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Overexpression of E2F5/p130, but not E2FS5 alone, can inhibit E2F-
induced cell cycle entry in transgenic mice
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Purpose: The retinoblastoma (Rb) gene family member p130 binds preferentially to the E2F5 transcription factor and
forms a repressive E2F5/p130 complex that inhibits cell cycle progression and tumor growth. It is unclear whether E2F5,
either alone or in combination with p130, can interfere with the transcriptional activity of other E2F family members, such
as E2F1 and E2F3a, in vivo. In this study, we used transgenic mice to test whether overexpression of E2F5 with/without
p130 would be sufficient to inhibit E2F1 or E2F3a induced cell cycle reentry.

Methods: Transgenic mice were generated by microinjection of constructs containing different E2F ¢cDNAs (E2F1,
E2F3a, and E2F5) or the p130 cDNA linked to the mouse aA-crystallin promoter. The E2F5 single and E2F5/p130 double
transgenic mice were cross-mated with E2F1 or E2F3a transgenic mice. The resulting double or triple transgenic mouse
embryos were characterized by histology, in situ hybridization, immunohistochemistry, and BrdU incorporation assays.
Results: Overexpression of E2F5 alone was not sufficient to inhibit E2F1 or E2F3a induced cell cycle reentry in lens
fiber cells. Transgenic mice coexpressing E2F5 and p130 in lens fiber cells did not show lens defects. However,
coexpression of E2F5/p130 with E2F1 or E2F3a in lens fiber cells decreased the number of BrdU positive fiber cells
induced by the E2F1 or E2F3a alone. Therefore, overexpression of E2F5/p130, but not E2F5 alone, can inhibit activator
E2F-mediated cell proliferation in vivo, confirming that p130 plays a critical role in the repressive activity of E2F5/p130
complex.

Conclusions: Overexpression of E2F5/p130 in post-mitotic lens fiber cells does not affect their normal differentiation
program, but can inhibit inappropriate cell cycle reentry induced by the activator E2Fs. Since E2F5 alone cannot interfere

with these E2F activities, we conclude that p130 is a key player in the inhibitory process.

The retinoblastoma gene family of tumor suppressors
includes three members pRb (Rbl), p107 (RbL1) and p130
(Rb2). Because the main region of sequence similarity
between these proteins resides in a pocket domain, they are
often referred to as the “pocket proteins” [1]. These proteins
play important roles in many aspects of development,
particularly in the regulation of cell cycle progression.
Although they share many biochemical similarities and have
extensive functional overlap, these pocket proteins are not
equivalent. For example, in humans, a germ-line mutation of
the Rb1 gene can lead to development of retinoblastoma, a
highly malignant intra-ocular tumor that arises in the neural
retina of infant eyes. Unlike the Rb/ gene, the gene encoding
p130 is located in chromosome 16q12.2, and deletions in this
area are related to several human cancers including prostate,
breast, and ovarian cancers [2]. In mice, Rb I null embryos die
around day 13 of gestation with defects in placental, erythroid,
neuronal, and lens development [3,4]. In contrast, mice
deficient in p107 or p130 develop normally and exhibit no
overt adult phenotypes [5]. The tumor suppressive properties
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of these pocket proteins are known to be dependent upon their
ability to bind to the E2F family of transcription factors and
to form a repressive Rb-E2F complex [6-8].

There are currently nine E2F genes (E2F 1, E2F2, E2F 3a,
E2F3b, E2F4, E2F5, E2F6, E2F7, and E2FS) identified in
mammals [9,10]. Based on their functional considerations,
these E2F proteins can be classified into either
“activators” (E2F1, E2F2, and E2F3a) or
“repressors” (E2F3b, E2F4, E2F5, E2F6, E2F7, and E2FS).
The activator E2Fs contain a nuclear localization signal (NLS)
and are predominantly in the nucleus. They bind with high
affinity to pRb, and their expression is highly upregulated in
late G of the cell cycle. Ectopic expression of any of them is
sufficient to induce Gi/S transition and cell proliferation
[9-13]. In contrast, the repressors E2F4 and E2F5 do not have
such an NLS domain, therefore, are primarily in the
cytoplasm. These two E2Fs bind with high affinity to the pRb
homologs, p107 and p130 [8-10]. They are mainly expressed
in quiescent cells, and can activate transcription only under
some circumstances [9,10,14,15]. The members of E2F6,
E2F7, and E2FS, do not have a pocket protein interaction
domain and are believed to repress transcription of specific
promoters [9,10]. The complexity of the E2F family suggests
that individual E2F proteins play distinct roles in the
regulation of cell proliferation, as described by our previous
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Figure 1. Generation and
characterization of E2F5/p130 double

transgenic mice. A: Microinjected
constructs. Human E2F5 and mouse

pl130 cDNAs were linked to the

denhancer aA-crystallin promoter in
vector denoA-minx (DREAM) [30]. B:
At E15.5, the bigenic lens shows a
normal lens phenotype. C: No BrdU
positive fiber cells were present in the
center of the double transgenic lens. D-
E: In situ hybridization was used to
examine expression of E2F5 and p130
transgenes with human E2F5 and mouse
p130 riboprobes. Hybridization signals
were initially captured as dark-field
images, pseudocolored red, and then
superimposed on bright-field images of
the same tissue sections counterstained
by hematoxylin. The E2F5 (D) and p130
(E) transgenes were expressed in lens
fiber cells. The size of lens in panel E is

smaller as this section is more
peripheral. F-G:
Immunohistochemistry. Using

antibodies against E2F5 (F) and p130
(G), a green nuclear staining was
detected in the double transgenic lens
fiber cells. Scale bars=500 pum.

observations and many studies from others [9-11,13-15].
However, it is not yet clear whether individual E2Fs could
interact with each other. The pRb homolog p130 is thought to
be a tumor suppressor, and overexpression of p130 can inhibit
cell proliferation by forming a strong repressive complex with
E2F4 and E2F5 [2,9,16-20]. Knockout studies showed that
E2F4 and E2FS5 are necessary for the pocket protein-mediated
G control of the cell cycle, because mouse embryonic
fibroblasts (MEFs) deficient for these two E2Fs are unable to
exit the cell cycle in response to pl6™&4 [21]. However, so

603

far, there is no in vivo evidence showing that extra E2F4 or
E2F35, in the absence or presence of extra p130, can interfere
with the activities of activator E2Fs. Here, we test whether
overexpression of E2F5 with/without p130 is sufficient to
repress cell cycle reentry induced by activator E2Fs in post-
mitotic lens fiber cells.

The embryonic lens of the eye is an attractive model
system for studying the molecular mechanisms that regulate
cell proliferation and differentiation. The lens is composed of
two cell types: anterior proliferative epithelial cells and
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Figure 2. Expression of transgenes in
E2F1/E2FS bigenic eyes at E14.5. In
situ hybridizations with human E2F1
and E2F5 riboprobes were used to
confirm expression of E2F1 and E2F5
transgenes. Hybridization signals were
captured as bright- (A, B, E, F) and
dark- (C, D, G, H) field images.
Transcripts of the endogenous E2F1 and
E2F5 were detected in non-transgenic
FVB lens epithelial and corneal cells
(C, G). Endogenous E2FS5, but not
E2F1, was also detectable in the FVB
lens fiber cells (C, G). By comparison,
both transgenes were highly expressed
in the bigenic lens fiber cells (B, D, F,
H), as described previously [15,29].
Scale bars=500 pm.

posterior terminally differentiated, post-mitotic, elongated
fiber cells [22]. Lens epithelial cells at the bow region are
stimulated to exit from cell cycle and to differentiate into fiber
cells. Almost all E2F family members are expressed in lens
epithelial cells, while only E2F1, E2F3 and E2FS5 are detected
in post-mitotic lens fibers [23]. pRb and p107 proteins were
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detected in both lens epithelial and fiber cells [23]. Since p130/
E2F complexes were not detected in lens fiber cells, it was
proposed that pRb and p107 are the primary regulators of E2F
activities in differentiating lens fiber cells [23]. Previous
studies have shown that inactivation of pRb by targeted
mutagenesis of the Rb gene, or by expression of viral proteins,
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Figure 3. Characterization of E2F1/
E2F5 bigenic eyes at E14.5. When
compared with FVB lens (A), the
bigenic lens histology shows alterations
in fiber cell elongation, and the presence
of extra nuclei in the center of the lens
(B), similar to the lens phenotype in the
E2F1 single transgenic lens [29]. There
are no BrdU positive fiber cells (brown
nuclear stain) in the FVB lens (C). BrdU
positive fiber cells were prevalent in the
double transgenic lens (D).
Abbreviations: le, lens epithelium; If,
lens fiber. Scale bars=500 pm.

results in inappropriate cell cycle reentry in lens fiber cells
[24-27]. The activator E2Fs, particularly E2F3, make a major
contribution toward the in vivo phenotypic consequences of
pRb deficiency [28]. Although both E2F5 and pl130 are
considered to play important roles in the regulation of cell
cycle exit and terminal differentiation, it is not known whether
elevated levels of E2F5 in combination with p130 would be
able to alter lens fiber cell differentiation program.

In this study, we have generated double transgenic mice
with lens-specific coexpression of E2F5 with E2F1 or E2F3a.
We have also generated transgenic mice coexpressing E2F5
with p130 in the lens fiber cells, and triple transgenic mice
coexpressing E2F5/p130 with E2F1 or E2F3a. We found that
overexpression of E2F5/p130 in the lens fiber cells did not
alter normal fiber cell differentiation. Overexpression of E2F5
alone was not sufficient to repress inappropriate cell cycle
entry induced by E2F1 or E2F3a. However, cell cycle reentry
was significantly inhibited by overexpression of E2F5/p130.

METHODS

Generation of the constructs and transgenic mice: All animals
were used in accordance with the ARVO Statement for the
Use of Animals in Ophthalmic and Vision Research. Human
E2F1, Myc-tagged mouse E2F3a and human E2F5 transgenic
lines were generated as previously described [15,29]. E2F5/
p130 double transgenic mice were generated by coinjection.
A Sac II — Xba I fragment containing the human E2F5 cDNA
and a Cla I — EcoR V fragment carrying mouse p130 cDNA
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were cloned downstream from the denhancer/aA-crystallin
promoter in the vector denaA-minx (DREAM) [30]. The
resultant plasmids (Figure 1A) were digested with Kpnl and
Notl to release fragments for microinjection. The fragments
were separated by electrophoresis through a 1.2% agarose gel
and purified using a Qiaex II gel extraction kit (Qiagen,
Hilden, Germany). Transgenic mice were generated by
pronuclear coinjection of both fragments into one-cell-stage
inbred FVB/N embryos [31,32]. Two stable transgenic
families (OVE1811 and OVE1812) expressing both E2F5 and
p130 transgenes were generated from the coinjection. E2F5
single (OVE1598) and E2F5/p130 double (OVEI1S811)
transgenic mice were cross-mated with E2F1 (OVE527) or
E2F3a (OVE1728) transgenic mice to generate double (E2F5/
E2F1 or E2F5/E2F3a) and triple (E2F5/p130/E2F1 or E2F5/
p130/E2F3a) transgenic mice.

Screening of transgenic mice: Genomic DNA from mouse
tails was isolated as previously described [31]. For
polymerase chain reaction (PCR) screening of E2F1, E2F3a,
and E2F5 single transgenic mice, sense (5'-GTG AAG GAA
CCT TAC TTC TGT GGT G) and antisense (5'-GTC CTT
GGG GTC TTC TAC CCT TTC TC) primers specific to the
simian virus (SV) 40 sequences in CPV2 were used to amplify
a ~300 bp fragment. To screen for the E2F5 and pl130
transgenes driven by the denhancer/aA-crystallin (DREAM)
promoter, we used the following primers: 1) minx sense: 5'-
GTC TTT CCA GTG GGG ATG CTC T-3'; 2) E2F5
antisense: 5'-TCC TGC AGC AGC GAC ACG AA-3'; 3)
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Figure 4. Characterization of E2F3a/
E2F5 double transgenic eyes at E15.5.
A, B: Expression of E2F3a and E2F5
transgenes was confirmed by in situ
hybridizations with E2F3a and E2FS5
riboprobes. Hybridization signals were
captured as dark-field images. The
E2F3a (A) and E2F5 (B) transgenes
were specifically expressed in lens fiber
cells, as described previously [15]. C:
Ocular histology of the E2F3a/E2F5
double transgenic lenses showed
modest alterations in fiber cell
elongation and the presence of extra
nuclei in the center of the lens. D: The
same percentage of fiber cells were
BrdU positive in the double transgenic
lens as in the E2F3a single transgenic
lens described previously (Table 1)
[15]. Scale bars=500 pum.

p130 antisense: 5'-GCT GCT GGA TCT GAT GGC TC-3". A
~400 bp fragment was amplified by the minx/E2F5 or minx/
p130 primers. PCR assays were performed as described
previously [29].

Lens histology: Female transgenic mice were superovulated
and mated with male transgenic mice. The presence of a
vaginal plug was defined as gestational day 0.5. Embryonic
heads at embryonic day (E) 14.5 and 15.5 were fixed in 10%
formalin, paraffin embedded, cut into 5-pum thick sections, and
stained with hematoxylin and eosin by standard techniques.

In situ hybridization: In situ hybridization was performed
using **S-labeled riboprobes, as described in Fromm and
Overbeek [33]. An SV40-specific riboprobe and the probes

TaBLE 1. PERCENTAGE OF BRDU POSITIVE LENS FIBER CELLS.

Transgenic families BrdU# (%)
E2F1 42+1.6
E2F3a 10+£1.2
E2F5 0
E2F1/E2F5 44+1.8
E2F3a/E2F5 10+£1.3
E2F5/p130 0
E2F5/p130/E2F1 8+0.8
E2F5/p130/E2F3a 5+0.5

The sharp (hash mark) shows the percentage of positive cells:
the number of brown nuclei in lens fiber cells compared with
the total number of fiber cell nuclei.
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for E2F1, E2F3a, and E2F5 were described previously [15,
29]. A riboprobe for mouse p130 was generated from plasmid
p130/pBluscript. Hybridization signals were initially captured
as dark-field images. For some of the figures, the dark-field
images were pseudo-colored red, then superimposed on
bright-field images of the same tissue section (counterstained
by hematoxylin) using image analysis software (Photoshop;
Adobe, San Diego, CA).

BrdU Incorporation: DNA replication was detected by 5-
bromo-2’-deoxyuridine (BrdU) incorporation. BrdU (100 pg/
g bodyweight; Sigma-Aldrich Co., St. Louis, MO) was
injected into pregnant female mice. One hour later, the mice
were sacrificed and embryos were analyzed by
immunohistochemistry as described previously [25]. For
quantification, the tissue slides containing mid-frontal lens
sections were selected for BrdU staining, and the number of
BrdU-positive nuclei in lens fiber cells was counted and
compared with the total number of nuclei in the same region,
determined by hemotoxylin staining. Results are the
mean + SD from four individual tissue slides (each slide was
from different transgenic tissue block and contained at least 3
eye sections). Statistical analyses were performed with two-
tailed Student's #-tests using Microsoft Excel software. Data
were considered to be significantly different for p<0.05.
Immunohistochemistry: Tissue sections were deparaffinized
in xylene and rehydrated through a graded alcohol series,
washed with PBS, and incubated with 10% methanol/3%
hydrogen peroxide in PBS to block endogenous peroxidase
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Figure 5. Expression of Myc-E2F3a and
E2F5 proteins. Immunohistochemistry
was used to assay expression of the
E2F3a and E2F5 transgenic proteins in
non-transgenic FVB (A, C) and the
E2F3a/E2F5 double transgenic lenses
(B, D). Using anti-Myc antibody, there
is no green staining in FVB lens (A). By
comparison, green nuclear staining is
present in the transgenic lens fiber cells
(B) indicative of Myc-tagged E2F3a
expression. When antibody against
E2F5 was used, endogenous E2F5 in
FVB lens fiber cells was detected as a
weak green nuclear staining (C). A
stronger signal was present in the double
transgenic fiber cell nuclei (D). Scale
bars=500 pm.

activity. Slides were boiled in 10 mM sodium citrate buffer
(pH 6.0) for 20 min using a microwave oven, and then
incubated with 10% normal horse serum for 1 h at 37 °C. For
detection of E2F5, p130, and Myc-tagged E2F3a transgenic
proteins, primary antibodies against E2F5 (Santa Cruz
Biotechnology, Santa Cruz, CA), p130 (Sigma-Aldrich Co.),
or Myc (Sigma-Aldrich Co.) were used at a 1:500 dilution in
10% normal horse serum in PBS, with incubation at 4 °C for
24 h. The slides were washed with PBS (4 x 5 min), and a
secondary antibody (1:200; biotin-conjugated anti-rabbit or
anti-mouse IgG; Vector Laboratories, Burlingame, CA) was
added for 1 h at room temperature. After washing 4 times with
PBS, ExtrAvidin-fluorescein isothiocyanate conjugate
(Sigma-Aldrich Co.) was added and incubated for 1 h at room
temperature, followed by PBS washes. The slides were
mounted with Aqua-Poly/Mount (Vector Laboratories).

RESULTS

Overexpression of E2F5 does not affect E2F1-induced cell
cycle reentry: In our previous studies, we generated transgenic
mice specifically expressing E2F1 or E2F5 in lens fiber cells
[15,29]. At E15.5, the E2F1 lenses (OVES27 and OVES30)
showed severe defects in fiber cell elongation and alignment.
At the posterior of these transgenic lenses, there were many
extra nuclei which incorporated BrdU indicative of
inappropriate cell cycle reentry, and many condensed fiber
nuclei indicative of apoptosis [29]. By comparison, the
transgenic mice in each E2F5 family (OVE1598 and
OVE1599) showed a normal eye phenotype, and there were
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no extra BrdU positive nuclei in the E2F5 expressing lens fiber
cells [15]. Since E2F5 is thought to be a cell cycle “repressor,”
we tested whether overexpression of E2F5 was sufficient to
inhibit the E2F1-induced cell cycle reentry. Homozygous
E2F1 mice (OVES527) were cross-mated with E2F5 transgenic
mice (OVE1598) to generate E2F1/E2F5 double transgenic
mice. To confirm expression of transgenes, in situ
hybridization was performed using riboprobes for human
E2F1 or E2F5. At E14.5, transcripts of the endogenous E2F1
and E2F5 were detected in non-transgenic FVB lens epithelial
and corneal cells (Figure 2C,G), suggesting that these human
E2F1 and E2F5 riboprobes cross-reacted to the mouse E2F1
and E2FS5 transcripts. Endogenous E2F5, but not E2F1, was
also detectable in the FVB lens fiber cells (Figure 2C,G). By
comparison, E2F1 and E2F5 transgenes were highly
expressed in the double transgenic lens fiber cells (Figure
2B,D,F,H). The double transgenic lenses showed defects in
fiber cell elongation (Figure 2B), and many BrdU positive lens
fiber cells (Figure 3D). The percentage of BrdU positive fiber
cells between E2F1 single and E2F1/E2F5 double transgenic
lenses was not significant (p>0.05; Table 1). Therefore,
overexpression of E2F5 alone is not sufficient to repress
E2F1-induced cell cycle reentry.

Overexpression of E2F5 does not affect E2F3a-induced cell
cycle reentry: E2F3a transgenic mice have small eyes and
cataracts, similar to the E2F1 transgenic mice with BrdU
positive fiber nuclei and enhanced programmed cell death
[15,29]. To determine whether overexpression of E2F5 could
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Figure 6. Expression of E2F3a/E2F5/p130 proteins at E15.5. Immunohistochemistry was used to assess expression of E2F3a, E2F5 and p130
proteins in non-transgenic FVB (A, B, E, F, I, J) and triple transgenic lenses (C, D, G, H, K, L)). There was no positive staining for Myc-
E2F3a (A) or p130 (I) in FVB lens fiber cells. By comparison, intensive green nuclear staining was seen in the triple transgenic lens fiber
cells for all three proteins (C, G, K). Cell nuclei were visualized by DAPI staining (B, D, F, H, J, L). Scale bars=500 um.

alter the E2F3a phenotype, E2F3a transgenic mice Generation of E2F5/p130 double transgenic mice: The pRb
(OVE1728) were cross-mated with the E2F5 transgenic mice ~ homolog p130 is a binding partner of E2F5. It has been known
(OVE1598) to generate the E2F3a/E2F5 double transgenic that overexpression of p130 can lead to a G cell cycle arrest
mice. At E15.5, in situ hybridization revealed that both in cultured cells [34]. Since E2F5 and p130 complex are
transgenes were expressed in lens fiber cells, and that E2F5 thought to be important in the regulation of cell cycle exit and
was more highly expressed at the RNA level (Figure 4A,B). terminal differentiation, we wanted to test whether
Lens morphology and the number of BrdU positive fiber cells ~ coexpression of E2F5 and p130 would be able to alter normal
in the E2F3a/E2F5 double transgenic lenses were similar to lens fiber cell differentiation. To generate transgenic mice
that seen in the E2F3a single transgenic lenses (p>0.05; Figure expressing both E2F5 and p130, we co-injected DREAM-
4C,D;Table 1) [15]. To verify expression of both transgenic =~ E2F5 and DREAM-p130 constructs (Figure 1A). Two stable
proteins, immunohistochemistry was performed using anti-  bigenic families (OVE1811 and OVE1812) were obtained
Myc antibody for the E2F3a and anti- E2F5 for the E2F5 from the coinjection. Mice in both families showed a normal
transgene. As shown in Figure 5, there was no staining for  eye phenotype.

Myc-tagged protein in the non-transgenic lens (Figure 5A).
By comparison, immunofluorescent staining was seen in the
nuclei of the transgenic lens fibers confirming expression of
the E2F3a transgene (Figure 5B). We previously showed that
in the non-transgenic FVB lens, there was weak staining for
endogenous E2F5 protein in fiber cell nuclei (Figure 5C)
[15]. The intensity of E2F5 staining was stronger in the
transgenic lens (Figure 5D), indicating the presence of extra
transgenic E2F5 protein. Therefore, overexpression of E2F5
alone is not sufficient to inhibit E2F3a-induced cell cycle
reentry.

Overexpression of E2F5/p130 does not affect normal lens
fiber cell differentiation: The lens morphology in the E2F5/
p130 double transgenic embryos at E15.5 was similar to that
seen in nontransgenic or E2F5 only transgenic lenses (Figure
1B) [15]. There was no BrdU incorporation detected in the
bigenic lens fiber cells (Figure 1C). In situ hybridization
revealed that transcripts of E2F5 and p130 were present
specifically in the transgenic lens fiber cells (Figure 1D,E). A
previous study showed that E2F/p130 complexes were
undetectable in rat lens fiber cells, probably due to
degradation of the p130 protein by ubiquitination [23]. To test
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n assays. A-C: At E15.5, when compared with a non-

transgenic FVB lens (A), the triple transgenic lens showed a modest phenotype with some displaced fiber cell nuclei(C) in contrast to the
many fiber cell nuclei seen in the E2F3a single transgenic lens (B). Abbreviations: le, lens epithelium; If, lens fiber. D-F: The number of BrdU
positive fiber cells (arrow head) in the triple transgenic lens (F) decreased by about 50% when compared to the E2F3a single transgenic lens

(E). Scale bars=500 pm.

the presence of pl30 and E2F5 transgenic proteins,
immunohistochemistry was performed using antibodies
against p130 and E2F5. In the nontransgenic FVB lens, shown
in the next section, there was no staining for p130 protein in
fiber cells (Figure 6I), consistent with the previous
observation [23]. By comparison, both p130 and E2F5 protein
staining are present in lens fiber cell nuclei of the double
transgenic mice (Figure 1F,G).

Expression of E2F5/p130 decreases E2F3a-induced cell cycle
reentry: Hypophosphorylated pl130 forms a repressor
complex with the E2F4, which can block E2F-responsive
promoter sites, and can inhibit the Gi/S transition of the cell
cycle [18-20]. We hypothesized that the E2F5/p130 complex
could also function as a cell cycle repressor in vivo. To
examine whether coexpression of E2F5 and p130 can inhibit
cell proliferation induced by E2F3a, E2F3a transgenic mice
(family OVE1728) were cross-mated with the E2F5/p130
double transgenic mice (OVEI811) to generate triple
transgenic mice. At E15.5, when compared to nontransgenic
FVB lenses (Figure 7A,D), the E2F3a single transgenic lenses
showed defects in fiber cell elongation and BrdU positive fiber
cells (Figure 7B,E) [15]. The triple transgenic lenses showed
less severe pathology (Figure 7C). Although condensed fiber
cell nuclei were still present in the center of the triple
transgenic lens (Figure 7C), the number of BrdU positive fiber
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nuclei was decreased by about 50% (p<0.01; Figure 7F; Table
1). Immunohistochemistry showed staining for Myc-tagged
E2F3a, E2F5 and p130 proteins in most of the triple transgenic
lens fiber cell nuclei (Figure 6C,G,K) when compared to the
non-transgenic FVB lenses (Figure 6A,E,I), confirming the
expression of these transgenic proteins.

Expression of E2F5/p130 inhibits E2F I-induced cell cycle
reentry: To test whether coexpression of E2F5 and p130 could
also inhibit E2F1-induced cell cycle reentry, E2F1 transgenic
mice (family OVES527) were cross-mated with the E2F5/p130
double transgenic mice from family OVE1811 to generate
triple transgenic mice. At E15.5, the triple transgenic lenses
still showed defects in fiber cell elongation and alignment,
although slightly less severe than the E2F1 single transgenic
lenses (Figure 8A,B) [29]. Condensed fiber cell nuclei were
still present in the center of the triple transgenic lens (Figure
8B), indicating that these cells were undergoing programmed
cell death. However, the number of BrdU positive fiber cell
nuclei in the triple transgenic lenses was decreased by 80%
(p<0.01; Figure 8C,D;Table 1) [29], suggesting that E2F5/
p130 expression causes a dramatic reduction in E2F1 activity.
The expression of E2F1, E2F5 and p130 transgenes in the
triple transgenic lens fiber cells was confirmed by in situ
hybridization (Figure 9). When compared to the intensity of
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Figure 8. E2F1/E2F5/p130 triple
transgenic lens histology and BrdU
incorporation assays. A-B: At EI15.5,
the E2F1 single (A) and E2F1/E2F5/
p130 triple transgenic lenses (B)
showed similar defects in fiber cell
elongation, plus the presence of extra
condensed nuclei in the center of the
lenses. C-D: However, the number of
BrdU positive fiber cells in the triple
transgenic lens (D) had decreased by
80% when compared to the E2F1 single
transgenic lens (C). Scale bars=500 pum.

E2F1 or E2F5 transcription signals (Figure 9B,D), the level
of p130 transgene expression was low (Figure 9F).

DISCUSSION

E2F4 and E2F5 are thought to be cell cycle repressors as
E2F47 and/or E2F5" cells are unable to exit the cell cycle
in response to p16™%4 [21]. Our previous transgenic studies
demonstrated that E2F4 can function as a weak cell cycle
activator and can induce cell cycle reentry in post-mitotic lens
fiber cells [15]. In this study, we have expressed E2F5, with/
without p130, together with E2F1 or E2F3a in the ocular lens
of transgenic mice to assess the prediction that E2F5 can
inhibit or repress cell cycle progression. Our results indicate
that overexpression of E2F5 alone was not sufficient to inhibit
cell cycle reentry induced by the cell cycle activators E2F1
and E2F3a. Bigenic expression of E2F5 and p130 in lens fiber
cells did not affect normal fiber cell differentiation. However,
overexpression of E2F5 and pl130 provided 50 — 80%
inhibition of E2F1 or E2F3a induced cell cycle entry. Our
transgenic studies provide in vivo evidence that E2F5/p130
can function as a cell cycle repressor and can inhibit cell
proliferation. Our studies do not address the issue of whether
p130 alone can inhibit cell cycle reentry induced by E2F1-3,
or whether this inhibition requires formation of a p130-E2F5
complex.

E2F5 alone does not repress cell cycle progression:
When the pRb family members are phosphorylated and
dissociated from the E2Fs, the free E2F4 and E2F5 proteins
move to the cytoplasm, while the activator E2F proteins
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(E2F1, E2F2, and E2F3a) bind to the E2F-responsive gene
promoters that are vacated by E2F4 and E2F5, even though at
some promoters their binding sites may be different [35,36].
We have shown that expression of E2F1—4 in ocular lens fiber
cells can upregulate E2F target genes and induce post-mitotic
lens fiber cells to re-enter the cell cycle [15,29]. In this study,
we used the same transgenic approaches to test whether extra
E2F5 could interfere with the activator E2Fs. We found that
overexpression of E2F5 in fiber cells was not sufficient to
disrupt S phase induction by E2F1 or E2F3a.

Generation of E2F5/p130 double transgenic mice: Since
extra “free” E2F5 did not interfere with the activator E2Fs,
we hypothesized that the role of repressor E2Fs might be
dependent upon their binding partners, the pocket proteins.
Since E2F5 is believed to bind preferentially to p130 [8], we
used the denaA-minx promoter (DREAM) vector for E2F5
and p130 cDNA constructs to generate E2F5/p130 double
transgenic mice. This modified aA-crystallin promoter has
been shown to be active in both lens epithelial and fiber cells
[30]. However, among transgenic mice (OVEI1811 and
OVEI1812) that were obtained from our micro-coinjection, we
found that both E2F5 and pl130 transgenes were mainly
expressed in lens fiber cells, with little or no expression in lens
epithelial cells (Figure 1). Inactivation of DREAM promoter
in lens epithelial cells might be due to different transgene
integration site, or repressive interaction between E2F5 and
p130 transgenes.

E2F5/p130  does
differentiation,  but

not
inhibits

affect normal lens fiber
deregulated cell cycle


http://www.molvis.org/molvis/v14/a73

Molecular Vision 2008; 14:602-614 <http://www.molvis.org/molvis/v14/a73>

E2F1/E2F5

iptel

© 2008 Molecular Vision

Figure 9. Transcription of E2F1/E2F5/
p130 transgenes at E15.5. In situ
hybridizations were used to assay
expression of the E2F1, E2F5 and p130
transgenes using SV40 (for E2F1),
human E2F5 and mouse pl30
riboprobes. Bright-field (A, C, E) and
dark-field (B, D, F) images are shown.
The transgenes were expressed
specifically in lens fiber cells.
Transcription signals of p130 (F) were
much weaker than the E2F1 (B) and
E2F5 (D) transgenes. Scale bars=500
pm.

progression: Expression of E2F4 and E2F5 is found mainly
present in quiescent cells at Go, and is thought to be important
for differentiation, because mice that are nullizygous for these
E2Fs have specific terminal-differentiation defects [37,38].
The pRb homologs, p107 and p130, can form repressor
complexes in conjunction with E2F4 or E2F5 at most if not
all the E2F-responsive gene promoters [9]. Vairo et al. [18]
showed that p130 can interact with E2F4, and can actively
repress E2F-regulated promoter activities. In our transgenic
study, we found that when E2F5 and p130 were overexpressed
in post-mitotic lens fiber cells, there was no inhibition of fiber
cell differentiation or elongation. However, coexpression of
E2F5 and pl130 did significantly repress the cell cycle
progression induced by overexpression of E2F1 or E2F3a.
These results indicate that the activity of cell cycle “repressor”
E2FS5, if any, is dependent upon the tumor suppressor p130.
Overexpression of p130 was previously found to arrest cancer
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cells in the G| phase of the cell cycle and inhibit tumor growth
[2,16,17]. Our transgenic observations are consistent with
these previous studies. However, so far it is unclear whether
p130 can inhibit cell cycle progression in the absence of E2F5.
It was reported that in the absence of both E2F4 and E2FS5,
hypophosphorylated pocket proteins were unable to induce
cell cycle exit [21], suggesting that these repressor E2Fs may
be a necessary mediator for the pocket protein function. The
precise growth suppressive mechanisms of p130 are not fully
understood. One possibility is that it forms a repressive
complex with E2F4 and E2F5, which then recruits HDACI to
the E2F-regulated gene promoter and repress its activities
[39]. Alternatively, since E2F1, E2F2, and E2F3 are capable
of binding to pl130 in two-hybrid systems or when
overexpressed [40,41], the other possibility is that p130 binds
directly to E2F1 and E2F3a to eliminate their transactivation
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ability. Nevertheless, how p130 interplays with E2Fs to
function as a tumor suppressor remains to be determined.

E2F5/p130 may be a useful tool in anti-cancer gene
therapy: Our in vivo transgenic results may have clinical
significance. Mutations in the human gene encoding p130 are
detected in diverse cancers including prostate, breast, and
ovarian cancers [2]. Several studies have shown that p130 is
downregulated in tumors at the transcriptional level rather
than by posttranslational modifications [42-44], suggesting
that loss of p130 expression could be an important event in
development of tumors. For example, downregulation of p130
has been found in the genesis of neoplasms of the lung [43],
breast [45], ovary [42], and non-Hodgkin’s lymphomas [46].
Development of mesothelioma [47] and AIDS-related
lymphomas [46] is also related to inactivation of pl130
function by viral oncoproteins. A previous study showed that
retrovirus-mediated delivery of wild type p130 to the lung
tumor cells could suppress tumor growth in vitro and in vivo
[17], indicating a role of p130 in gene therapy. Our transgenic
observations further confirm that p130, when overexpressed,
can reduce inappropriate cell cycle reentry. Therefore, it may
be a useful tool in gene therapy to inhibit tumor growth.

Overexpression of E2F1 or E2F3 has been shown to lead
to both p53-dependent and — independent apoptosis in tissue
culture cells [11,48]. E2F1 was found to increase transcription
of p53 [49] and to induce p53 protein accumulation through
activation of p19A® [11]. In addition, the p73 promoter region
contains several E2F-binding sites, and overexpression of
E2Fs can transactivate the p73 promoter [48]. In our previous
transgenic studies, we showed that expression of E2F1 and
E2F3a in post-mitotic lens fiber cells is sufficient to induce
cell cycle reentry, followed by p53 and p73 stabilization and
cell death [15,29]. In the current study, we did not do TUNEL
assays to analyze changes in apoptosis. However, the many
condensed nuclei in the triple transgenic lens fiber cells
(Figure 7 and Figure 8) indicate that programmed cell death
is still occurring. This suggests that overexpression of p130
may not interfere with E2F induced apoptosis, which would
enhance the anti-tumor activity of p130.

In summary, we have used the transgenic mouse lens as
a model system to study E2F and p130 activities. Although
E2F5 is one of the “repressor” E2Fs, expression of E2F5 alone
was not sufficient to interfere with cell cycle induction by the
activator E2Fs. Overexpression of both E2F5 and p130 did
not affect normal post-mitotic lens fiber cell differentiation.
However, they did inhibit E2F-induced cell cycle reentry.
Although the molecular basis of this phenomenon is not yet
fully understood, our studies support the notion that p130 is
an important cell cycle repressor, and therefore, may be useful
for gene therapy in the treatment of tumors.
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