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Abstract: These days, there is a lot of emphasis on the prediction of human clearance (CL) from a
single species for monoclonal antibodies (mabs). Many studies indicate that monkey is the most
suitable species for the prediction of human clearance for mabs. However, it is not well established
if rodents (mouse or rat) can also be used to predict human CL for mabs. The objectives of this
study were to predict and compare human CL as well as first-in-human dose of mabs from mouse or
rat, ormonkey. Four methods were used for the prediction of human CL of mabs. These methods
were: use of four allometric exponents (0.75, 0.80, 0.85, and 0.90), a minimal physiologically based
pharmacokinetics method (mPBPK), lymph flow rate, and liver blood flow rate. Based on the
predicted CL, first-in-human dose of mabs was projected using either exponent 1.0 (linear scaling) or
exponent 0.85, and human-equivalent dose (HED) from each of these species. The results of the study
indicated that rat or mouse could provide a reasonably accurate prediction of human CL as well
as first-in-human dose of mabs. When exponent 0.85 was used for CL prediction, there were 78%,
95%, and 92% observations within a 2-fold prediction error for mouse, rat, and monkey, respectively.
Predicted human dose fell within the observed human dose range (administered to humans) for 10
out of 13 mabs for mouse, 11 out of 12 mabs for rat, and 12 out of 15 mabs for monkey. Overall, the
clearance and first-in-human dose of mabs were predicted reasonably well by all three species (a
single species). On average, monkey may be the best species for the prediction of human clearance
and human dose but mouse or rat especially; rat can be a very useful species for conducting the
aforementioned studies.

Keywords: allometry; antibodies; clearance; first-in-human dose; human-equivalent dose

1. Introduction

In recent years, the prediction of pharmacokinetic (PK) parameters from a single
animal species such as rat, dog, or monkey to humans has been gaining momentum for
both small and macro-molecules. Since clearance is an important PK parameter, most
studies have focused on predicting clearance of drugs from animals to humans. These
studies show that the monkey is the most suitable animal species to predict drug clearances
in humans.

Like small molecules, there is a lot of emphasis on the prediction of human PK
parameters, mainly clearance for monoclonal antibodies (mabs) from a single species [1–3].
These methods use a fixed exponent on body weight to predict CL of mabs in humans from
monkey. Lin et al. [2] concluded that exponents 0.85 and 0.9 are needed to predict human
clearance for mabs in humans from monkey for soluble antigens as well as membrane-
bound antigens, respectively. Deng et al. [1] also found that, using monkey clearance and
exponent 0.85, one can predict antibody clearance in humans. Oitate et al. [3] predicted
human CL of mabs from monkey data. Clearance values of 24 mAbs (soluble or membrane-
bound antigens) were analyzed. The authors used training data sets to determine the
exponents of allometry for soluble mabs (n = 5) and membrane-bound mabs (n = 7).
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The mean exponent for soluble mabs was 0.79 (range = 0.62–0.98) and for membrane-
bound mabs was 0.96 (range = 0.67–1.13). The authors then used 5 soluble mabs and 7
membrane-bound mabs to validate the predictive performance of their mean exponents
obtained from the monkeys for the prediction of human CL. In the validation data set, the
mean predicted-to-observed ratio for soluble mabs was 0.76 (range = 0.64–1.03) and for
membrane-bound mabs was 1.15 (range = 0.78–1.54). The authors concluded that human
CL of mabs can be predicted with reasonable accuracy (within 2-fold of the observed
values) from monkey alone.

The works of Deng, Ling, and Oitate do indicate that using a fixed exponent (although
different from one study to the other) and monkey CL, one can predict human clearance of
mabs within a twofold prediction error. However, these studies only focused on evaluating
monkey as the most suitable species, ignoring two other widely used species, namely,
mouse and rat, for the PK studies of mabs. Therefore, the objectives of this study were
as follows:

• to evaluate the suitability of mouse or rat for the prediction of human CL of mabs and
compare with the predicted values from monkey;

• to predict the first-in-human dose of mabs based on a single species and compare it
with the doses given to humans (dose range).

2. Methods
2.1. Prediction of Human Clearance

From the literature, the clearance values for mabs for mouse, rat, monkey, and humans
following intravenous administration were obtained [1,4–34]. The following methods were
used to predict clearance in humans from a single species. Since non-linearity across several
doses of mAbs is a common observation, in this analysis, if there were different doses then
the clearance of the dose was used which was in the linear range across the doses.

2.1.1. Allometric Exponent-Based Method

The following allometric methods were used to predict clearance in humans from a
single species using different allometric exponents (Equation (1)).

Predicted CL in humans = CL of the species × (70/weight of the species)b (1)

where CL of the species is the clearance of mouse, rat, or monkey and 70 is the human body
weight in kilograms (kg). ‘b’ is the allometric exponent and four exponents (0.75, 0.80, 0.85,
and 0.90) were used in this analysis. Body weights for mouse, rat, and monkey used in this
study were 0.02, 0.25, and 3.5 kg, respectively.

2.1.2. Minimal PBPK Method (mPBPK)

In this method, five physiological parameters were used. These physiological pa-
rameters were liver and kidney weights, liver and kidney blood flow, and lymph flow
rate (Supplementary Materials Table S1). Human physiological parameters were adjusted
from mouse, rat, and monkey, and physiological factors were obtained for each species, as
described in the Supplementary Materials (Table S2). Human clearance was predicted by
Equation (2).

Predicted CL in humans = CL of the species × physiological factor of the species (2)

The physiological factor for mouse, rat, and monkey was 936, 130, and 10, respectively
(Supplementary Table S2).
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2.1.3. Lymph Flow Rate

In this method, only lymph flow rate was used to predict human clearance. A physio-
logical factor was obtained for each species, as described in the Supplementary Materials.
Human clearance was predicted by Equation (3).

Predicted CL in humans = CL of the species × physiological factor of the species (3)

The physiological factor for mouse, rat, and monkey was 1009, 94, and 10, respectively
(Supplementary Table S2).

2.1.4. Liver Blood Flow Rate

A method to predict human clearance of small molecules following intravenous
administration using liver blood flow was proposed by Ward et al. [35]. In this method, it
was found that the monkey was the best species as compared with rat and dog to predict
human clearance. A physiological factor was obtained as follows, Equation (4):

Physiological factor = human liver blood flow/animal blood flow (4)

In this study, the liver blood flow in mouse, rat, monkey, and human was 1.8, 13.8,
158 (3.5 kg monkey), and 1600 mL/min, respectively [36]. Based on Equation (4), a
physiological factor in mouse, rat, and monkey was 889, 116, and 10, respectively, Equation
(5) (Supplementary Table S2).

Predicted CL in humans = CL of the species × physiological factor of the species (5)

3. Prediction of Human Dose
3.1. First-in-Human Dose Estimation from Predicted Human Clearance

In a study, Mahmood et al. [37] used the predicted human clearance from animals (at
least a three-species scaling) of small-molecule drugs for the selection of the first-in-human
dose. The authors used several approaches for the estimation of first-in-human dose for
small molecules. Later, Mahmood took the similar approach to predict clearance and the
first-in-human dose for macromolecules [38,39]. Mahmood’s methods were based on the
scaling (clearance) of at least three animal species. Since, in the current study, clearance
was predicted from a single species, the predicted first-in-human dose was also based on a
single-species scaling.

In the preclinical stage, animals were given several doses ranging from 0.1 to 20 mg/kg.
Most of the species received a dose of 10 mg/kg or near 10 mg/kg. Since preclinical dose
will have an impact on the first-in-human dose selection, in order to predict first-in-human
dose, an animal dose of 10 mg/kg was used. If a 10 mg/kg dose was not available in animal
species, then a dose nearest to 10 mg/kg (lower than 10 mg/kg) was used. However, there
was one exception (EGF/r3), where a 16 mg/kg dose was given to the mouse and this was
the only dose used in this analysis which was >10 mg/kg. Rat received 8 mg/kg EGF/r3
and there were no monkey data. In real life, one can predict human dose from all the
doses (within the linear range) given to the animals and then use scientific judgment and
experience to decide on the first-in-human dose. The following methods were used for the
prediction of first-in-human dose.

3.1.1. Method I: Linear Method

The following Equation (6) was used to estimate first-in-human dose by linear method.

Predicted first-in-human dose = Dose in animal × (human CL/animal CL) (6)

where dose and CL were in absolute numbers (not normalized to body weight). Human
CL was predicted CL from a given species.
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3.1.2. Method II: Exponential Method

The following Equation (7) was used to estimate first-in-human dose by exponen-
tial method.

Predicted first-in-human dose = Dose in animal × (human CL/animal CL)0.85 (7)

where dose and CL are in absolute numbers (not normalized to body weight). The exponent
0.85 was used since this exponent was the best exponent for the prediction of human
clearance (1).

3.1.3. Method III: Human-Equivalent Dose (HED) Based on Body Weight

The HED for a given species was estimated as follows (body weight-based), Equation (8):

HED (Dose/kg) = Animal dose/kg × (Animal weight in kg/human weight in kg)0.33 (8)

3.1.4. Method IV: Human-Equivalent Dose (HED) Based on Predicted Human Clearance

This was a modified version of Equation (8).
The HED in for a given species was estimated as follows using exponent 0.33 and CL,

Equation (9):

HED (Dose/kg) = Animal dose/kg × (Animal CL/predicted human CL)0.33 (9)

3.1.5. Method V: Human-Equivalent Dose (HED) Based on Predicted Human Clearance

HED in for a given species was estimated as follows using exponent 0.25 and CL,
Equation (10):

HED (Dose/kg) = Animal dose/kg × (Animal CL/predicted human CL)0.25 (10)

The predicted human clearance and first-in-human dose were compared with the
observed human clearance and the doses given to humans, respectively.

4. Statistical Analysis

Predicted-to-observed CL ratio was calculated as follows, Equation (11):

Ratio = Predicted CL/Observed CL (11)

Number of mabs and percent of total number of mabs in a species for fold errors
within 0.5–2, 0.5–1.5, >2 and <0.5 were calculated. In the literature, the predicted ratio
between 0.5–2 is considered acceptable.

Average fold error (AFE), which is the log-transformed ratio of the predicted and
observed clearance values, was also reported for each species. For AFE, a value of 1.0
indicates no prediction error, and AFE was calculated as follows, Equation (12):

AFE = 101/N∑log(CLpredicted/CLobserved) (12)

where AFE is average fold error, N is the number of observations, and CLpredicted and
CLobserved are the predicted and observed clearance values, respectively.

5. Results
5.1. Prediction of Clearance of Mabs from One Species to Humans

There were 23, 21, and 25 mabs for mouse, rat, and monkey, respectively. In Table 1,
the names of the mabs used in different species are provided. The results of the study are
summarized in Table 2. In Table 2, the number of mabs and percent of total number of
mabs in all three species for different fold errors and AFE are shown. The accuracy of the
prediction of mab clearance varied from exponent to exponent and from species to species.
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Table 1. Name of the mabs used in the analysis.

Mabs Type Target Mouse Rat Monkey References

Pertuzumab Human IgG1 HER-2 Yes Yes Yes [1]
Bevacizumab Human IgG1 VEGF Yes Yes Yes [1]
Trastazumab Human IgG1 HER2 Yes NA Yes [1]
Omalizumab Human IgG1 IgE Yes Yes Yes [1]
GNE mAB S NA NA Yes Yes Yes [1]
GNE mAB T NA NA NA Yes Yes [1]
GNE mAB X NA NA Yes Yes Yes [1]
GNE mAB Y NA NA Yes Yes Yes [1]
GNE mAB Z NA NA Yes Yes Yes [1]
GNE mAB V NA NA Yes NA Yes [1]
Dacetuzumab Human IgG1 CD40 Yes Yes Yes [1]

RSHZ19 Human IgG1 RSV Yes Yes Yes [6,7]
Lenercept Human IgG1 TNF NA Yes Yes [8]
Cetuximab Chimeric IgG1 EGF Yes NA Yes [9–11]
CTLA-4Ig Human IgG1 TNFα Yes Yes Yes [12–15]
CD4-IgG Human IgG1 CD4 NA Yes Yes [16,17]

MNRP1685A Human IgG1 neuropilin-1 Yes Yes Yes [18]
Canakinumab Human IgG1 IL-1β Yes NA Yes [19]
Onartuzumab Human IgG1 MET Yes NA Yes [20,21]

EGF/r3 IgG2a EGF Yes Yes NA [22]
CNT05825 human anti-interleukin-13 IL-13 NA Yes Yes [23]

Pembrolizumab Human IgG4 PD-1 Yes NA Yes [24–26]
Infliximab Chimeric IgG1 TNFα Yes Yes NA [27,28]
Avelumab Human IgG1 PD-1 Yes NA Yes [29]

Adalimumab Human IgG1 TNFα Yes Yes Yes [30–32]
Dupilumab Human IgG4 IL-4 NA Yes Yes [33]
Erlizumab Human IgG1 VEGF Yes Yes Yes [34]
Rituximab Chimeric IgG1 CD20 Yes Yes NA [34]

NA = not available because the marketed or original names of the mAbs is not known. HER2 = human epidermal growth factor receptor 2,
VEGF = vascular endothelial growth factor, RSV = respiratory syncytial virus, TNF = tumor necrosis factor, EGF = epidermal growth factor,
CD4 = cluster of differentiation 4, IL = interleukin, PD-1programmed death-1.

Table 2. Prediction of human clearance from preclinical species by different methods.

Fold Error Exponents mPBPK Lymph Flow LBF

0.90 0.85 0.80 0.75

Mouse (n = 23)
0.5–2 fold 14 (61%) 18 (78%) 11 (48%) 8 (35%) 17(74%) 17 (74%) 16 (70%)

0.5–1.5 fold 12 (52%) 15 (65%) 11 (48%) 8 (35%) 15 (65%) 14 (61%) 14 (61%)
>2 fold 8 (35%) 1 (4%) 0 (0%) 0 (0%) 0 (0%) 1 (4%) 0 (0%)

<0.5 fold 1 (4%) 4 (17%) 12 (52%) 15 (65%) 6 (26%) 5 (22%) 7 (30%)
AFE 1.23 0.82 0.54 0.36 0.74 0.80 0.71

Rat (n = 21)
0.5–2 fold 19 (90%) 20 (95%) 18 (86%) 13 (62%) 19 (90%) 19 (90%) 20 (95%)

0.5–1.5 fold 13 (62%) 18 (86%) 12 (57%) 12 (57%) 17 (81%) 18 (86%) 19 (90%)
>2 fold 2 (10%) 1 (5%) 1 (5%) 1 (5%) 2(10%) 1 (5%) 1 (5%)

<0.5 fold 0 (0%) 0 (0%) 2 (10%) 7 (33%) 0 (0%) 1 (5%) 0 (0%)
AFE 1.46 1.10 0.83 0.63 1.19 0.86 1.06

Monkey (n = 25)
0.5–2 fold 23 (92%) 23 (92%) 23 (92%) 23 (92%) 23 (92%) 23 (92%) 23 (92%)

0.5–1.5 fold 17 (68%) 23 (92%) 23 (92%) 23 (92%) 23 (92%) 23 (92%) 23 (92%)
>2 fold 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (%) 0 (%) 0 (%)

<0.5 fold 2 (8%) 2 (8%) 2 (8%) 2 (8%) 2 (8%) 2 (8%) 2 (8%)
AFE 1.03 0.89 0.76 0.66 0.70 0.70 0.70

LBF: liver blood flow; AFE: average fold error.
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5.2. Mouse

In mouse, exponent 0.85 provided the best prediction of human CL (Table 2). Using
exponent 0.85 and mouse CL of mabs, the predicted human CL of mabs was within a
2-fold prediction error for 18 (78%) out of 23 mabs. The AFE from exponent 0.85 was
0.82, indicating a mean under-prediction by 18%. There was one mab with a prediction
error >2-fold and 4 mabs were with a prediction error <0.5-fold. The exponent 0.90 over-
predicted (>2-fold prediction error) human CL of mabs in 8 (35%) out of 23 mabs. The
AFE from exponent 0.9 was 1.23. The theoretical exponent 0.75 under-predicted (<0.5-fold
prediction error) human mab CL in 15 (65%) out of 23 mabs. The AFE from exponent 0.75
was 0.36 (Table 2), under-prediction by 64%. In a practical world, both exponents 0.85 and
0.90 are acceptable because both over- and under-prediction are not very high.

Minimum PBPK (mPBPK), lymph flow rate, and liver blood flow provided similar
results as exponent 0.85 (Table 2). The predicted human CL of mabs was within a 2-fold
prediction error for 17 (74%), 17 (74%), and 16 (70%) for mPBPK, lymph flow rate, and liver
blood flow, respectively. The AFE by mPBPK, lymph flow rate, and liver blood flow was
0.74, 0.80, and 0.71, respectively (Table 2). It is worth noting that 5 physiological parameters
were used in mPBPK, but the overall result was not better when only a single physiological
parameter such as lymph flow rate or liver blood flow was used for the prediction of
human CL.

Overall, the analysis indicated that, exponent 0.85, mPBPK, lymph flow rate, or liver
blood flow are reasonable methods to predict human clearance from mouse clearance.

5.3. Rat

In rat, like mouse, exponent 0.85 also provided the best prediction of human CL
(Table 2). Using exponent 0.85 and rat CL of mabs, the predicted human CL of mabs was
within a 2-fold prediction error for 20 (95%) out of 21 mabs. The AFE from exponent 0.85
was 1.1. The CL of only one mab was predicted with a >2-fold prediction error (no mab
with prediction error of <0.5-fold). The exponent 0.90 over-predicted (>2-fold prediction
error) human CL of mabs in 2 out of 21 mabs. The AFE from exponent 0.90 was 1.46. The
theoretical exponent 0.75 under-predicted (<0.5-fold prediction error) human mab CL in 7
out of 23 mabs. The AFE from exponent 0.75 was 0.63 (Table 2).

Minimum PBPK (mPBPK), lymph flow rate, and liver blood flow provided similar
results as exponent 0.85 (Table 2). The predicted human CL of mabs was within a 2-fold
prediction error for 19 (90%), 19 (90%), and 20 (95%) for mPBPK, lymph flow rate, and liver
blood flow, respectively. The AFE by mPBPK, lymph flow rate, and liver blood flow was
1.19, 0.86, and 1.06, respectively (Table 2).

5.4. Monkey

All four exponents provided good prediction (within a 2-fold prediction error) of
human clearance. Using exponents 0.90, 0.85, 0.80, and 0.75 and monkey CL of mabs,
the predicted human CL of mabs was within a 2-fold prediction error for 23 (92%) out
of 25 mabs. The AFE for exponents 0.90, 0.85, 0.80, and 0.75 was 1.03, 0.89, 0.76, and
0.66, respectively. The CL of only two mabs in humans were predicted with a <0.5-fold
prediction error and there was no mab whose predicted human clearance exceeded 2-fold
(Table 2). Based on AFE and a 2-fold prediction error, exponent 0.90 produced the best
results in the monkey (Table 2). However, for all practical purposes, all four exponents
provided good prediction (within a 2-fold prediction error) of human clearance from
monkey. Based on the AFE, exponent 0.90 or 0.85 should be used for the prediction of
human clearance of mabs from monkey.

Minimum PBPK (mPBPK), lymph flow rate, and liver blood flow provided similar
results as exponent 0.85 or 0.90 (Table 2). The predicted human CL of mabs was within a
2-fold prediction error for 23 (92%), 23 (92%), and 23 (92%) for mPBPK, lymph flow rate,
and liver blood flow, respectively. The AFE by mPBPK, lymph flow rate, and liver blood
flow was 0.70 (under-prediction by 30%).
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Overall, the results of the study indicate that, on the whole, exponent 0.85 is the most
suitable exponent to predict human mab CL from mouse and rat (Table 2). All 4 exponents
produced the similar prediction error for monkey. Based on the AFE, the theoretical
exponent 0.75 under-predicted the human CL of mabs in all three species (approximately
34% to 64%). Based on AFE, exponent 0.90 over-predicted the human CL of mabs in
mouse (23%) and rat (46%), but not in monkey. All seven methods indicated that the
predicted human clearance is comparable between rat and monkey. Exponent 0.85 from
the perspective of 2-fold error and AFE appears to be the best method among all 7 methods
evaluated for all three species. Of the two rodents (mouse and rat), the predicted human
clearance was better by the rat (95%) than the mouse (78%). The predicted human clearance
of mabs by monkey or rat was comparable.

5.5. Prediction of First-in-Human Dose from One Species

There were 13, 12, and 15 mabs for which first-in-human dose was predicted from
mouse, rat, and monkey, respectively. Predicted and observed human dose by different
methods are summarized in Table 3. The results of the study indicated that the first-in-
human dose was predicted with reasonable accuracy by all 3 species (Table 3). The main
criterion for successful human dose prediction was whether or not the predicted human
dose fell within the observed doses given to humans. For most of the mabs, the doses
(within species) given to animals and humans widely varied. The five approaches predicted
different doses in humans. A general characteristic of predicted human dose was that the
highest dose was predicted in humans using predicted human clearance and exponent 1.0
(method 1 or linear method) from all three species (Table 3). The lowest human dose was
predicted by HED using body weight and exponent 0.33. This was a common observation
across all three species (Table 3). It was also noted that the predicted human dose by mouse
was the lowest and the highest by the monkey.

The advantage of these five methods is that one can obtain a wide range of doses
and can use scientific judgment, experience, and knowledge to decide about the first-
in-human dose selection. It should be noted that the predicted doses by these methods
were at the lower end of the doses which were administered to humans. This is ideal
because the objective is to select first-in-human dose, which is safe, and then escalate the
dose accordingly.

Table 3. Observed and predicted human dose by different methods.

Mabs Human Observed
Dose (mg/kg) Predicted Human Dose (mg/kg)

Exponent 1.0 Exponent 0.85 HED
(Weight)0.33 HED (CL)0.33 HED (CL)0.25

Mouse (n = 13)
CTLA4Ig 1–20 8.4 3 1.9 2.9 5

MNRP1685A 2–40 2.9 1 0.7 1 1.8
Cetuximab 92–920 0.3 0.1 0.1 0.1 0.2

EGF/r3 5.7 4.7 1.7 1.1 1.6 2.8
Bevacizumab 0.1–10 2.8 1 0.6 0.9 1.6
onartuzumab 4 to 30 2.9 1 0.7 1 1.8
Canakinumab 0.3–10 2.9 1 0.7 1 1.8

Anti-CD 40 0.5–8 2.9 1 0.7 1 1.8
RSHZ19 0.025–10 0.3 0.1 0.1 0.1 0.2

Pembrolizumab 1–10 2.9 1 0.7 1 1.8
Infliximab 3–20 2.9 1 0.7 1 1.8
Avelumab 1–20 2.9 1 0.7 1 1.8

Adalimumab 0.25–10 1.5 0.5 0.3 0.5 0.9
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Table 3. Cont.

Mabs Human Observed
Dose (mg/kg) Predicted Human Dose (mg/kg)

Exponent 1.0 Exponent 0.85 HED
(Weight)0.33 HED (CL)0.33 HED (CL)0.25

Rat (n = 12)
CTLA4Ig 1–20 4.3 2.1 1.6 2.1 3

MNRP1685A 2–40 4.2 2.1 1.6 2.1 3
CD4-IgG 0.03–1.0 0.1 0.03 0.02 0.03 0.04
Lenercept 0.014–1.43 2.1 1 0.8 1 1.5

CNTO 5285 0.1–10 4.2 2.1 1.6 2.1 3
EGF/r3 5.7 3.4 1.7 1.2 1.6 2.4

Bevacizumab 0.1–10 4.4 2.1 1.6 2 3
Anti-CD 40 0.5–8 4.3 2.1 1.6 2.1 3

RSHZ19 0.025–10 0.4 0.2 0.2 0.2 0.3

Infliximab 3–20 4.3 2.1 1.6 2.1 3
Adalimumab 0.25–10 0.4 0.2 0.2 0.2 0.3
Dupilumab 1–12 2.1 1 0.8 1 1.5

Monkey (n = 15)
CTLA4Ig 1–20 5.6 3.8 3.2 3.8 4.6

MNRP1685A 2–40 9.6 6.5 5.6 6.5 7.9
CD4-IgG 0.03–1.0 0.1 0.1 0.05 0.1 0.1
Lenercept 0.014–1.43 3.2 2.2 1.9 2.2 2.6

CNTO 5285 0.1–10 6.4 4.4 3.7 4.3 5.3
Cetuximab 92–920 4.8 3.3 2.8 3.2 4

Bevacizumab 0.1–10 6.4 4.4 3.7 4.3 5.3
onartuzumab 4–30 6.4 4.4 3.7 4.3 5.3
Canakinumab 0.3–10 3.2 2.2 1.9 2.2 2.6

Anti-CD 40 0.5–8 6.4 4.4 3.7 4.3 5.3
RSHZ19 0.025–10 0.6 0.4 0.4 0.4 0.5

Pembrolizumab 1–10 1.9 1.3 1.1 1.3 1.6
Avelumab 1–20 2.6 1.7 1.5 1.7 2.1

Adalimumab 0.25–10 3.2 2.2 1.9 2.2 2.6
Dupilumab 1–12 0.6 0.4 0.4 0.4 0.5

HED: Human-Equivalent Dose.

Human dose prediction is also dependent on the dose given to animals. For example,
cetuximab (Table 3) dose was substantially under-predicted from both mouse and monkey
(rat data were not available). The reason for this was that very low doses were given to
mouse (0.04, 0.25, 1 mg/kg) and monkey (0.026, 0.08, 0.26 mg/kg).

6. Discussion

This analysis indicates that, for a single-species scaling, mouse or rat can be as useful
as monkey. Of the two rodents (mouse or rat), rat appears to be more accurate in its
predictive performance of clearance than mouse and as accurate as monkey (Table 2). For
the prediction of human dose, however, mouse was as good as rat or monkey.

The caveat of a single exponent and a single-species scaling for the prediction of
human CL of mabs should be recognized. A single exponent is not necessarily the most
optimal exponent for a single-species scaling and carries high uncertainty [37–39]. For
example, for pertuzumab and bevacizumab, the prediction error in clearance from mouse
and exponent 0.9 was 6% and 107%, respectively (38% from exponent 0.85 for both mabs).
From rat (exponent 0.9), the prediction error in clearance for pertuzumab and bevacizumab
was 54% and 17%, respectively. From monkey (exponent 0.9), the prediction error in
clearance for pertuzumab and bevacizumab was 15% and 19%, respectively.

Even in monkey, when different exponents were used, a wide range of prediction
errors were noted for most of the mabs. For example, for anti-CD40, the percent prediction
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error ranged from 5% to 65% across different exponents. A similar phenomenon was
noted with mouse and rat. Although, on average, it appears that monkey is the best
species among mouse, rat, and monkey for the prediction of human CL for mabs, it is
not necessary that for a given individual mab monkey will always perform better than
the other two species. For example, for anti-CD40, the prediction error (exponent 0.85)
from mouse, rat, and monkey was 37%, 13% and 42% percent, respectively. Similarly,
for RSHZ19, the prediction error (exponent 0.85) from rat and monkey was 8%, and 31%
percent, respectively. On the other hand, it also appears that in most cases the prediction of
human CL of mabs may be more accurate from monkey than mouse or rat. Since a 2-fold
prediction error is widely accepted, both for mouse and rat especially, rat is a comparable
species with monkey for the prediction of human CL of mabs.

Considering that there is a systematic pattern in the predicted mab clearance in
humans from mouse and rat by the allometric exponents, one can use these exponents
for potential advantage. The exponent 0.75 and exponent 0.90 produced the lowest and
the highest predicted CL values of mabs, respectively, from all three species. One can use
all 4 exponents as shown in this study and this will give a range of CL values (or mean
clearance values), which then can be tailored using experience and scientific judgment for
the first-in-human dose selection. Especially, this approach may be useful from mouse data.

In this study, normal mouse data were used, but these days the focus is also on using
transgenic mouse. The importance of transgenic mice in preclinical and clinical studies has
been highlighted in many studies [40,41]. In a study, Valente et al. [40] emphasized the use
of humanized FcRn transgenic mice to predict the PK of mAbs in humans. In their study,
the authors used humanized FcRn transgenic mouse (homozygous Tg32 and Tg276) and
non-human primate (NHP) models and showed that the Tg32 mouse model can replace
NHP models. The allometric exponent for clearance scaling from Tg32 mice to NHPs was
estimated to be 0.91 for all antibodies.

Binding of immunoglobulins (IgGs) with the neonatal Fc receptor (FcRn) protects
them from degradation, resulting in higher concentrations of IgGs. This increases the
half-life and decreases the clearance of IgGs. It should be noted, however, that there are
interspecies differences in the binding of IgGs with FcRn. Human IgG1 binds cynomolgus
monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and
rat FcRn with a 10-fold higher affinity than human FcRn [42].

Estimation of a first-in-human starting dose for clinical trials of new drugs (small or
large molecules) in healthy volunteers or patients is very important, since a low starting
dose will prolong dose optimization, and a high starting dose may cause serious toxic-
ity [43]. However, despite the importance of this task, there is no consensus regarding
the best approach for estimating the first-in-human dose [44,45]. One of the methods is to
convert an animal no observed adverse effect level (NOAEL) to the human-equivalent dose
using appropriate scaling factors, followed by application of a safety factor [46]. However,
determination of the appropriate animal NOAEL is a difficult and time-consuming task,
depending on several factors such as duration of treatment, dose selection, and species.
The choice of an appropriate scaling factor also involves considerable uncertainty. In order
to select the first-in-human dose, Reigner and Blesch [44] suggested the use of the lowest
AUC at the NOAEL when a drug is given to several species as well as the predicted human
clearance (dose in humans = AUC × predicted human clearance). Thus, the proposed
approach of Reigner and Blesch for first-in-human dose selection takes into account both
the animal toxicity based on NOAEL and PK parameter, namely, clearance.

The antibody disposition or clearance is generally described as ‘endogenous’ or non-
specific or target-mediated. Non-specific clearance of antibodies is due to the degradation
by pinocytosis following cellular endosomal uptake and subsequent lysosomal proteolytic
degradation into amino acids or smaller peptides [42]. In the endosome, antibodies can be
protected from degradation by binding to the neonatal Fc receptor (FcRn). It was noted
that, in FcRn-knockout (FcRn KO) mice, antibody clearance was >8 times higher than in
wild-type mice [47]. Besides these two mechanisms of degradation of antibodies, studies



Antibodies 2021, 10, 35 10 of 12

have been conducted to demonstrate that antibodies can bind with the tissues and can be
degraded in the tissues [47]. Through a physiologically based PK modeling, Eigenmann
et al. [47] attempted to quantify tissue-specific intrinsic clearances of monoclonal antibody.
The authors found that the major tissues for antibody catabolism in mice were liver (30
and 41%), skin (25 and 27%), and muscle (19 and 10%), for FcRn wild type and FcRn−

respectively. These tissues alone represented 74% and 78% of the total clearance of the
antibody. The formation of anti-drug antibody and off target binding can also impact the
PK of antibodies. These factors may be important and should be considered for the design
of first-in-human dose selection.

For the first-in-human dose selection, the single-species method produced reasonably
accurate prediction by using predicted human clearance from all three species. An accurate
prediction in this case means the predicted dose was within the given human dose range.
In almost all cases, the predicted first-in-human dose was towards the lower side, which is
more desirable. From Table 3, it appears that using one species and a fixed exponent (0.33),
the predicted human dose using human body weight (HED) is more conservative than the
dose predicted using predicted human CL. However, the decision for the selection of first-
in-human dose may depend on experience and scientific judgment. In the current analysis,
where available, a maximum dose of 10 mg/kg given to animals was used. However, an
investigator may want to use a much lower dose given to animals and then proceed from
there. However, a very low starting dose in humans may not be of any practical value if
one has to increase the human dose to a therapeutic level through many steps. It should
also be noted that the pharmacokinetic studies of mabs are generally conducted in healthy
animals and the first-in-human dose may not be always in healthy subjects.

7. Conclusions

Due to wide belief that monkey is the best species to predict human clearance and
first-in-human dose, the investigations in the rodents were not undertaken or ignored. The
current study indicates that mouse or rat, especially rat, can replace monkey for achieving
the aforementioned goals. Mouse and rat are cheaper than monkey and also much easier
to handle for preclinical studies than monkey.

Overall, the clearance and first-in-human dose of mabs were predicted reasonably
well by all three species. On average, monkey may be numerically the best species for the
prediction of human clearance and first-in-human dose selection, but both mouse and rat,
especially rat, can be a very useful species for conducting the aforementioned studies. The
use of mouse or rat in first-in-human dose selection is practical and cost- and time-effective
without compromising the accuracy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antib10030035/s1, Table S1: Physiological parameters used in the calculation of human
physiological factor; Table S2: Estimation of human physiological factor.
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Pharmacokinetics of novel Fc-engineered monoclonal and multispecific antibodies in cynomolgus monkeys and humanized
FcRn transgenic mouse models. MAbs 2020, 12, 1–13. [CrossRef]

41. Roopenian, D.C.; Christianson, G.J.; Sproule, T.J. Human FcRn transgenic mice for pharmacokinetic evaluation of therapeutic
antibodies. In Mouse Models for Drug Discovery; Humana Press: Totowa, NJ, USA, 2010; Volume 602, pp. 93–104.

42. Abdiche, Y.N.; Yeung, Y.A.; Chaparro-Riggers, J.; Barman, I.; Strop, P. The neonatal Fc receptor (FcRn) binds independently to
both sites of the IgG homodimer with identical affinity. MAbs 2015, 7, 331–343. [CrossRef] [PubMed]

43. Boxenbaum, H.; Dilea, C. First-time-in-human dose selection: Allometric thoughts and perspectives. J. Clin. Pharmacol. 1995, 35,
957–966. [CrossRef]

44. Reigner, B.G.; Blesch, K.S. Estimating the starting dose for entry into humans: Principles and practice. Eur. J. Clin. Pharmacol.
2002, 57, 835–845. [CrossRef] [PubMed]

45. Buoen, C.; Bjerrum, O.J.; Thomsen, M.S. How First-Time-in-Human Studies Are Being Performed: 17. A Survey of Phase I
Dose-Escalation Trials in Healthy Volunteers Published Between 1995 and 2004. J. Clin. Pharmacol. 2005, 45, 1123–1136. [CrossRef]

46. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER).
Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers;
U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research
(CDER): Silver Spring, MD, USA, 2005.

47. Eigenmann, M.J.; Fronton, L.; Grimm, H.P.; Otteneder, M.B.; Krippendorff, B.F. Quantification of IgG monoclonal antibody
clearance in tissues. mAbs 2017, 9, 1007–1015. [CrossRef] [PubMed]

http://doi.org/10.1002/psp4.12130
http://www.ncbi.nlm.nih.gov/pubmed/27863176
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125514orig1s000pharmr.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125514lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125514lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/761054Orig1s000PharmR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/1998/inflcen082498lb.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/1998/inflcen082498lb.pdf
https://www.ema.europa.eu/en/documents/other/chmp-rules-procedure_en.pdf
http://doi.org/10.1124/dmd.109.031310
http://doi.org/10.3390/pharmaceutics10020061
http://www.ncbi.nlm.nih.gov/pubmed/29882925
https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125057s0276lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125057s0276lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125057s410lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125057s410lbl.pdf
http://doi.org/10.1007/s11095-015-1703-5
http://www.ncbi.nlm.nih.gov/pubmed/25939552
http://doi.org/10.1124/dmd.32.6.603
http://doi.org/10.1023/A:1018943613122
http://doi.org/10.1177/0091270003254631
http://doi.org/10.1002/jps.10531
http://doi.org/10.1002/jps.21682
http://www.ncbi.nlm.nih.gov/pubmed/19177515
http://doi.org/10.1080/19420862.2020.1829337
http://doi.org/10.1080/19420862.2015.1008353
http://www.ncbi.nlm.nih.gov/pubmed/25658443
http://doi.org/10.1002/j.1552-4604.1995.tb04011.x
http://doi.org/10.1007/s00228-001-0405-6
http://www.ncbi.nlm.nih.gov/pubmed/11936701
http://doi.org/10.1177/0091270005279943
http://doi.org/10.1080/19420862.2017.1337619
http://www.ncbi.nlm.nih.gov/pubmed/28613103

	Introduction 
	Methods 
	Prediction of Human Clearance 
	Allometric Exponent-Based Method 
	Minimal PBPK Method (mPBPK) 
	Lymph Flow Rate 
	Liver Blood Flow Rate 


	Prediction of Human Dose 
	First-in-Human Dose Estimation from Predicted Human Clearance 
	Method I: Linear Method 
	Method II: Exponential Method 
	Method III: Human-Equivalent Dose (HED) Based on Body Weight 
	Method IV: Human-Equivalent Dose (HED) Based on Predicted Human Clearance 
	Method V: Human-Equivalent Dose (HED) Based on Predicted Human Clearance 


	Statistical Analysis 
	Results 
	Prediction of Clearance of Mabs from One Species to Humans 
	Mouse 
	Rat 
	Monkey 
	Prediction of First-in-Human Dose from One Species 

	Discussion 
	Conclusions 
	References

