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Abstract

Libraries of structural prototypes that abstract protein local structures are known as struc-

tural alphabets and have proven to be very useful in various aspects of protein structure

analyses and predictions. One such library, Protein Blocks, is composed of 16 standard 5-

residues long structural prototypes. This form of analyzing proteins involves drafting its

structure as a string of Protein Blocks. Predicting the local structure of a protein in terms of

protein blocks is the general objective of this work. A new approach, PB-kPRED is proposed

towards this aim. It involves (i) organizing the structural knowledge in the form of a database

of pentapeptide fragments extracted from all protein structures in the PDB and (ii) applying a

knowledge-based algorithm that does not rely on any secondary structure predictions and/

or sequence alignment profiles, to scan this database and predict most probable backbone

conformations for the protein local structures. Though PB-kPRED uses the structural infor-

mation from homologues in preference, if available. The predictions were evaluated rigor-

ously on 15,544 query proteins representing a non-redundant subset of the PDB filtered at

30% sequence identity cut-off. We have shown that the kPRED method was able to achieve

mean accuracies ranging from 40.8% to 66.3% depending on the availability of homologues.

The impact of the different strategies for scanning the database on the prediction was evalu-

ated and is discussed. Our results highlight the usefulness of the method in the context of

proteins without any known structural homologues. A scoring function that gives a good esti-

mate of the accuracy of prediction was further developed. This score estimates very well the

accuracy of the algorithm (R2 of 0.82). An online version of the tool is provided freely for

non-commercial usage at http://www.bo-protscience.fr/kpred/.
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Introduction

Knowledge of protein structure considerably helps towards understanding protein function.

The Protein Data Bank (PDB) that serves as the central repository of knowledge for the pro-

tein structural biology community contains more than 125,000 protein structures and its

growth has been considerable in the past decade [1]. This number is however still far below

the ~70 million protein sequences referenced in UniProt database [2]. Hence it is at stake to

find methods to bridge this considerable gap. Computational methods for predicting pro-

tein secondary and tertiary structure have persistently tried to fill it. In this paper, we

explore the ability of a structural alphabet based prediction method to fulfill in part this

role.

Since the seminal works by Kabsch and Sander in 1984 [3], one of the most popular and

rewarding computational method to predict and analyze protein structures is by breaking

them down to their constituent parts in the so-called fragment-based approach. Multiple

fragment libraries have been developed so far and they differ in the number of fragments, the

length of the fragments, the methods used for clustering and the criteria used for clustering.

The first fragment library was developed by Unger and co-workers [4]. There are reviews

that give a good overview of the different fragment libraries developed since then [5,6]. Also

referred to as structural alphabets (SAs), these have shed some light on the sub-secondary

structure level intricacies in proteins [7]. By identifying redundant structural fragments

found in proteins, structural alphabets help in abstracting protein structures accurately. Such

collections of fragments have been used in information theory based methods that attempt

to predict secondary structure (see for example [8] and to reconstitute protein structures [9–

11].

In that respect, a SA called protein blocks (PBs) was developed for the purpose of describing

and predicting the local backbone structure of proteins [12,13]. This SA accounts for all local

backbone conformations in protein structures available in the Protein Data Bank (PDB). Since

then, PBs have been used in various applications [12]: for structural motif identification [14–

16], structural alignments [17,18] and fold recognition [19,20]. There have also been various

efforts to use PBs to predict protein local structure. These approaches are based on the Bayes

theorem [10,13] support vector machines [21–23] and neural networks [24]. Some of these

methods have used prior predictions of classical three state secondary structures (svmPRAT

[23] uses YASSPP [25], SVM-PB-Pred [22] uses GOR [26] and Etchebest et. al. [27] explored

the utility of PSI-PRED [28]) and sequence alignment profiles like position specific scoring

matrices (PSSMs) are used by LOCUSTRA [21], SVM-PB-Pred [22] and Dong and coworkers

methodology [24]. The currently available web-based tools that can predict local structure in

terms of protein blocks are LocPred [29] and SVM-PB-Pred [22]. The former implements a

Bayesian methodology and the latter is SVM-based.

In this work we describe PB-kPRED, a fragment and knowledge-based approach to pre-

dict local backbone structure of proteins in terms of protein blocks and a web-based tool

that implements the method. In essence, it takes no other inputs than the amino acid

sequence of a query and interrogates a database of pentapeptides extracted from protein

structures, relying on evolutionary information only when available, hence useful in the con-

text of proteins without any known structural homologues. It returns the predicted local

structures of the polypeptide chain in the form of a sequence of protein blocks. Very impor-

tantly, PB-kPRED also implements a scoring function that efficiently auto-evaluates the

quality of the prediction.
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Results

PENTAdb, a database of pentapeptides from protein structures

A total of 68.84 million pentapeptides obtained from the 0.26 million protein chains and their

corresponding local structure represented as one of the 16 PBs were obtained and stored in a

dedicated database named PENTAdb. Out of the total number of theoretically possible 3.2

million (205) pentapeptides, 2.26 million (70.9%) are found in PENTAdb. These 2.26 million

pentapeptides occur in different counts amounting to a total of 68.84 million pentapeptides.

PENTAdb had 8 different threshold of sequence identity, and can be directly used by PB-

kPRED (see Table 1). A 32-fold decrease (from 68.62 to 5.13 million) in the number of penta-

peptides in PENTAdb is observed when PDB chains not sharing more than 30% sequence

identity are considered. Nonetheless, the decrease in the number of unique pentapeptides

present in PENTAdb is only of 1.3 fold at this threshold.

Shown here are the total number of pentapeptides and unique pentapeptides for the full

PDB and for subsets of PDB filtered at different sequence identity cut-off values.

Not all possible tri-PB combinations are observed in known protein

structures

Out of all the theoretically possible 4,096 (163) tri-PBs, a total of 1,375 (i.e 33.5%) were never

observed in a non-redundant subset of PDB filtered at 30% sequence identity, subsequently

termed as PDB30 dataset (see Methods section). Likewise, out of all the 1.04 million (165) theo-

retically possible penta-PB motifs, only 40,130 (3.8%) were observed in the PDB30 dataset.

These results are indicative of the possibility that many combinations of three or five consecu-

tive PBs are stereochemically unfavorable. The distributions of penta-PB motifs at other

sequence identity cut-offs i.e. 40%, 50%, 70%, 90%, 95%, 100% and the entire PDB were also

computed (see Table A in S1 File). Towards higher sequence identity cut-offs, a continuous

increase in the penta-PB coverage is observed, but it comes at the price of the addition of

redundant data. Still the entire PDB covered less than 10% of the total penta-PB space. The

penta-PB frequency table derived from the PDB30 dataset was used to develop a scoring func-

tion (see Methods section), further termed as accuracy score, even if it contained only 40,130

penta-PB motifs. This is a small fraction but was sufficient to efficiently score PB sequences

(see below).

Completeness of PENTAdb for knowledge-based prediction

A quantitative assessment of how often the correct PB can be found in the list of all possible

PBs reported for every query protein was performed. This assessment gives the highest

Table 1. Content of the different subsets of PDB in terms of pentapeptides accessible to PB-kPRED.

Seq. identity cut-off values (%) Total number of chains Total number of unique pentapeptides Total number of pentapeptides

<30 24,564 1,742,890 5,126,423

<40 28,590 1,881,813 6,153,846

<50 32,588 1,985,203 7,074,571

<70 37,741 2,095,663 8,336,277

<90 42,594 2,148,064 9,351,888

<95 44,714 2,157,239 9,768,748

<100 64,129 2,189,924 14,791,285

Full PDB 274,920 2,268,307 68,621,454

https://doi.org/10.1371/journal.pone.0186215.t001
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accuracy attainable for a query protein using the proposed knowledge-based approach. To this

end, for every query protein sequence, different portions of the pentapeptide database were

made accessible to the prediction algorithm. This was possible thanks to the hierarchical cluster-

ing at different sequence identity levels by the BLASTClust algorithm [30]. PDB30 dataset was

used to benchmark the approach. For each of the 15,544 unrelated query protein sequences of

this dataset, only pentapeptides coming from a subset of the PDB that shared sequence identities

below an indicated cut-off values (from 30% to 100%) and excluding the query itself were used

by PB-kPRED (see Table 1 for size of the database for each subset). The results of the predictions

are detailed in Table 2. At 30% sequence identity cut-off, the correct PB was found in the list of

all possible PBs for 71.4% of the case and the success rate increased to 77.3% when only “homo-

logues” sharing 100% sequence identity to the queries were filtered out. When full PDB was

used (but excluding the query) as a database, the percentage times the correct PB is in the list of

all possible PBs topped to 99.93% (see Table B in S1 File).

Shown is the percentage of pentapeptide queries for which the correct local conformation

was found in the list of all possible PBs reported by the PB-kPRED algorithm after querying

PENTAdb. A total number of 15,544 query proteins not sharing more that 30% sequence iden-

tity (PDB30 dataset) was used in this assessment.

Prediction accuracies

Two methods, further termed asmajority rule method and hybrid method, were explored to

predict the optimal PB sequence within the list of all the possible PBs obtained after querying

the database (see Methods section for details). The average prediction accuracies for the

PDB30 query proteins using themajority rule method and the hybrid method using the classic

scheme for querying the database are given in Table 3. When homologues sharing�30%

sequence identity with each of the queries were removed from the database, PB-kPRED per-

formed with an average accuracy of 39.2% and 40.8% for themajority rule method and hybrid
method respectively (Table 3). Surprisingly, the effect of enlarging the database to include

closer homologues sharing<95% sequence identity with the queries improved only marginally

the prediction accuracies reaching on average 40.4% and 42.4% formajority rule method and

hybrid method respectively. Accuracy topped to 58.0% and 54.6% respectively when full PDB

(excluding the query itself) was used as database for prediction. This overall gain in accuracy is

due to an incremental increase of accuracy across all the 16 PBs.

Shown are the accuracies for the PDB30 dataset using both themajority rule method and

hybrid method. For each of the 15,544 query protein sequences, the portion of PENTAdb acces-

sible for prediction was dynamically determined using MySQL queries: only pentapeptides

Table 2. Assessment of the richness of PENTAdb towards knowledge-based prediction of protein

backbone in terms of protein blocks.

Sequence identity cut-off values (%) Correct PB found in the list of all possible PBs (%)

<30 71.4%

<40 71.5%

<50 71.6%

<70 71.9%

<90 72.5%

<95 72.8%

<100 77.3%

FULL PDB

(excluding query)

99.93%

https://doi.org/10.1371/journal.pone.0186215.t002
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coming from protein chains in PDB that shared sequence identities below the indicated cut-off

values were accessible to PB-kPRED for prediction of local structures in terms of PBs.

To improve the prediction rates, the hybrid method was tested using the noise filtering
scheme whereby, for each query pentapeptide, data in PENTAdb coming from closest homo-

logues was queried in preference to data from more distant homologues (see also Text B in S1

File). Results are detailed in Table 4. When compared to the without noise filtering scheme
(Table 3), the prediction rates improved to reach a maximum of 66.3%. Interestingly, for

experiments B2 to B7 where closest homologues to be queried first are in the range of<40% to

<95% sequence identities, the prediction accuracies remained high at a level of about 61.6%.

Only in experiment B8 the prediction accuracy rate dropped to 40.8%. It must be noticed that

this experiment is identical to the one featured for<30% threshold (see Table 3) using the

hybrid method and the without noise filtering scheme for querying the database.

For each query protein, the portion of the database accessible to the algorithm is first

restricted to the closest homologues and if no hits were found, only then the more distant

homologues are made accessible progressively. Eight results shown here correspond to the

eight experiments described further below (see Methods section). Shown are the prediction

rates averaged over 15,544 query proteins from the PDB30 dataset that was used in this

assessment.

All results further detailed hereafter are concerned with data obtained in experiment B1

where hybrid method was applied using the noise filtering scheme for querying PENTAdb and

where best predictions were obtained.

The distribution of the prediction accuracies for experiment B1 (Table 4) is bimodal (Fig

1). A spike in frequency is observed at the>80% range representing the set of queries which

Table 3. Evaluation of performance of PB-kPRED knowledge-based approach to predict local conformations of protein backbone in terms of pro-

tein blocks.

Experiment

number

Sequence identity cut-off values (%) Majority rule method Hybrid method

without noise filtering

A1 FULL PDB

(excluding query)

58.0%±12.9 54.6%±22.0

A2 <100 44.0%±14.7 48.0%±18.7

A3 <95 40.4%±12.7 42.4%±16.1

A4 <90 40.1%±12.5 42.0%±15.9

A5 <70 39.7%±12.5 41.4%±15.8

A6 <50 39.4%±12.5 41.0%±15.9

A7 <40 39.3%±12.5 40.9%±15.9

A8 <30 39.2%±12.5 40.8%±15.9

https://doi.org/10.1371/journal.pone.0186215.t003

Table 4. Assessment of the performance of PB-kPRED using the hybrid method with noise filtering

scheme for querying the database.

Experiment Closest homologues to be queried first Average prediction rate (%)

B1 100 % 66.31±27.62

B2 <100 % 61.61±24.50

B3 <95 % 61.60±24.49

B4 <90 % 61.59±24.48

B5 <70 % 61.59±24.48

B6 <50 % 61.59±24.47

B7 <40 % 61.58±24.47

B8 <30 % 40.79±15.90

https://doi.org/10.1371/journal.pone.0186215.t004
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have closely related proteins of known structure available in the PDB and for which the

method is able to perform extremely well. Many queries in this set indeed had prediction accu-

racy values above 90%. At the other end of the spectrum, there is an almost normal distribu-

tion with an average around the 35%-40% accuracy range. Hence, the mean falls in between

these two at 66.31% accuracy. This distribution did not substantially vary when homologues

sharing less than 100% to 40% sequence identity to the query corresponding to experiments

B2 to B7 respectively were queried first (data not shown). However, once the twilight zone of

30% sequence identity is crossed, the accuracy distribution drastically changes to that of a

unimodal distribution with a very sharp peak at the 40% range and gradually tapering tail

towards the higher accuracies (see Fig A in S1 File).

The accuracy by the hybrid method using the noise filtering scheme was compared to the

majority rule method (Fig 2). As shown by the data points below the diagonal, the hybrid
method performed significantly better than themajority rule method for a total of 8,195 cases

(52.7%) out of the 15,544 protein queries. For remaining 7,245 cases, themajority rule method
performed slightly better than the hybrid method.

Fig 1. Histogram depicting the distribution of the observed prediction accuracies for 15,544 query proteins

by hybrid method using noise filtering scheme.

https://doi.org/10.1371/journal.pone.0186215.g001
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PB predictions

Results from the best performing condition (experiment B1 featured in Table 4) were further

analyzed for the PB-wise prediction rates and compared with published rates from other meth-

ods (Table 5). The rates are heterogeneous across the 16 PBs. Top two best-predicted PBs by

PB-kPRED were PBm and PB a, with accuracies of 75.9% and 67.2%, respectively. On the

other hand, the two most badly predicted PBs by PB-kPRED were PB j and PB g with predic-

tion rates of 49.9% and 43.5% respectively. Analysis of the corresponding confusion matrix

(Table C in S1 File) shows that, the prediction algorithm frequently gets confused between the

PBs c and d. PB c is wrongly predicted as PB d almost 31,000 times (22.4%). The vice-versa, PB

d being predicted as PB c is more than 42,000 times (16.9%). These PBs are in fact highly

related (i) as seen from a pure structural point of view, low Root Mean Squared Deviation on

Angular values (RMSDA) and similar transitions [28] and (ii) as they have been seen to be

highly interchangeable thanks to PB substitution matrix [31,32]. As some PBs are highly simi-

lar, it is possible to relax the assessment, i.e. considering two PB series as equivalent. With such

Fig 2. Comparison of the majority rule method without noise filtering scheme and the hybrid method with

noise filtering scheme. Shown are the predictions accuracies for the 15,544 query proteins from PDB30 dataset.

The diagonal line separates the points where the majority method performs better and the points where the hybrid

method performs better. Points lying along the diagonal (bisector) represents the situation where both the methods

perform equally.

https://doi.org/10.1371/journal.pone.0186215.g002
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relaxed criteria, the accuracy increases from 66.31% to 68.87% (a 2.56% gain on average).

Interestingly, significant increases in accuracies were observed for PB g (from 43.5% to 67.4%)

and for PB j (from 49.98% to 67.2%).

Shown are the PB-wise prediction accuracies for experiment A8 of the majority method

and four different experiments of hybrid method with noise filtering. These are compared with

PB-wise results from LOCUSTRA [20] and Bayesian approach [26]. Experiment B1 PB-wise

accuracies were compared with the other two methods and corresponding cell values in bold

represent the best accuracy achieved between the experiment B1 of hybrid method, LOCUS-

TRA and Bayes method.

Table 5. Assessment of the performance of PB-kPRED and comparison with other previously reported methods.

PBs

PB frequency

Majority method Hybrid method Other methods

Expt

A8

Expt

B8

Expt

B4

Expt

B2

Expt B1 LOCUSTRA Bayes method

Accuracies Specificity MCC Accuracies

a 3.68% 34.40% 45.93% 64.60% 64.60% 67.20% 98.15% 0.69 58.16% 56.60%

b 4.29% 15.19% 18.99% 44.52% 44.58% 52.15% 97.72% 0.56 26.14% 20.90%

c 8.31% 23.45% 28.76% 51.62% 51.66% 58.53% 95.95% 0.58 44.81% 32.90%

d 18.68% 39.24% 40.09% 61.83% 61.85% 67.00% 94.12% 0.63 71.58% 54.00%

e 2.18% 21.78% 28.59% 52.30% 52.38% 57.45% 98.96% 0.62 44.74% 38.60%

f 6.45% 24.87% 29.49% 54.64% 54.64% 60.30% 97.21% 0.61 41.45% 30.90%

g 1.14% 10.33% 14.94% 36.79% 36.87% 43.45% 99.19% 0.51 26.84% 30.10%

h 2.10% 24.25% 33.02% 56.90% 56.89% 61.05% 98.82% 0.64 38.45% 40.90%

i 1.49% 20.69% 30.45% 55.36% 55.35% 59.17% 99.18% 0.63 36.87% 38.10%

j 0.83% 15.48% 20.81% 42.57% 42.68% 49.98% 99.40% 0.56 48.19% 49.70%

k 5.25% 30.46% 35.59% 59.30% 59.32% 63.93% 97.67% 0.65 46.46% 33.40%

l 5.20% 26.56% 31.88% 54.87% 54.93% 59.99% 97.69% 0.62 42.71% 35.50%

m 32.89% 60.96% 55.68% 72.38% 72.40% 75.89% 91.03% 0.67 83.76% 70.60%

n 1.78% 26.48% 35.40% 58.16% 58.21% 62.15% 99.05% 0.65 52.08% 50.00%

o 2.44% 29.62% 38.40% 59.49% 59.52% 63.19% 98.70% 0.66 55.10% 48.10%

p 3.29% 23.22% 31.72% 54.27% 54.28% 59.24% 98.25% 0.62 40.80% 29.20%

https://doi.org/10.1371/journal.pone.0186215.t005

Fig 3. Assessment of the ability of the scoring function to estimate the prediction accuracy of PB-

kPRED. (a) Score versus accuracy and (b) Scores for predicted PB versus real PB sequences for the 15,544

query proteins of PDB30 dataset. Data points are coloured based on level of accuracy of predictions.

https://doi.org/10.1371/journal.pone.0186215.g003
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PB-kPRED globally outperformed two other PB prediction methods (Table 5). Its predic-

tions were better for all the 16 PBs when compared to the Bayes method and better than almost

all PBs when compared to LOCUSTRA. Only PBs d andmwere better predicted by this latter

method20. kPRED predictions were also evaluated against secondary structure assignments

from DSSP. This is not a straightforward activity as the 16 PBs are not a categorization of the

secondary structure elements. Nonetheless, the results of the comparison are presented in

Table D in S1 File and the results are favorable when compared to popular secondary structure

prediction algorithms, at 80.94%. It is important to note that, secondary structure is useful

mainly for a good description of repetitive structures, i.e. alpha-helix and beta-sheet and not for

the remaining approximately 50% of the protein structure that are not defined, namely the coil.

A Mathews correlation coefficient (MCC) close to +1 indicates a good agreement between

the observed and the predicted outcomes and a MCC of close to -1 otherwise. For our analysis

all the 16 PBs had MCCs between 0.5 and 0.7. PBs a andm were close to 0.7, PB g at 0.51 and

the remaining fluctuated around the 0.6 mark. The sensitivity and specificity ranges were 0.4–

0.7 and 0.9–1.0 respectively. A common pattern is observed in the case of PBs corresponding

to the regular secondary structure elements (PBs d andm): in both these cases, the sensitivity

values peak while the specificity values plummet. Although the sensitivity values varied

between 0.4 and 0.7, the specificity values were consistently above 0.9 indicating that the

method was able to achieve a very high true negative rate. High specificity may be explained by

the binary nature of the test while sensitivity is a sixteen state test.

Measure of accuracy

A probabilistic scoring function was developed for the a posteriori analysis of the predicted PB

sequences so as to provide a measure of how accurate the hybrid method using the noise filter-
ing scheme was performing. An assessment of the scoring function is provided in Fig 3. It

shows that the score is correlated with the accuracy of the prediction with a Pearson’s correla-

tion coefficient of 0.82 (Fig 3A). The two distinct clusters of data points correspond to those

featured in the histogram in Fig 1. As a further assessment of the scoring function, the scores

for the predicted PB sequences were compared with the scores for the real PB sequences (Fig

3B). It shows that in case of more accurate predictions (rates above 60%), the two scores corre-

lated very well (red points along the diagonal in Fig 3B) with both score values mostly ranging

between +1 and +3. In the case of less accurate predictions (rates below 60%), the two scores

Table 6. Impact of the availability of known homologues on the accuracy of PB-kPRED.

Queries with known homologues in PDB Queries with no known homologues in PDB

Sequence identity

thresholds (%)

2HX0_A

(hypothetical DNA

binding protein)

4HUQ_T

(energy-coupling

factor transporter

EcfT)

2HXV_A

(deminase/

reductase)

1A27_A

(hydroxysteroid

dehydrogenase)

4HZU_S

(transmembrane protein

associated with Ecf transporter)

100 2 3 1 1 1

95 2 3 1 1 1

90 2 3 1 1 1

70 2 3 1 1 1

50 2 3 1 1 1

40 2 5 1 1 1

30 2 5 10 1 1

Accuracy (%) 100% 73.41% 39.13% 75.44% 9.37%

Accuracy score 2.81 1.31 0.30 1.99 -0.28

https://doi.org/10.1371/journal.pone.0186215.t006
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were no more correlated (green dots below the diagonal in Fig 3B) and scores for predicted PB

sequences ranged mostly between -2 and +1.

Case studies

Here were considered the predictions for 5 specific cases to look at the strengths and limita-

tions of the PB-kPRED algorithm namely in presence or absence of homologues of known

structure (see Table 6). These case studies correspond to counter intuitive prediction instances

where (i) prediction accuracy is high despite not having any close homologues and (ii) predic-

tion accuracy is low despite having sequences of PBs of closely-related proteins in PENTAdb.

Query PDB chains with known homologues and with no known homologues are featured.

The hybrid method with noise filtering scheme for querying the database was applied for the

prediction whereby the conditions were identical to experiment B1 (see Methods section) as

featured in Table 6. The queries themselves were excluded from the database prior to predic-

tion. Shown here are the accuracies of the predictions and the numbers of known homologues

for different sequence identity thresholds.

Regarding prediction in employing information from homologues of known structure,

three contrasting cases were studied. The first case relates to chain A of a hypothetical DNA

binding protein from Salmonella cholera (PDB id 2HX0_A) which has a homologue from Sal-
monella typhimurium (PDB id 2NMU) that is 100% identical, 100% accuracy was achieved as

shown by the high accuracy score of 2.81. Both structures aligned very well with a Root Mean

Squared Deviation (RMSD) of 0.14 Å (Figure B in S1 File). The second case relates to an

energy-coupling factor transporter transmembrane protein EcfT from Lactobacillus brevis
(PDB id 4HUQ_T) which has two other “homologues” (PDB id 4RFS_T and 4HZU_T) that

are 100% identical to the query. Here, the prediction accuracy is 73.4% only with an accuracy

score of 1.31. 3-D structural alignment with these two “homologues” resulted in RMSDs 1.41

Å and 1.90 Å respectively displaying some structural variations (Figure B in S1 File) despite

being 100% identical at the amino acid sequence level. These structural variations were due to

rigid body movement. The third case is chain A of a pyrimidine deaminase / uracil reductase

from Thermotoga maritima (PDB id 2HXV_A) which had only ten very distantly related pro-

teins that shared less than 30% sequence identity in the PDB. Prediction rate is even lower

here with accuracy reaching a value of 39.1% as shown by the low accuracy score of 0.30.

As for predictions in absence of homologues of known structure, two contrasting cases

were studied. The first case is about a human hydroxysteroid dehydrogenase and the second

case is a membrane protein associated with Ecf transporter from Lactobacillus brevis. The pre-

diction performed quite well in the first case with an accuracy of 75.4% as shown by the high

accuracy score of 1.99 while in the second case, the prediction almost completely failed with

the accuracy of only 9.37% and also shown by the unfavorable accuracy score of -0.28.

Implementation of the PB-kPRED methods as a web-tool

The PB-kPRED methodology has been implemented as a web-tool that is freely available to the

community at http://www.bo-protscience.fr/kpred/. Bothmajority rule and hybrid method
without the noise filtering scheme for querying the database have been implemented. The tool

provides a predicted PB sequence for each query amino acid sequence and also provides the

accuracy score that serves as an a posteriori estimation of the prediction accuracy. In case the

prediction score value is below -1, the prediction accuracy cannot be estimated and the user is

notified. Users can provide multiple query protein sequences. All results are downloadable as

FASTA formatted flat files. Optionally when submitting numerous query sequences, the user

can provide an email address to which a notification will be sent when the job is completed.
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Discussion

The exponential growth in the structural knowledge of proteins has warranted the necessity of

competent knowledge-based prediction algorithms for local structure prediction. At the level

of short protein segments like pentapeptides, this increase in structural knowledge invariably

brings with it an unprecedented signal to noise ratio for deciding on the most probable local

conformations. Indeed, it is well established that similar pentapeptides can adopt different

local conformations [3,33]. This is verified when the content of PENTAdb is inspected.

Hazout’s team along with defining the protein blocks also predicted the local structure in

terms of PBs using a Bayesian approach [13]. They achieved an accuracy of 34.4% using a

15-residue window and this increased to 40.7% upon supplementing the Bayesian predictor

with sequence profiles in the form of sequence families. In 2005, Etchebest and colleagues [27]

used a combination of statistical optimization procedure and improved sequence family data

to bump up the accuracy to 48.7%. Incorporating secondary structure predictions from

PSI-PRED into the PB prediction process did not contribute much to improve the accuracy i.e
only 1% gain resulting in 49.9%. Machine learning techniques have also been used to predict

protein local structure in terms of PBs. Support vector machine based methods like LOCUS-

TRA [21], svmPRAT [23] and SVM-PB-Pred [22] achieve mean accuracies of 61.0%, 67.0%

and 53.0% respectively. A dual layer neural network based prediction method achieved 58.5%

accuracy [25]. The most refined version of the PB-kPRED method proposed here, i.e hybrid
method with noise filtering scheme, outperformed most of the previously developed methods

for PB prediction except for svmPRAT where it performed equivalently. Although all the

methods evaluated their accuracies on non-redundant sets of proteins, an even comparison is

hindered by difference in datasets, varying training regimes for the machine learning methods

and different levels of sequence identity used as input in the prediction process. This motivated

us to perform a battery of tests on the algorithm to estimate the prediction accuracy when

incremental levels of sequence identities are made available in PENTAdb for the prediction

(see Table 4). Importantly, to our knowledge, this is the first report of a querying scheme that

dynamically filters out, on a per query basis, homologues at different cut-off values so that the

portion of the PENTAdb that is made accessible for prediction is calculated on the fly. For

each of the 15,544 query sequences of PDB30, 16 experiments were performed, hence amount-

ing to a total dataset size of 248,704 proteins. Using the noise filtering strategy, PB-kPRED was

able to efficiently weed out the noise present in the database due to redundancy and hence to

narrow down the search in the database to find the most appropriate local structure for a given

pentapeptide. Therefore, filtering out from the database the pentapeptides from proteins that

shared less than 30% sequence identity with the query indeed improves the prediction effi-

ciency. In general, in those cases where pentapeptides from very close homologues were

indeed present in the database, kPRED performed extremely well.

Remarkably, the reported average accuracy (66.31%) is very high considering the fact that

for every pentapeptide, there are 16 possibilities. Indeed, if random PB predictions were made

taking into account respective PB frequencies, prediction rate (Q16 value) would be very poor

with an average value of about 7 to 8%. Similarly, when predicting secondary structure, there

are only 3 possibilities and random Q3 prediction accuracies would be of about 30%.

When themajority method and the hybrid method (Fig 2) were compared, two distinct clus-

ters were noticed. Upon further investigating the reason for this distinct clustering, we note

that, irrespective of the sequence identity cut-off, the points below the diagonal were found in

more populated clusters while the points above the diagonal were found in least populated

clusters Hence the hybrid method using the noise filtering scheme will perform better when

there are some closely-related protein structures to look-up to in PENTAdb. In a real-life
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scenario, this will not be always the case. Indeed, proteins for which we want to predict the

structure and which do not have any homologues even at 30% sequence identity are not so

uncommon. This brings us to the conclusion that even though overall the hybrid method per-

forms better, we cannot ignore themajority rule method all together.

Nonetheless, this method still has room for improvement as it can be seen from the values in

Table 2. The list of all possible PBs reported by the PB-kPRED algorithm after querying PEN-

TAdb database indeed shows that the good PB was present in more than 70% of the cases. How-

ever, owing to the scoring functions S1 and S2 (see Methods for more details), bothmajority
rule and hybrid methods failed to pick up these good PBs as predictions in several instances.

Interestingly, once the local backbone of a protein was predicted in the form of a PB

sequence, we were able to provide an a posteriori assessment of how accurate was the predic-

tion. The method used here to achieve this relied on the simple idea that successions of PBs

should follow the rule that not all combinations of PBs would be allowed. This intuition turned

out to be correct since there was a remarkable correlation between the score and the accuracy

of the predictions. Noteworthy, the accuracy scores for actual (native) PB sequences are over-

whelmingly distributed between +1 and +3, while poorly predicted PB sequences have scores

below +1. This scoring of PB sequences could also serve as an indicator towards improving

predictions. Because the calculation of the score of a PB sequence is very fast, one could imag-

ine implementing a score-guided optimization procedure to climb the prediction accuracy

gradient using Monte-Carlo or genetic algorithms for example.

The case studies documented in this work (Table 6) indicate that the relationship between

local structure predictability and the number of homologues of the query available in PDB are

not very straightforward. Optimistically, in spite of not having any homologues, the PB-

kPRED algorithm can perform a good prediction if the pentapeptides constituting the query

adopt consensus local structures for the respective pentapeptides. Two such examples were

provided but with contrasting outcomes, one achieving good accuracies and the other failing

to predict correctly the PB sequence. Interestingly, the accuracy scores provided by our scoring

function helped to reliably differentiate one prediction from the other. On the other hand,

even if a query has multiple homologues in the PDB, its prediction accuracy will take a hit if

the homologues are contrasting structural analogues of the query. For example, the activation

of human pancreatic lipase involves considerable conformational transition in the form of a

’lid movement’. The hypothetical prediction case when the query is the ’lid open form’ and

PENTAdb has pentapeptides from the ’lid closed form’ would confuse the prediction algo-

rithm despite both the forms of lipase being identical in amino acid sequences. Hence these

case studies establish two take home messages: (i) there are exceptions to the general observa-

tion that the presence of homologues improves the prediction accuracy of PB-kPRED and (ii)

the accuracy score used to evaluate the predictions is a reliable gauge for estimating the accu-

racy of the method as illustrated in Fig 3.

PB-kPRED web-server could form a vital link in the pipeline of PB based structure analysis

tools. Namely, it can be bridged with PB-based fast structure comparison tools like iPBA [18]

and PB-ALIGN [17] and help to mine for similar structures and map the fold space. It can also

be used to predict the occurrence of structural motifs in protein sequences. Indeed, the alpha

version of the server which was made available on-line earlier, has already been used by some

research groups for the structural characterization of RNA binding sites in protein structures

and predicting proteins sequences that contain RNA binding sites [34,35] and also in predict-

ing β-turns and their types [36].

The web-based tool currently does not feature the hybrid method with noise filtering scheme
because it would require running an instance of BLASTClust on every query. We plan to

implement this functionality in a future version of the tool.
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Our objective in this work was to predict protein backbone represented as protein blocks.

We believe that the assembly of protein blocks fragments can ultimately lead to 3D structure

prediction using sophisticated algorithms like the one implemented in Rosetta. Indeed, Rosetta

achieves this by leveraging on the I-Sites fragment libraries developed by Bystroff and Baker

[10]. These fragment libraries, including PB-based fragment libraries, can be of great interest

in the research of protein fragments in the twilight zone when doing 3D-modeling. We are

currently developing a method and tool towards this end that takes advantage of existing algo-

rithms implemented in Modeller [37] and Rosetta [10].

Methods

Dataset

All the protein chains from PDB [1] were segregated into clusters culled at 30% sequence iden-

tity using the BLASTClust algorithm [30] resulting in a collection of 15,544 clusters. The data-

set comprises of 15,554 protein chains each corresponding to the best representative structure

available from each of these clusters. It is hereafter termed as “PDB30 dataset”. Preference was

given to crystallographic structures over NMR and electron microscopy structures and also

preferring better resolution and lowest R-value structures. Out of these 15,544 structures,

14,207 are crystallographic structures, 1,128 are from NMR experiments and 209 are solved by

electron microscopy. Further, chains smaller than 100 residues were filtered out. We preferred

to keep the NMR and EM structures, as we wanted to investigate if the experimental method

impact on the quality of the predictions. For each of these 15,544 proteins the subsets of PDB

that were homologous at 30%, 40%, 50%, 70%, 90%, 95% and 100% as reported by BLASTClust

were also calculated in order to implement the “Hybrid method with noise filtering” scheme.

Protein blocks

The set of protein blocks (PBs) is a structural alphabet composed of 16 structural prototypes

each representing backbone conformation of a fragment of 5 contiguous residues [12,13]. The

16 PBs are represented by the letters a to p and were identified from a collection of 228 non-

redundant proteins. Clustering these pentapeptides was based on the 8 dihedral angles (ψi-2,

φi-1, ψi-1, φi, ψi, φi+1, ψi+1, φi+2) that define their local backbone conformation. An unsuper-

vised learning algorithm (Kohonen algorithm [38]) was used to arrive to an unbiased classifi-

cation of the dihedral vectors and to the definition of standard dihedral angles for each PB.

Protein blocks are assigned on the basis of the dissimilarity measure called RMSDA between

observed dihedral angles and the standard dihedral angles for the 16 PBs. The PB with lowest

RMSDA is assigned to the central residue of the pentapeptide region. The choice of fragment

size as 5 and library size as 16 for the PBs was because 5 consecutive residues capture well the

local contacts in regular secondary structures (α-helices and β-strands) and 16-library size is a

good balance between the specificity and sensitivity of predictions [13].

All the 15,544 protein chains from PDB30 dataset were encoded into their corresponding

protein blocks sequences (PB sequences) after comparing their backbone φ and ψ torsion

angles with the corresponding standard torsion angles for the 16 PBs [12] using an in-house

developed Perl script. Sequence of PBs as observed in crystal and NMR structures were later

used as a reference to assess the accuracy of predicted PB sequences.

Database of pentapeptide conformations from protein structures

A database of pentapeptide conformations (PENTAdb) was developed using known 3-D struc-

tures of proteins. PENTAdb is essentially the entire structural information contained in the
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PDB, broken down into chunks of pentapeptides. A sliding window of 5 residues was used to

extract structural features for every overlapping pentapeptide of a polypeptide chain. The dihe-

dral vector associated with the five consecutive residues that is required to assign PBs as

described in the previous section was obtained from the DSSP [39] program. All the informa-

tion was stored as a MySQL relational database. PENTAdb is maintained up-to-date; the

update frequency corresponds to the weekly updates of PDB. The protein chains from which

the pentapeptides are extracted are filterable at 30%, 40%, 50%, 70%, 90%, 95% and 100%

sequence identity thresholds.

Prediction scheme

The overall scheme for predicting the local structure in terms of PBs is based on querying the

PENTAdb database for every constitutive pentapeptides of a query protein sequence using a

sliding window of 5 residues (Fig 4A). Hits from the database are reported as predicted protein

blocks (PBs). Predicted PBs are assigned to the central residue of each query pentapeptide. The

prediction results are presented at different levels of refinement. The prediction in the coarsest

form consists of the list of all the possible PBs for a particular pentapeptide of the query protein

sequence. This is the case when multiple hits from PENTAdb database are obtained for a par-

ticular query pentapeptide (Fig 4B). The multiple hits correspond to the different conforma-

tions, which the pentapeptide has been seen to adopt in protein structures (Fig 4B). When the

query pentapeptide is not found in PENTAdb, the information available for the tetrapeptides

covering the first four residues with a wildcard for the fifth position was used (Fig 4B) to iden-

tify the list of possible PBs with first 4 amino acid residues matching this query. The position

of wildcard did not influence the outcome of the results (data not shown). The list of hits thus

obtained is referred as all possible PBs. This list serves as a framework from which the most

probable PB sequence is predicted.

Two methods were explored to predict the optimal PB sequence within the list of all the

possible PBs obtained after querying the database (Fig 5). The first method, termed asmajority

Fig 4. The knowledge-based methodology behind PB-kPRED. (a) Overview of the scheme followed by PB-kPRED for the prediction process. (b) The

different outcomes possible when PENTAdb database is queried for a pentapeptide sequence: hits are reported as a single PB or multiple PBs.

https://doi.org/10.1371/journal.pone.0186215.g004
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rule method, is purely probabilistic and consists of simply picking up the most frequently

observed PB for each query pentapeptide. It corresponds to the PB that has highest S1 score,

where S1 scores are simply the raw counts of all possible PBs reported by PENTAdb database

for the query pentapeptide. In cases when there is no decisive majority (two or more equi-

probable PB), both of them are reported as predictions.

However, it is known that the structure adopted by a short peptide can be highly dependent

on its local environment3. A second method that integrates contextual information was

hence developed and is hereafter termed as hybrid method. Here, to predict the local structure

of a pentapeptide, the information about the structural status (in terms of PBs) of the two

Fig 5. Details of the scoring schemes underlying the majority rule method and the hybrid method. S1 scores are simply the raw counts of all

possible PBs reported by PENTAdb database for a given query pentapeptide. S2 scores are calculated through the summation of the odds of tri-PBs that

have a common PB in the central position. For the majority rule method, predictions are based only on the ranking of the S1 scores. For the hybrid method,

predictions are based on the ranking of the product of scores S1 and S2.

https://doi.org/10.1371/journal.pone.0186215.g005
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immediately adjacent and overlapping pentapeptides (preceding and succeeding) is also taken

into account (Fig 5). It requires a normalized frequency look-up table for observed motifs of 3

consecutive PBs also termed as tri-PBs (see Text A in S1 File for more details). For each query

pentapeptide, in complement to the calculated S1 score, an additional S2 score is calculated as

follows. A list of all possible combinations of three successive PBs (tri-PB motifs) is built. This

is derived from the list of all possible PBs for the query pentapeptide and for its two adjacent

pentapeptides (Fig 5). For each possible tri-PB motif, their normalized frequencies (“odds” in

Fig 5) are looked up in the tri-PB normalized frequency table. S2 scores are calculated through

the summation of the odds of tri-PB motifs that have a common PB in the central position (Fig

5). The predicted PB for the query pentapeptide is determined after multiplying S1 scores by

their corresponding S2 scores and taking the highest value among these products (Fig 5). This

approach is called the hybrid method because it combines themajority rule method with con-

textual information in the prediction process.

Evaluating PB-kPRED using different subsets of PENTAdb

Two evaluation schemes were developed to benchmark the PB-kPRED methodology. As men-

tioned above, the query dataset used here constituted of the 15,544 proteins from the PDB30

dataset. The schemes relied on the ability to control which subsection of PENTAdb will be

accessible to the prediction algorithm for every query. For example, allowing only pentapep-

tides in PENTAdb from non-homologues to be accessible by the prediction algorithm emu-

lates a scenario of attempting to predict the local structure of a protein with no known

homologues. On the other hand, as in the case of other local structure prediction methods [13,

21–23, 27], it can be advantageous to have the ability to privilege information from homolo-

gous structures when these are available to predict the local structure of a query protein. Such

a scheme can be emulated by allowing only pentapeptides in PENTAdb from closest detectable

homologues to be accessible by the search algorithm.

In first instance, the prediction methodology was assessed with increasing sequence identity

cut-offs ranging from 30%, 40%, 50%, 70%, 90%, 95% to 100%, named experiments A1-A8

(Fig 6A). This scheme is subsequently termed as “without noise filtering scheme”. In second

instance, an alternative assessment scheme hereby called the “with noise filtering scheme” was

applied to further assess the PB-kPRED methodology (experiments B1-B8, see Fig 6B). It

aimed at evaluating how privileging information from close homologues, when available, con-

tributed to improve the quality of the predictions. In brief, the algorithm initially searches for a

pentapeptide among the closest homologues first. If the search finds a hit, then the hit is used

for the prediction; otherwise the search space is increased to include the immediately next

level of more distantly related homologues. This process is repeated until a hit is obtained.

Due to this process of introducing more distant homologues in a conditional fashion, wrong

pentapeptides (noise) from PENTAdb were potentially filtered out, hence the name with noise
filtering scheme. In all the cases, care was taken to exclude the pentapeptides from the query

proteins themselves.

Reducing the PB predictions into a binary outcome permits the use of classical Mathews

correlation coefficient (MCC) to compare our predictions to a random choice. MCCs for the

16 PBs were evaluated based on a confusion matrix similar. For each PB, MCC was calculated

according to Eq 1.

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ð1Þ
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Fig 6. Diagrammatic representations of the schemes used by PB-kPRED for querying PENTAdb with (a) representing the so-called “classic” or

“without noise filtering scheme” and (b) representing the “with noise filtering scheme”. Sections of the database accessible are indicated in green

and those not accessible in red. The sections are delimited by sequence identity thresholds. In both schemes, eight different experiments (A1 to A8 and B1

to B8) were performed. See Text B in S1 File for detailed legend of this figure.

https://doi.org/10.1371/journal.pone.0186215.g006
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A scoring function to estimate the accuracy of the predictions

A probabilistic scoring function was developed for the a posteriori analysis of the predicted PB

sequence through namely the analysis of its content in penta-PB motifs, with the objective of

providing a measure of how accurate PB-kPRED was performing. The principle of the analysis

relies on the fact that not all penta-PBs are found in proteins at the same frequency. Indeed,

many successions of 5 consecutive PBs are highly improbable because they are geometrically

not allowed as explicated by the Ramachandran rules. The probabilistic function is hence

based on the look-up table of normalized frequencies of successive penta-PB motifs observed

in a non-redundant set of protein structures (see Text A in S1 File). In brief, using a sliding

window of 5 consecutive PBs (penta-PB motif) along the predicted PB sequence, the normal-

ized frequencies of all penta-PB motifs were looked-up in the penta-PB frequency table. The

logarithm of these normalized frequencies were then summed and divided by the length of the

predicted PB sequence to generate an accuracy score (A) as shown here:

A ¼
Pl� 4

i¼1
logðNiÞ
l

ð2Þ

where A is the accuracy score for a predicted PB sequence, l is the length of the PB sequence, N
is the normalized frequency of the penta-PB motif observed at window position i in the PB

sequence. Since an overlapping sliding window of five consecutive PBs is used, the total num-

ber of penta-PB motifs (i.e the number of windows) is l-4. In the case a particular penta-PB

motif has a null value in the frequency table (i.e it is never observed), a penalty of -5 was

instead added to the score.
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16. Schneider B, Cerný J, Svozil D, Cech P, Gelly J-C, de Brevern AG. Bioinformatic analysis of the protein/

DNA interface. Nucleic Acids Res. 2014; 42:3381–3394. https://doi.org/10.1093/nar/gkt1273 PMID:

24335080

17. Tyagi M, de Brevern AG, Srinivasan N, Offmann B. Protein structure mining using a structural alphabet.

Proteins. 2008; 71:920–937. https://doi.org/10.1002/prot.21776 PMID: 18004784

18. Joseph AP, Srinivasan N, de Brevern AG. Improvement of protein structure comparison using a struc-

tural alphabet. Biochimie. 2011; 93:1434–1445. https://doi.org/10.1016/j.biochi.2011.04.010 PMID:

21569819

19. Mahajan S, de Brevern AG, Sanejouand Y-H, Srinivasan N, Offmann B. Use of a structural alphabet to

find compatible folds for amino acid sequences. Protein Sci. 2015; 24:145–153. https://doi.org/10.

1002/pro.2581 PMID: 25297700

20. Ghouzam Y, Postic G, de Brevern AG, Gelly J-C. Improving protein fold recognition with hybrid profiles

combining sequence and structure evolution. Bioinformatics. 2015; 31:3782–9. https://doi.org/10.1093/

bioinformatics/btv462 PMID: 26254434

Protein structure prediction using a structural alphabet

PLOS ONE | https://doi.org/10.1371/journal.pone.0186215 November 21, 2017 19 / 20

https://doi.org/10.1093/nar/gku1214
http://www.ncbi.nlm.nih.gov/pubmed/25428375
https://doi.org/10.1093/nar/gku989
http://www.ncbi.nlm.nih.gov/pubmed/25348405
http://www.ncbi.nlm.nih.gov/pubmed/6422466
https://doi.org/10.1002/prot.340050410
http://www.ncbi.nlm.nih.gov/pubmed/2798411
https://doi.org/10.1002/prot.20008
http://www.ncbi.nlm.nih.gov/pubmed/15103615
https://doi.org/10.1016/j.compbiolchem.2009.06.002
http://www.ncbi.nlm.nih.gov/pubmed/19625218
https://doi.org/10.1093/bioinformatics/btm379
http://www.ncbi.nlm.nih.gov/pubmed/17660202
http://www.ncbi.nlm.nih.gov/pubmed/8768900
https://doi.org/10.1006/jmbi.1997.0959
http://www.ncbi.nlm.nih.gov/pubmed/9149153
http://www.ncbi.nlm.nih.gov/pubmed/12381322
https://doi.org/10.1007/s12551-010-0036-1
http://www.ncbi.nlm.nih.gov/pubmed/21731588
https://doi.org/10.1186/1471-2105-8-106
http://www.ncbi.nlm.nih.gov/pubmed/17389049
https://doi.org/10.1093/nar/gkq478
http://www.ncbi.nlm.nih.gov/pubmed/20525797
https://doi.org/10.1093/nar/gkt1273
http://www.ncbi.nlm.nih.gov/pubmed/24335080
https://doi.org/10.1002/prot.21776
http://www.ncbi.nlm.nih.gov/pubmed/18004784
https://doi.org/10.1016/j.biochi.2011.04.010
http://www.ncbi.nlm.nih.gov/pubmed/21569819
https://doi.org/10.1002/pro.2581
https://doi.org/10.1002/pro.2581
http://www.ncbi.nlm.nih.gov/pubmed/25297700
https://doi.org/10.1093/bioinformatics/btv462
https://doi.org/10.1093/bioinformatics/btv462
http://www.ncbi.nlm.nih.gov/pubmed/26254434
https://doi.org/10.1371/journal.pone.0186215


21. Zimmermann O, Ulrich HEH. LOCUSTRA: Accurate Prediction of Local Protein Structure Using a Two-

Layer Support Vector Machine Approach. J Chem Inf Model. 2008; 48:1903–1908. https://doi.org/10.

1021/ci800178a PMID: 18763837

22. Suresh V, Parthasarathy S. SVM-PB-Pred: SVM based protein block prediction method using

sequence profiles and secondary structures. Protein Pept Lett. 2014; 21(8):736–742. PMID: 23855661

23. Rangwala H, Kauffman C, Karypis G. svmPRAT: SVM-based protein residue annotation toolkit. BMC

Bioinformatics. 2009; 10:439. https://doi.org/10.1186/1471-2105-10-439 PMID: 20028521

24. Dong Q, Wang X, Lin L, Wang Y. Analysis and prediction of protein local structure based on structure

alphabets. Proteins. 2008; 72:163–172. https://doi.org/10.1002/prot.21904 PMID: 18214985

25. Karypis G. YASSPP: Better kernels and coding schemes lead to improvements in protein secondary

structure prediction. Proteins. 2006; 64(3):575–586. https://doi.org/10.1002/prot.21036 PMID:

16763996

26. Garnier J, Gibrat JF, Robson B. GOR secondary structure prediction method version IV. Methods

Enzym. 1996; 266:540–553.

27. Etchebest C, Benros C, Hazout S, de Brevern AG. A structural alphabet for local protein structures:

Improved prediction methods. Proteins. 2005; 59:810–827. https://doi.org/10.1002/prot.20458 PMID:

15822101

28. Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol

Biol. 1999; 292:195–202. https://doi.org/10.1006/jmbi.1999.3091 PMID: 10493868
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