there are two cell types (HSC
and LMPP) which have two groups of cells in t-SNE plot
for FITs (Figure 4B). Our investigation revealed that those
groups came from different batches which might have dif-
ferent culture-micro-environment or experimental setup.
Thus, the process of restoration of open-chromatin signal
and reduction in noise by FITs improved clustering and sep-
arability of different cell-states and batches.

FITs can handle unbalanced read-count matrices and restore
signal of minor cell population

The approach of hierarchical steps of imputation and clus-
tering hand-in-hand with randomization in FITs has the
potential to highlight minor population cluster even in the
presence of dominating signal from major cell-types. In or-
der to evaluate the performance of imputation methods
on imbalanced dataset of scATAC-seq profile, we first cre-
ated a dataset consisting of K562 cells with 95% frequency
and H1ESC with 5% occurrence rate. After imputation of
the simulated dataset, we found that FITs was able to re-
cover the signal of most of the cells of minor cell-type
(H1ESC) such that they could localize as a separate group
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in t-SNE-based visualization (Supplementary Figure S3).
Whereas in the case of other imputation methods, H1ESC
co-localized with major cell-type (K562) in t-SNE plot of
imputed dataset (Supplementary Figure S3). The output of
FITs also had highest ARI score for clustering purity of im-
puted imbalanced dataset.

After evaluating imputation methods for simulated im-
balanced dataset, we used in vivo datasets for further testing.
We performed imputation on scATAC-seq profiles of cells
from adult mouse bone marrow and liver published by Cu-
sanovich et al. (6). For scATAC-seq dataset of adult mice,
Cusanovish et al. have performed annotation and assigned
cell-type for most of the cells. The compiled scATAC-seq
dataset for bone marrow had 4033 cell and liver data had
6167 cells. After imputation, we performed t-SNE-based di-
mension reduction and visualization using eight most fre-
quent cell-types and cells with a label of ‘unknown’, for both
datasets. Even among retained cell-types, there was an im-
balance in numbers. In scATAC-seq dataset of bone mar-
row, there were four cell types (Macrophages, B cells, Den-
dritic cells and T cells) with a frequency <2% and two cell
types represented more than 70% cells (Hematopoietic pro-
genitor + erythroblast). In liver scATAC-seq data, there was
an even higher imbalance in numbers for cells of different
types. Among the retained cells in liver scATAC-seq data,
91.4% were hepatocytes, while 6 other cell-types had fre-
quency <1.6%.

Visualization of t-SNE results for bone marrow datasets
revealed other tested imputation methods were inefficient in
recovering signal of minor cell-types (Supplementary Fig-
ure S4). For MAGIC, scImpute and KNNimpute, minor
cell type locations got mixed with major cell-types in t-SNE
plots. For bone marrow scATAC-seq profile, the imputa-
tion by scImpute caused the formation of many clusters
within major cell types such as erythroblast, hematopoietic
progenitors and monocytes. On the other hand, minor cell
types in bone marrow data such as B cells, dendritic cells
could not be isolated as separate groups in t-SNE results
for matrix imputed by scImpute. MAGIC also had similar
results like scImpute in terms of separability for minor cell
types. However, for bone marrow data, FITs was efficient in
recovering signal even for minor cell types. The t-SNE plots
for read-count matrix imputed by FITs showed separabil-
ity of minor populations cells, such as macrophages formed
a group which was clearly visible as a separate group from
other cell-types. We used CTS score to evaluate the separa-
bility of minor cell types after imputation. For minor cell
types scImpute, DCA had noticeable CTS scores; however,
they were ∼1.5 times lower than corresponding CTS values
for FITs-based output (Supplementary Figure S4B).

Results for imputation of liver scATAC-seq profiles also
revealed that when the read-count matrix was highly im-
balanced, other methods (scImpute, MAGIC, KNNimpute
and DCA) failed completely and could not help in segregat-
ing minor cells in t-SNE-based visualization (Figure 5A).
On the other hand, FITs-based imputation caused the for-
mation of separate groups for minor cell-types. There was
a substantial difference between FITs and other four tested
methods in terms of CTS (Figure 5B) and ARI score (Sup-
plementary Figure S5 and Supplementary Table-1). Thus,
the examples of bonemarrow and liver datasets, highlight

the importance of sub-clustering using the tree-based ap-
proach in recovering signals of minor cells.

For FITs-based imputed version of the liver dataset, few
cells with the label as ‘unknown’, co-localized with hepa-
tocytes in t-SNE-based scatter plot (Figure 5A). We nor-
malized the raw read-counts to highlight enhancers in ‘Un-
known’ cells overlapping hepatocytes. We chose the top
10 000 potential enhancers based on the average of normal-
ized read-count for ‘unknown’ cells co-localizing with hepa-
tocytes and performed GREAT-based gene-ontology anal-
ysis (37). The top biological Process terms using GREAT-
based analysis were related to functions of liver cells such
as cholesterol and ketone metabolic processes. Thus it be-
came quite evident that ‘unknown’ cells overlapping with
hepatocytes were also typical liver cells. (Figure 5A and C).
Using the same procedure on ‘unknown cells’ overlapping
with endothelial-1 cells revealed top enriched gene ontol-
ogy term related to endothelium development (Figure 5D).
Thus, FITs-based imputation also enabled annotation of
cells labeled as ‘unknown’.

Further, we compared the performance of FITs with four
other tools (chromVar (38), cisTopic (39), SCALE (19) and
scOpen (20)) which were previously shown to be useful for
visualization and clustering of scATAC-seq profiles. Using
boneMarrow scATAC-seq profile, we realized that other
four tools (chromVar, cisTopic, SCALE and scOpen) could
not recover the signal of dendritic and T cells which had
frequency <1.3% (Supplementary Figure S4C). With liver
scATAC-seq profile, none of the four tested tools (chrom-
Var, cisTopic, SCALE and scOpen) could display minority
cell-types separately like FITs-based results (Figure 5E and
Supplementary Figure S5C). With scATAC-seq profile of
mouse cerebellum cells, the separability, according to cell-
types in visualization and clustering purity was again better
for FITs in comparison to chromVar, cisTopic, SCALE and
scOpen (Supplementary Figure S6). Imputation by FITs
also seemed to be useful for improving the performance of
chormVar (Supplementary Figure S7). Further, we found
that computation-time needed by FITs is similar to cisTopic
and SCALE (Supplementary Table S2).

FITs improves the accuracy of cell-wise gene-set enrichment
calculation and related analysis of atlas scale scATAC-seq
profile

In addition to visualization and clustering, scATAC-seq
profiles can also be used for many other purposes. Such
as recently, Chawla et al. (40) developed a method called
UniPath to transform scATAC-seq read-count to gene-set
enrichment score for every single-cell, which can be used
for inferring regulatory pattern in a cell. When gene-sets
of cell-type markers are used, it is possible to annotate
the cells using their scATAC-seq profile with UniPath (40).
For estimating enrichment of gene-sets, UniPath first high-
lights cell-type specific peaks (possibly enhancers) by a di-
vision of read-count with pre-compiled global accessibility
score. Then, it uses genes proximal to peaks with high cell-
type specificity as a foreground to calculate gene-set scores.
Hence, as shown above (Figure 3B), FITs improves the de-
tection of cell-type specificity of peaks, it is highly likely
that it would also improve the performance of UniPath.
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Figure 5. FITs recovers signal of minor cell-types in imbalanced single-cell ATAC-seq profile from in vivo sample. The dataset used here is the scATAC-seq
read-count matrix for cells in adult mouse liver. (A) Scatter plot of t-SNE results for unimputed (raw) and read-counts matrix imputed by five methods.
(B) CTS among different cell-types in read-count matrix imputed by five methods. (C) Top enriched gene-ontology terms (biological process) for predicted
enhancers of ‘unknown’ cells co-localizing with hepatocytes in t-SNE-based plot for FITs output. For unbiased analysis, enhancers were predicted using
unimputed read-counts of unknown cells co-localizing with hepatocytes. (D) Top biological process terms enriched for predicted enhancers in unknown
cells co-localizing with endothelial-1 cells in results of FITs-based t-SNE plot. Again, only unimputed read-count were used to predict enhancers. (E) Scatter
plot of t-SNE results for liver dataset made using four other tools (chromVar, cisTopic and SCALE, scOpen) designed for visualization of scATAC-seq
profile.

Using gene-sets of known cell-type markers, We first evalu-
ated how the output of UniPath can be improved with im-
putation by FITs. FITs-based imputation improved perfor-
mance of UniPath substantially during estimation of gene-
set enrichment score. As can be seen in Figure 6A for three
sets of cells, the fraction of cells with correct cell-types in
the top five terms is much higher with imputed read-count
than with their unimputed version.

Chawla et al. (40) showed that the transformation of
read-counts to pathway scores also provides an alternative
approach of handling large scale scATAC-seq profile with
consistency and horizontal scalability. However, Chawla
et al. performed visualization of atlas scale data only for
scRNA-seq profile but not for scATAC-seq profile. Hence
we performed visualization of atlas scale scATAC-seq pro-
file published by Cusanovich et al., using the transformation
of read-count to pathway scores for more than 68 000 cells
(see Supplementary Methods). We applied t-SNE-based vi-

sualization using pathway scores calculated for unimputed
and FITs-based imputed read-counts. It can be seen in Fig-
ure 6B, cells of the same type co-localized together in the
t-SNE plot made using pathway enrichment score for im-
puted read-count matrix. Whereas, the t-SNE plot made us-
ing pathway enrichment scores from unimputed read-count
showed high overlap among different cell-types. Hence our
results show that FITs-based imputation can dramatically
improve the analysis of atlas-scale scATAC-seq profiles us-
ing gene-set enrichment scores.

FITs improves detection of chromatin interaction from single-
cell open chromatin profile

After evaluating FITs for improvement in calculating sim-
ilarity among cells, we investigated whether imputation
can help in estimating co-accessibility among sites. Re-
cently, Pliner et al. (12) proposed that regions with high co-
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Figure 6. FITs improves analysis using gene-set enrichment score of each single-cell calculated using scATAC-seq profile. (A) The fraction of cells with
correct cell-type terms appearing in top five enriched gene-sets, based on calculations using UniPath. FITs was used to impute the scATAC-seq profile of
cells from Cusonovich et al. (6). (B) The t-SNE-based visualization using pathway scores calculated using read-counts imputed using FITs. (C) Visualization
of t-SNE results for pathway scores calculated by UniPath using unimputed read-count.

accessibility in single-cell open chromatin profile are highly
likely to be interacting. Chromatin interaction maps help
in multiple processes such as identification of the target
genes of noncoding genomic loci highlighted by GWAS
(41) (Genome-wide association study) and understanding
of gene regulation. Pliner et al. applied Graphical Lasso
(26)-based approach to predict interaction among genomic
sites. Even though the graphical Lasso method (26) is used
to reduce the effect of noise and to calculate direct in-
teractions, it’s performance could be improved by provid-
ing less sparse data. We applied graphical Lasso-based ap-
proach to evaluate imputation-based improvement in the
prediction of chromatin interaction using scATAC-seq. We
used HiC-based chromatin interaction profile for K562 and
GM12878, published by Rao et al. for evaluation (27). Us-
ing hic files we extracted high-confidence chromatin inter-
actions at 25 Kbp resolution for both K562 and GM12878
cell lines. For both K562 and GM12878 cells, we merged the
peaks lying within 25 Kbp in scATAC-seq read-counts ma-
trix and applied Graphical Lasso to detect intrachromoso-
mal chromatin interactions. For both cell types K562 and

GM12878, FITs-based imputation indeed improved over-
lap among predicted and true high-confidence chromatin
interaction by 10–30% for different chromosomes (Figure
7). One important issue to be noticed is that unlike Ci-
cero, we did not focus on predicting interaction only within
a certain distance range. Rather we also predicted intra-
chromosome interaction between sites lying far apart. Thus,
FITs prove to be useful for analysis of single-cell open-
chromatin profile in multiple different ways, including chro-
matin interaction prediction.

DISCUSSION

The patterns of signal and sparsity in single-cell open chro-
matin are different in comparison to RNA-seq and DNA
methylation profiles. Therefore, imputation of scATAC-seq
profiles need attention, and it cannot be treated just like
scRNA-seq dataset. Moreover, skipping imputation and
doing binarization for scATAC-seq read-count cannot be
fully justified. Even with a narrow peak of 200 bp, we can
have read-count value as four read as each strand of two
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Figure 7. FITs-based imputation improves prediction of chromatin-interaction using scATAC-seq profile. The fraction of co-accessibility based predicted
interaction overlapping with chromatin-interaction from HiC, is shown here. (A) for GM12878 cells (B) for K562 cells.

homologous chromosomes can contribute to DNA frag-
ments pool. Moreover, highly active genomic sites tend to
be bound by a large number of TFs causing wider region
with chromatin-accessibility. Hence even if we use unique
reads, we would have read-count value more than 1 for
peaks of size >500 bp. Thus the read-count magnitude is
indicative of activity-level of a genomic site which can be
used to get insights about the effect of pathways and mas-
ter regulators through noncoding regulatory sites with cell-
type-specific activity. Hence cell-type specificity is a major
concern while analyzing single-cell open-chromatin profiles.
Moreover, there is a need to study the impact of impu-
tation in different kinds of downstream analysis steps for
single-cell open-chromatin profile. Therefore, first, we eval-
uated whether imputation of scATAC-seq can help in im-
proving down-stream analysis desired for single-cell open-
chromatin profile. Second, we developed a method for im-
puting which can handle a high level of noise, sparseness
and cell-composition bias in single-cell open chromatin pro-
files. The strength of FITs lies in three features: random-
ized sub-clustering and imputation in multiple trees to avoid
suboptimal solution, deciding drop-out after clustering and
choosing imputed vectors based on correlation with the
unimputed version to avoid wrong-imputation.

We have shown here that methods relying on parame-
ters for single clustering step increase chances of artefacts
due to errors in classification. Relying completely on few
non-randomized classification steps also creates the risk of
getting trapped in local minima and failure to detect true
heterogeneity. We have shown here that FITs performs im-
putation in such a way that for scATAC-seq profile, there
is less chance of detecting false heterogeneity in compari-
son to other imputation methods. Especially, when we have
an unbalanced dataset, classification often fails to identify
the minority population as a separate class, which creates
artefacts during imputation by methods like scImpute and
MAGIC. There have been multiple studies related to detect-
ing rare cell-states using scRNA-seq profiles; however, with
scATAC-seq such analysis is rarely done due to overwhelm-
ing noise and imbalance in datasets. Our analysis using
FITs, hints that detecting rare cell-states using scATAC-seq
read-counts is feasible, and it can provide a new direction in
the analysis of clinical in vivo samples. For three scATAC-

seq profiles of cells from in vivo samples, FITS showed
better performance than four other methods (chromVar,
cisTopic, SCALE and scOpen) designed for scATAC-seq
profile. In addition to the recovery of minor-cell signals,
we also showed the applicability of FITs for three analysis
steps peculiar to scATAC-seq profiles which are; enhancer-
detection, chromatin interaction prediction and calculation
of gene-set enrichment score for single cells. Thus FITs can
partner with many existing tools for improved inference and
novel applications of scATAC-seq.

An advantage with FITs is that it can handle huge read-
count matrices because of horizontal scalability. To run
Phase-1 of FITs, one can break down the huge read-count
matrix into many smaller matrices with randomly chosen
cells. Two smaller matrices can have the same cell, but the
union of all small matrices should represent all the cells in
the original dataset. The Phase-1 of FITs can be run for
multiple small matrices on different computers, before final
matrix compilation by in Phase-2. Other imputation meth-
ods are rarely designed to handle huge read-count matri-
ces. Hence FITs also resolves the problem of imputing large
read-count matrices.

Multiomics studies using single-cell profile provide a
global perspective of development and disease; however,
very few groups have made such attempts (42). Thus, the
major advantage of FITs is that it would encourage more re-
searchers to explore single-cell open-chromatin profiles for
multi-omics studies, due to reliability it adds during analy-
sis. Other types of single-cell epigenome profiles such as hi-
stone modifications, MNAse-seq and DNAse-seq have also
been used in few studies. The generality of FITs makes it
suitable for other kinds of single-cell epigenome datasets
also, therefore in future, FITs could be further adapted for
other kinds of single-cell epigenome profiles.

The Python and Matlab version of FITs and https://
reggenlab.github.io/FITs/ and imputed matrices used here
for figures can be downloaded from http://reggen.iiitd.edu.
in:1207/FITS/imputed finaldata/.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

https://reggenlab.github.io/FITs/
http://reggen.iiitd.edu.in:1207/FITS/imputed_finaldata/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaa091#supplementary-data
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