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Transcriptional and cellular signatures of cortical
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Abstract
Chronic pain is a highly debilitating and difficult to treat condition, which affects the structure of the brain. Although the development of
chronic pain is moderately heritable, how disease-related alterations at the microscopic genetic architecture drive macroscopic brain
abnormalities is currently largely unknown. Here, we examined alterations in morphometric similarity (MS) and applied an integrative
imaging transcriptomics approach to identify transcriptional and cellular correlates of theseMSchanges, in 3 independent small cohorts of
patients with distinct chronic pain syndromes (knee osteoarthritis, low back pain, and fibromyalgia) and age-matched and sex-matched
pain-free controls.We uncover a novel pattern of corticalMS remodelling involvingmostly small-to-mediumMS increases in the insula and
limbic cortex (none of these changes survived stringent false discovery rate correction for the number of regions tested). This pattern of
changes is different from that observed in patients with major depression and cuts across the boundaries of specific pain syndromes. By
leveraging transcriptomic data fromAllenHumanBrain Atlas, we show that corticalMS remodelling in chronic pain spatially correlateswith
the brain-wide expression of genes related to pain and broadly involved in the glial immune response and neuronal plasticity. Our findings
bridge levels to connect genes, cell classes, and biological pathways to in vivo imaging correlates of chronic pain. Although correlational,
our data suggest that cortical remodelling in chronic painmight be shaped bymultiple elements of the cellular architecture of the brain and
identifies several pathways that could be prioritized in future genetic association or drug development studies.
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1. Introduction

Chronic pain is a prevalent and highly debilitating condition11,23,61

with a moderately strong genetic basis (heritability, h2 � 16%-
50%).34,67 Treatment response to current standard treatments is
complex and overall poor.24 Identifying new potential targets for
drug development has become over the years a priority for
researchers and clinicians. However, therapeutic advances have
been marred by our still poor understanding of the mechanisms
underlying chronic pain.85

Chronic pain has been increasingly recognized as a disorder of the
brain.12,22,39,66,78,89 Using different neuroimaging techniques, a rich

body of evidence has shown that most chronic pain syndromes is

associated with a number of spatially patterned structural and

functional alterations in different cortical and subcortical regions and

brainstem.40,58,75,89 The aberrant functional19,26,41,48 and struc-

tural10,21,45,92 configuration of the brain network detected across

patients with different chronic pain syndromes has given rise to the

idea that this distributed pattern of brain changes might reflect

disruption of large-scale brain networks comprising anatomically

connected brain areas.25 However, exploring this hypothesis further

has been constrained by challenges in measuring anatomical

connectivity in humans.5 For instance, the use of diffusion-weighted

imaging to estimate the connectivity of long-distance projections,

such as those between hemispheres, remains challenging.28 On the

other hand, structural covariance analysis is not applicable at the

single-subject level, and because it relies on group-based covariance,

it requires large sample sizes to be reliably estimated.5

Morphometric similarity (MS) mapping has recently emerged as a
new approach to construct whole-brain anatomical networks for

individual subjects, overcomingsomeof themethodological limitations

highlighted above.62,76,77 It quantifies the similarity between cortical

regions for multiple magnetic resonance imaging (MRI) parameters

measured in each area.77 This metric has close associations with the

cytoarchitectonic properties of the cortex and axonal connectivity

between regions.77 Morphometric similarity mapping is a reliable

method that can capture interindividual differences in cognition77 and

clinical abnormalities in brain disorders.52,62,76 However, its use for

uncovering morphometric differences in the brain of patients with

chronic pain syndromes remains untried.
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Spatially diffuse correlates of chronic pain across cortical
anatomy could arise from a host of biological changes in patients,
such as altered neurotransmission and maladaptive synaptic
plasticity44,60,70,72 and neuroinflammation,37,38,90,94 among
others. However, most neuroimaging modalities are not sensitive
to underlying molecular or transcriptional properties of brain
tissue. Therefore, understanding how disease-related alterations
at the microscopic transcriptional architecture might explain
regional vulnerability to macroscopic brain abnormalities in
chronic pain syndromes remains rather challenging.

Here, we sought to bridge these gaps by examining alterations in
MS in 3 independent case–control studies of patients with chronic
pain syndromes: knee osteoarthritis (OA), chronic low back pain
(CLBP), and fibromyalgia (FM). Moreover, given the tight relationship
between regional MS and gene expression,77 we leveraged data
from the Allen Human Brain Atlas (AHBA) (Fig. 1) to explore among
potential molecular and cellular pathways thatmight explain regional
vulnerability to MS changes during chronic pain.

2. Methods

2.1. Samples

We used structural MRI data from 3 prior case–control studies on
knee OA,86 CLBP,56 and FM.69 The full details of each sample
(including inclusion and exclusion criteria) have been described in
the original publications. The OA data set included 56 OA chronic
pain patients (54% women, 58 6 6.96 years) and 20 age-
matched healthy control subjects (50%women, 586 6.65 years).
The CLBP data set included 29 CLBP patients (59% women,
30.796 11.59 years) and 33 healthy controls (14 females, 31.18
6 9.65 years). The FM data set included 20womenwith FM (46.4
6 12.4 years) and 20 age-matched healthy control women (42.1
6 12.5 years). The original studies were approved by the
competent ethics assessment board of each respective host
institution. All participants provided informed consent before
enrolling the respective studies.

2.2. MRI data acquisition

We used high-resolution T1-weighted anatomical images ac-
quired in 3T scanners. We provide a summary of the parameters
used for T1-weighted anatomical images acquisition in each data
set (as described in the original publications).

2.2.1. Osteoarthritis data set

Images were acquired in a Siemens 3.0 Trio whole-body scanner
using the standard radio-frequency head coil with the following
parameters: TR/TE5 2500/3.36 milliseconds, flip angle5 9˚, in-
plane matrix resolution 5 256 3 256, FOV 5 256 mm2, slice
thickness 5 1 mm, and number of slices 5 160.86

2.2.2. Chronic low back pain data set

Imageswere acquired in aSiemens3.0TTrioBwhole-body scanner
equippedwith a 32-channel head coil with the following parameters:
TR/TE5 1900/2.52 milliseconds, flip angle5 9˚, matrix 2563 256,
slice thickness 5 1 mm, and number of slices5 176.56

2.2.3. Fibromyalgia data set

Images were acquired in a 3.0 Tesla GE Discovery MR750
scanner (HD, General Electric Healthcare, Waukesha, WI) and a

commercial 32-channel head coil array, using the FSPGR
BRAVO pulse sequence: TR/TE 5 7.7/3.2 milliseconds, flip
angle 5 12˚, matrix 5 256 3 256, FOV 5 256 mm2, slice
thickness 5 1 mm, and number of slices 5 168.69

2.3. Morphometric similarity mapping

The T1-weighted MRI data from all participants were prepro-
cessed using the recon-all command from FreeSurfer (version
6.0).15 The surfaces were then parcellated using the 68 cortical
regions of the Desikan–Killiany Atlas.20 For each cortical region,
we estimated 5 parameters: gray matter volume, surface area,
cortical thickness, Gaussian curvature, and mean curvature.
Each parameter was normalized for sample mean and standard
deviation to account for variation in value distributions between
the features. After normalization, MSnetworkswere generated by
computing the regional pairwise Pearson correlations in mor-
phometric feature sets, yielding a 683 68 MSmatrixℳi for each
participant, i 5 1, …, N, which represents the strength of MS
between each pair of cortical areas. For all individuals, regional
MS (ie, nodal similarity) estimates were calculated as the average
MS between a given cortical region and all others. Although MS
calculation allows for the inclusion of data from different imaging
modalities, here, we used only features extracted from T1-
weighted MRI data. It has been previously demonstrated that
there is high spatial concordance (r 5 0.91) between the
topography of regional MS derived from T1-weighted MRI data
alone and regional MS frommoremodalities (eg, a combination of
T1-weighted and diffusion-weighted imaging).43,77

2.4. Case–control analysis of morphometric
similarity networks

The global MS for each participant is the average of ℳi. The
regional MSi,j for the ith participant at each region j 5 1,…,68 is
the average of the jth row (or column) ofℳi. Thus, regional MS is
equivalent to the weighted degree or “hubness” of each regional
node, connected by signed and weighted edges of pair-wise
similarity to all other nodes in the whole-brain connectome
represented by the MS matrix. For global and regional MS
statistics alike, we fit linear models to estimate case–control
differences, with age, sex, and total intracranial volume as
covariates. The resulting P value for each region was thresholded
for significance using false discovery rate (FDR), 0.05, to control
type 1 error over multiple (n5 68) tests. To test for the differential
contribution of single cortical features to the observed regional
MS changes in each chronic pain condition, we recomputed
condition-specific MS change maps with exclusion of each
individual cortical feature before MS calculation and then
determined which of these single-feature exclusions most
change the topography of the observed MS changes. We did
so by calculating pairwise Spearman correlations between the
original and all other leave-one-out maps of MS changes, in each
condition separately.

2.5. Cortical morphometric similarity remodelling in major
depressive disorder and its association with chronic pain

Chronic pain is often comorbid with major depressive disorder
(MDD)8 and these 2 entities share brain mechanisms of neuro-
plasticity.80 We used another openly available data set (see the
original article for further details50) including high resolution
structural brain data from 19 unmedicated patients with MDD (11
females, 29.45 6 11.26 years) and 20 age-matched healthy
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controls (11 females, 33.52 6 14.07 years). We characterized
changes in regional MS associated with MDD and investigated
whether changes in regional MS in MDD can predict those we
observed in chronic pain patients. We calculated MS using the
procedures described above and tested for case–control
differences between MDD patients and healthy controls using
linear models, where we accounted for age, sex, and intracranial
volume. Finally, we calculated pairwise Spearman correlations
between changes in regional MS in MDD and those observed in
the different chronic pain conditions.

2.6. Mapping case–control differences in regional
morphometric similarity to established patterns of
cytoarchitectonic cortical organization

To help us to contextualize the case–control differences in
regional MSwe observed for the different chronic pain conditions,
we mapped them in relation to well-established patterns of
cytoarchitectonic organization of the cortex. To that end, we used
the von Economo Atlas of the cortex classified by the
cytoarchitectonic criteria.95 For each subject, we quantified MS
within each parcel of these atlases and then performed case–
control comparisons using linear models, with age, gender, and
intracranial volume as covariates.

2.7. Morphometric similarity hubs susceptibility

We investigated relationships between case–control differences
in regionalMS and the typical pattern of regionalMSdistribution in
healthy controls with Spearman correlations. In keeping with
histological results indicating that cytoarchitectonically similar
areas of the cortex are more likely to be anatomically connected
and that MS in the macaque cortex was correlated with tract-
tracing measurements of axonal connectivity,77 we followed the
approach suggested by Seidlizt et al.76 tomap each region to one
of 4 patterns of changes in MS: (1) regions of low MS in healthy
controls (highly differentiated from the rest of the cortex) that
increase their MS during with the rest of the cortex during chronic
pain (dedifferentiation), (2) regions of high MS in healthy controls
(highly connected with the rest of the cortex) that increase their
MS during chronic pain (hypercoupling), (3) regions of low MS in
healthy controls that decrease their MS during chronic pain
(hyperdifferentiation), and (4) regions of high MS in healthy
controls that decrease their MS during chronic pain (decoupling).
We subdivided each axis of the scatter plot in 2 sections, one
above and another below 0, which resulted in 4 quadrants, each
representing one of the 4 scenarios presented above. We then
quantified the percentage of regions falling within each of these 4
quadrants to identify dominant patterns of change.

2.8. Defining a cross-condition pattern of changes in regional
morphometric similarity during chronic pain

We investigated the similarity in case–control changes in regional
MS across chronic pain conditions by calculating pairwise
Spearman correlations of regional case–control statistics (Z-
scores) from each condition.96 We found significant correlations
for all possible pairs of conditions, which indicated that
remodelling of regional MS during chronic pain shares a common
pattern across conditions. We then ran principal component
analysis on the 3 vectors of case–control changes in regional MS
to identify this shared profile of cross-condition changes. The first
component alone explained 64.45% of the shared variance, the
second 25.38%, and the third 10.16%. Only the first component

showed an eigenvalue . 1 (1.93). Hence, we kept only the first
PC because case–control changes in regional MS across our 3
chronic pain conditions seem to be well captured by one single
dominant cross-condition pattern.

2.9. Microarray expression data: Allen Human Brain Atlas

Regional microarray expression data were obtained from 6 post-
mortem brains provided by the AHBA (AHBA; http://human.brain-
map.org/) (aged 24-57 years).33 We used the abagen toolbox
(https://github.com/netneurolab/abagen) to process and map the
transcriptomic data to 84 parcellated brain regions from the
Desikan–Killiany Atlas.20 In brief, genetic probes were reannotated
using information provided by Arnatkeviciute et al.,7 instead of the
default probe information from the AHBA data set, hence discarding
probes that cannot be reliably matched to genes. Following
previously published guidelines for probe-to-gene mappings and
intensity-based filtering,7 the reannotatedprobeswere filtered based
on their intensity relative to the background noise level; probes with
intensity less than background in$50%of sampleswere discarded.
A single probe with the highest differential stability, DS(p), was
selected to represent each gene, where differential stability was
calculated as32:

DsðpÞ ¼ 1 
N
2

! +
N2 1

i¼1

+
N

j¼ i11

r
�
BiðpÞ;BjðpÞ

�

Here, r is Spearman’s rank correlation of the expression of a
single probe p across regions in 2 donor brains,Bi andBj, andN is
the total number of donor brains. This procedure retained 15,633
probes, each representing a unique gene.

Next, tissue samples were assigned to brain regions using their
corrected MNI coordinates (https://github.com/chrisfilo/alleninf)
by finding the nearest region within a radius of 2 mm. To reduce
the potential for misassignment, sample-to-region matching was
constrained by hemisphere and cortical or subcortical divisions. If
a brain region was not assigned to any sample based on the
above procedure, the sample closest to the centroid of that
regionwas selected to ensure that all brain regionswere assigned
a value. Samples assigned to the same brain region were
averaged separately for each donor. Gene expression values
were then normalized separately for each donor across regions
using a robust sigmoid function and rescaled to the unit interval.
Scaled expression profiles were finally averaged across donors,
resulting in a single matrix with rows corresponding to brain
regions and columns corresponding to the retained 15,633
genes. As a further sanity check, we conducted leave-one-donor
out sensitivity analyses to generate 6 expressionmaps containing
gene expression data from all donors, one at a time. The principal
components of these 6 expression maps were highly correlated
(average Pearson correlation of 0.993), supporting the idea that
our final gene expression maps where we averaged gene
expression for each region across the 6 donors is unlikely to be
biased by data from a specific donor. Because the AHBA only
includes data for the right hemisphere for 2 subjects, in our
transcriptomic-imaging association analyses, we only considered
the left hemisphere cortical regions (34 regions).

2.10. Identifying transcriptomic correlates of cortical
morphometric similarity remodelling in chronic pain

To be able to investigate associations between cross-condition
changes in MS during chronic pain and brain gene expression,
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we used partial least square regression (PLS).62 Partial least
square regression uses the gene expression measurements (the
predictor variables) to predict the regional MS changes (the
response variables). This approach allows us to rank all genes by
their multivariate spatial alignment with cross-condition regional
MS changes during chronic pain. The first PLS component
(PLS1) is the linear combination of the weighted gene expression
scores that have a brain expression map that covaries the most
with the map of MS changes. As the components are calculated
to explain the maximum covariance between the dependent and
independent variables, the first component does not necessarily
need to explain the maximum variance in the dependent variable.
However, as the number of components calculated increases,
they progressively tend to explain less variance in the dependent
variable. Here, we tested across a range of components
(between 1 and 15) and quantified the relative variance explained
by each component. The statistical significance of the variance
explained by each component was tested by permuting the
response variables 1000 times.

In our analysis, a solution with a single component explained
variance in regional MS changes above chance (Pboot 5 0.003).
The first PLS component (PLS1) alone explained the highest
amount of variance alone (24.42%). Hence, we focused our
further gene set enrichment analyses on PLS1. The error in
estimating each gene’s PLS1 weight was assessed by boot-
strapping (resampling with replacement of the 34 brain regions),
and the ratio of the weight of each gene to its bootstrap standard
error was used to calculate the Z scores and, hence, rank the
genes according to their contribution to PLS1.95 Genes with large
positive PLS1 weights correspond to genes that have higher than
average expression in regions where MS increases and lower

than average expression in regions where MS decreases. Mid-
rank PLS weights showed expression gradients that are weakly
related to the pattern of MS changes. On the other side, genes
with large negative PLS1 weights correspond to genes that have
higher than average expression in regions where MS decreases
themost and lower than average expression in regions where MS
increases. Hence, from the ranked PLS1 list of genes, we then
selected all genes with positive and negative weights Z. 3 and Z
, 23, respectively (all PFDR , 0.05, FDR corrected for the total
number of genes tested). PLS1 genes with Z. 3 are for simplicity
termed PLS11 and genes with Z , 23 PLS12. Although our
choice of Z 5 3 as a threshold to identify the most positively and
negatively genes associated with MS changes in patients chronic
pain is somehow arbitrary, we note that Z 5 3 in our case
corresponds to a stringent threshold of PFDR 5 0.036 (more
stringent than PFDR , 0.05). We used these 2 sets of genes for
further enrichment analyses, as described below. We confirmed
our enrichment analyses were not driven by the choice of this
specific threshold by repeating all analyses described below
considering all genes that passed amore liberal threshold of PFDR

, 0.05. The overall pattern of results did not change.

2.11. Protein–protein networks and gene set
enrichment analysis

We then used all genes in PLS11 and PLS12 to conduct further
bioinformatics analyses investigating whether these genes map
to common and relevant biological pathways. First, we used
STRING (version 10.5)84 to construct protein–protein functional
interactions networks. We excluded text mining as an active
interaction source and used the default medium required

Figure 1. Overview of the analysis pipeline. (A) Morphometric similarity (MS) analysis. We constructed individual cortical MS matrices using 5 structural magnetic
resonance imaging features (eg, graymatter volume [GM], surface area [SA], cortical thickness [CT], mean curvature [MC], andGaussian curvature [GC]) extracted
from 68 cortical regions of the Desikan–Killiany (DK) Atlas. For each individual, we produced a 683 68MSmatrix by correlating the normalized (z-scores) values of
the 5 structural features between each pair of regions in the atlas. For each region, we averaged across all the edges involving that area to obtain a singular
representation of the mean MS score for that region. We then computed case–control differences for each region, while accounting for age, gender, and total
intracranial volume. (B) Gene expression analysis. We used abagen to obtain gene expression profiles from the Allen Human Brain Atlas (AHBA) in 68 regions (left
hemisphere only) across the 6 postmortem brains sampled in this atlas. We excluded all genes with normalized expression values below the background (15,633
genes met this criterion). When more than one probe was available for a certain gene, we selected the probe with higher consistency in expression across the 6
donors. We used partial least squares regression (PLS) to rank all genes according to their association with the case–control changes inMS. Finally, we performed
a set of enrichment analyses on the top genes positively or negatively associated with case–control differences in MS.
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interaction score of 0.400 to identify all possible linkswithin our list
of target genes. Second, we used theGENE2FUNC function from
the Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA)93 platform to investigate functional
enrichments using rank-based Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes pathways enrichment
analysis. We used as background all AHBA genes that passed
our preprocessing criteria and hence were used in our PLS
analyses (n 5 15,633). We corrected for multiple gene-set
enrichment testing by applying FDR correction.

2.12. Brain cell–type enrichment analysis

We also investigated whether our PLS11 and PLS12 subsets of
genes were particularly enriched for genes of specific brain cell
types. We compiled data from 5 different single-cell studies using
postmortem cortical samples in human postnatal subjects to
avoid any bias based on the acquisition methodology or analysis
or thresholding.16,31,47,51,99 To obtain gene sets for each cell
type, categorical determinations were based on each individual
study, as per the respective methods and analysis choices in the
original article. All cell-type gene sets were available as part of the
respective articles. We generated a single omnibus gene list for
each cell type by merging the study-specific gene lists and then
filtered it to retain only genes sampled in the AHBA. Two studies
did not subset neurons into excitatory and inhibitory,16,99 and
thus, those gene sets were excluded from the cell-class
assignment. In addition, only one study included the annotation
of the “Per” (pericyte) type, and thus, we did not consider that cell
type.47 This approach has already been validated elsewhere.76

We then conducted cell-class enrichment analyses using the
GeneOverlap package from R (version 1.26.0). We used as
background all AHBA genes that passed our preprocessing
criteria and hence were used in our PLS analysis (n 5 15,633).
GeneOverlap calculates the overlap between 2 sets of genes (in
our case, the set of PLS11 or PLS12, and each of the brain
cell–type omnibus gene sets derived as explained above) and
uses a Fisher exact test to findwhether the overlap between these
2 sets is higher than one would expect by randomly selecting a
subset of genes from the background with the same number of
elements. Here, enrichment is quantified as an odds ratio, where
values lower or equal to 1 indicate minimal overlap between sets
and hence absence of enrichment. Therefore, the null hypothesis
is that the odds ratio is no larger than 1. Significant odds ratio
larger than 1 indicate enrichment for genes of a specific cell type.
We applied FDR correction for the number of cell types tested.

2.13. Pain-related and other brain disorder–related
genes enrichment

We also investigated whether our PLS11 and PLS12 subsets of
genes were particularly enriched for pain-related and other brain
disorder–related genes. The list of previously identified pain-
related genes was defined using the following public resources:
(1) the pain-related genes identified in mice gene knockout
studies collected in the Pain Gene Database (http://paingene-
ticslab.ca/4105/06_02_pain_genetics_database.asp),46 (2) the
pain-related genes identified in humans collected in the Human
Pain Genes Database (https://humanpaingenetics.org/hpgdb),59

(3) the Pain Research Forum (https://www.painresearchforum.
org/resources/pain-gene-resource),17 (4) the genes involved in
human pain diseases collected in the DisGeNET (http://www.
disgenet.org),71 and (5) the genes considered to be functioning in
pain perception summarized in GO (GO:0019233). In total, we

identified 2111 pain-related genes included in the above public
resources. Eight hundred seven of these genes were not part of
our initial list of 15,633 AHBA genes and were excluded from
further analyses (please see Supplementary data S3 for the list of
1304 pain-related genes used in these analyses, available at
http://links.lww.com/PAIN/B511). The lists of genes associated
with other brain disorders (Alzheimer disease, Parkinson disease,
Huntington disease, epilepsy, autism spectrum disorder, MDD,
anxiety, bipolar disorder, and schizophrenia) were collected from
the DisGeNET. We tested for gene enrichment in both PLS11
and PLS12 subsets using GeneOverlap, as explained above.

2.14. Spatial permutation test (spin test)

In several analyses in the current study, we investigated the
spatial correspondence between different imaging-derived mea-
sures. Although several studies have reported significance based
on the assumption that the number of samples is equal to the
number of regions, this is technically inaccurate, as the number of
regions is both arbitrary (due to the resolution of the chosen
parcellation) and non-independent (because of spatial autocor-
relation among neighbouring parcels). To overcome this issue,
we used spatial permutation tests (spin test) as implemented in
previous studies.5,6,91 This approach consists in comparing the
empirical correlation among 2 spatial maps to a set of null
correlations, generated by randomly rotating the spherical
projection of one of the 2 spatial maps before projecting it back
on the brain surface. Importantly, the rotated projection preserves
spatial contiguity of the empirical maps, as well as the hemi-
spheric symmetry. Therefore, each analysis correlating values
from 2 cortical maps is reported with a P-value derived from the
spherical permutation (Pspin), obtained by comparing the
empirical Spearman Rho to a null distribution of 10,000
Spearman correlations, between one empirical map and the
randomly rotated projections of the other map. The Matlab code
to implement this test can be found in https://github.com/
frantisekvasa/rotate_parcellation.

2.15. Data availability

Data can be accessed from open repositories in the following links
(OA: https://openneuro.org/datasets/ds000208/versions/1.0.0;
CLBP: http://www.openpain.org; FM: https://openneuro.org/
datasets/ds001928/versions/1.1.0; MDD: https://openneuro.org/
datasets/ds000171/versions/00001).

2.16. Code availability

The code for MS and gene expression association analyses is
available at https://github.com/SarahMorgan/Morphometric_
Similarity_SZ.

3. Results

3.1. Morphometric similarity is a reproducible measure in
healthy controls across independent studies

The cortical maps of regional MS in Supplementary Figure S1
summarizes the anatomical distribution of areas of positive and
negative MS in healthy controls from each of the 3 data sets
(available at http://links.lww.com/PAIN/B508). The patterns of
regional distribution of MS were highly correlated across healthy
controls from the 3 data sets (Supplementary Figure S2, available
at http://links.lww.com/PAIN/B508). The results are similar to
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those reported in other independent samples,62,76,77 with
positive MS in frontal and temporal cortical areas (indicating high
levels of similarity with the rest of the cortex) and negative MS in
occipital and cingulate cortices (indicating low levels of similarity
with the rest of the cortex; hence, high levels of differentiation
from the rest of the cortex). This confirms the replicability of this
pattern of regional MS in healthy individuals.

3.2. Patients with chronic pain do not differ from healthy
controls in global morphometric similarity

Regional MS had an approximately normal distribution over all 68
cortical regions (after regressing age, sex, and intracranial
volume) in both patients and healthy controls from all 3 data sets
(Fig. 2—upper panel). We did not find any significant case–
control differences in globalMS in any of the 3 data sets (OA: T(75)
5 0.98, Punc 5 0.33; CLBP: T(61) 5 20.56, Punc 5 0.58, FM:
T(39) 5 20.84, Punc 5 0.41) (Fig. 2—lower panel).

3.3. Differences in regional morphometric similarity in
patients with chronic pain syndromes as compared with
healthy controls

The cortical maps in Figure 3—upper panel summarize the
distribution of case–control changes in cortical MS for each
chronic pain condition. In Figure 3—lower panel, we highlight
only regions with case–control differences significant at P, 0.05,
uncorrected (none of these regions survived FDR correction). In
the OA data set, we found decreases in MS in the left superior
frontal gyrus, right pericalcarine cortex and in the left posterior
cingulate, and increases in the left insula and inferior temporal
gyrus, and in the right bank of the superior temporal sulcus and
right inferior temporal gyrus. In the CLBP data set, we found
decreases in MS in the left and right superior parietal gyri and left

lateral occipital cortex; and increases in the left entorhinal cortex
and caudal anterior cingulate, and in the right insula. In the FM
data set, we found decreases in the left superior parietal, medial,
and inferior temporal and fusiform gyrus and increases in the left
and right isthmus of the cingulate, left posterior cingulate, and
entorhinal and parahippocampal cortices. Changes in regional
MS correlated positively between conditions (Supplementary
Figure S3, available at http://links.lww.com/PAIN/B508), sug-
gesting the existence of a shared pattern of regional MS changes
across the 3 conditions. To further support the existence of this
pattern, we performed a principal component analysis on the
regional MS changes of the 3 conditions, finding that the first PC
explained most variance (64.45%) in case–control changes
across the 3 conditions (PC1).

Because we used 5 different cortical features to estimate MS
(gray matter volume, surface area, cortical thickness, Gaussian
curvature and mean curvature), we tested for differential
contributions of single cortical features to the observed regional
MS changes by recomputing the condition-specific MS change
maps excluding each individual cortical feature at a time before
MS calculation. We then determined which of these single-
feature exclusionsmost changed the topography of the observed
MS changes by identifying the leave-one-feature-out map that
correlated the least with the total map. This leave-one-out
procedure showed that cortical thickness was the feature that
most contributed to the topography of observed regional MS
changes across the 3 conditions (Supplementary Figures S4 and
S5, available at http://links.lww.com/PAIN/B508). Yet, all leave-
one-out maps were positively correlated in all the 3 conditions
(Supplementary Figure S4, available at http://links.lww.com/
PAIN/B508).

Chronic pain is often comorbid with MDD.8 Several preclinical
and clinical studies have found considerable overlaps between
chronic pain–induced and depression-induced neuroplasticity.80

Figure 2. Case–control differences in global morphometric similarity. In the upper panel, we present case and control distributions of the residual regional
morphometric similarity (MS) strength (ie, the average similarity of each region to all other regions) after regressing out the effects of age, gender, and intracranial
volume, for each data set separately. In the lower panel, we present case–control comparisons of the global MS. To calculate global MS, we averaged the residual
regional MS strength across all regions for each subject. In all 3 data sets, there were no differences between groups in global MS. A, osteoarthritis dataset; B,
chronic low back pain dataset; C, fibromyalgia dataset. CLBP, chronic low back pain; HC, healthy controls; OA, osteoarthritis.
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To investigate whether the regional MS changes we report here
might predominantly reflect neuroplasticity associated withmood
alterations other than chronic pain per se, we used another
openly available data set including high resolution structural brain
data from unmedicated patients with MDD and healthy con-
trols.50 We used these data to define the pattern of changes in
regional MS associated with MDD and to investigate whether
changes in regional MS in the MDD data set can predict those we
observed during chronic pain. We found a considerably different
pattern of MS changes in unmedicated MDD patients, as
comparedwith never depressed healthy controls (Supplementary
Figure S6A, available at http://links.lww.com/PAIN/B508). Mor-
phometric similarity changes in theMDDdata set did not correlate
with MS changes in OA and correlated negatively with MS
changes in CLBP and FM. We also found a negative correlation
between MS changes in MDD and PC1 capturing the cross-
condition pattern of changes (Supplementary Figure S6B, avail-
able at http://links.lww.com/PAIN/B508). Hence, the pattern of
MS changes we report here for patients with chronic pain is
unlikely to simply reflect neuroplastic changes associated with
comorbid MDD.

3.4. Mapping case–control differences in regional
morphometric similarity to established patterns of
cytoarchitectonic cortical organization

To help us contextualize the case–control differences in regional
MS we observed for the different chronic pain conditions, we
mapped themontowell-established patterns of cytoarchitectonic
organization of the cortex as defined by the von Economo Atlas of
the cortex.95 In OA, we found an increase in MS in the insular
cortex (P, 0.05, uncorrected). In both CLBP and FM, we found
increases in MS in the limbic cortex (P , 0.05, uncorrected). We
also found decreases in association cortex A in FM (P , 0.05,
uncorrected) (Fig. 4B and Supplementary Table S1, available at

http://links.lww.com/PAIN/B508). None of these changes sur-
vived FDR correction.

3.5. “Hub susceptibility”: associations between case–control
differences in regional morphometric similarity and regional
morphometric similarity in healthy controls

Previous studies have shown that highly connected “hub” regions
are the most likely to show reduced connectivity in disease as
measured in functional magnetic resonance imaging and
diffusion tensor imaging (DTI) brain networks.14 Given the tight
positive association between axonal connectivity and MS, these
highly connected “hub” regions map to regions with constitutive
high MS. Hence, here we also tested this “hub susceptibility”
model by investigating relationships between case–control
changes in regional MS and the typical pattern of regional MS
distribution in healthy controls. Across the 3 data sets, we found
significant negative correlations between these 2 variables
(OA—Spearman Rho 5 20.397, Pspin 5 0.001; CLBP—
Spearman Rho 5 20.379, Pspin 5 0.003; FM—Spearman Rho
520.522,Pspin5 1.73 10204) (Fig. 5—upper panel). Moreover,
we found that most regional increases map to regions typically
showing low MS in controls, whereas most regional decreases
map to regions of high MS in controls (Fig. 5—lower panel).
Altogether, these findings support the idea that chronic pain is
associated with decoupling of MS “hubs” and dedifferentiation of
highly differentiated regions.

3.6. Transcriptomic correlates of cortical morphometric
similarity remodelling during chronic pain

We investigated associations between cross-condition changes
in MS during chronic pain (PC1) and brain gene expression using
PLS. The first PLS component (PLS1) explained the highest
proportion of MS changes (24.4%) and did so above chance

Figure 3.Case–control differences in regional morphometric similarity. In this figure, we present cortical maps of the distribution of Cohen d effect size quantifying
case–control differences in regional morphometric similarity (Dmorphometric similarity) for each condition. In the upper panel, we present unthresholdedmaps. In
the lower panel, we present only regions where we found case–control differences for a threshold of P , 0.05, uncorrected. Note that none of these regions
survived FDR correction for the total number of regions tested within each condition. A, osteoarthritis dataset; B, chronic low back pain dataset; C, fibromyalgia
dataset. FDR, false discovery rate.

June 2022·Volume 163·Number 6 www.painjournalonline.com e765

http://links.lww.com/PAIN/B508
http://links.lww.com/PAIN/B508
http://links.lww.com/PAIN/B508
www.painjournalonline.com


(Pboot 5 0.003). PLS1 gene expression weights were positively
correlated with cross-condition changes in regional MS (r 5
0.494, Pspin 5 0.013) (Fig. 6, panel A). This positive correlation
means that genes positively weighted on PLS1 are highly
expressed in regions where MS was increased, whereas
negatively weighted genes are highly expressed in regions where
MS was decreased in patients.

We found 338 genes with PLS1 weights Z . 3 (which we
denoted PLS11) and 236 genes with Z,23 (PLS12) (all PFDR,
0.05). The gene with the highest positive weight was the
“Chemokine-Like Factor Superfamily Member 3” (CMTM3), a
microglia gene related to immune cytokine activity. The gene with
the lowest negative weight was the “Family with Sequence
Similarity 126, Member B” (FAM126B), which is a part of a
complex required to localize phosphatidylinositol 4-kinase to the
plasma membrane (Fig. 6B).

3.7. Protein–protein networks and gene set enrichment

Wemapped the network of known interactions between proteins
coded by the PLS11 and PLS12 gene sets (Supplementary
Figure S7, available at http://links.lww.com/PAIN/B508). For
PLS11, the resulting network had 303 nodes and 615 edges,
more than the 239 edges expected by chance (PPI enrichment P-
value , 1 3 10216). Using Gene Set Enrichment Analysis, we
found enrichment for a number of GO terms—biological
pathways broadly mapping to the neuroimmune response axis
(Fig. 7A). For PLS12, the resulting network had 225 nodes and
195 edges, more than the 152 edges expected by chance (PPI
enrichment P-value 0.0005). Using Gene Set Enrichment
Analysis, we did not find enrichment for any GO terms but found
4 terms from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways that reached significance. Those were
“Calcium signalling,” “Long-term potentiation (LTP),” “Taste
transduction” and “Type II diabetes mellitus” (Fig. 7A).

3.8. Enrichment for transcriptional signatures of canonical
brain cell types

We also performed cell-type enrichment analysis using omnibus
lists of gene expression in different brain cells of the postmortem
human brain, as characterized across 5 different studies. For
PLS11, we found significant enrichment in genes typically
expressed in microglia, astrocytes, and oligodendrocytes pre-
cursor cells (Fig. 7B and Supplementary Table S4, available at
http://links.lww.com/PAIN/B508). For PLS12, we found signif-
icant enrichment in genes typically expressed in excitatory and
inhibitory neurons (Fig. 7B and Supplementary Table S2,
available at http://links.lww.com/PAIN/B508).

3.9. Enrichment for genes related to pain and other
brain disorders

Finally, we investigated whether PLS11 and PLS12 are enriched
for pain-related and other brain disorder-related genes as
identified in previous studies. For PLS11, we found enrichment
for pain-related genes(OR 5 1.40, P 5 0.04), but not genes
related to any of the other brain disorders we tested (Supple-
mentary Table S3, available at http://links.lww.com/PAIN/B508).
For PLS12, we did not find enrichment for pain-related genes
(OR5 1.07,P5 0.42) but found enrichment for genes associated
with epilepsy (OR5 1.54, P5 0.02, PFDR 5 0.09) and MDD (OR
5 1.57, P 5 0.02, PFDR 5 0.09) (Supplementary Table S3,
available at http://links.lww.com/PAIN/B508).

4. Discussion

In this article, we uncovered a new pattern of cortical MS
remodelling across 3 chronic pain syndromes, which was
different from that observed in patients with MDD and points
towards the existence of shared disease mechanisms driving
cortical remodelling that cut across the boundaries of specific

Figure 4. Mapping case–control differences in regional morphometric similarity to established patterns of cytoarchitectonic cortical organization. To help us to
contextualize the case–control differences in regional morphometric similarity we observed for the different chronic pain conditions, wemapped them in relation to
the von Economo Atlas of the cortex classified by the cytoarchitectonic criteria. For each subject, we quantified MS within each parcel of these atlases (after
regressing out age, sex, and intracranial volume) and then performed case–control comparisons using independent sample t tests. The colours in the tile plots
represent the Cohen d effect size of case–control differences for each condition. *Highlights significant case–control differences, for P, 0.05, uncorrected. MS,
morphometric similarity.
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pain syndromes. Furthermore, we demonstrate that cortical MS
remodelling in chronic pain spatially correlateswith the brain-wide
expression of pain-related genes and genes involved in glial
immune response and neuronal plasticity, which links putative
underlying molecular perturbations with regional vulnerability to
brain structural changes. These findings bridge levels to connect
genes, cell classes, and biological pathways to in vivo imaging
correlates of chronic pain and provide food for beleieved in how
future treatment development might be pursued.

Morphometric similarity mapping disclosed a pattern of cortical
MS changes across chronic pain syndromes, which generally
involved small-to-medium-sized increases in the insula and limbic
cortices, and decreases in the occipital, sensorimotor, and frontal
cortices. Although most of these changes did not survive correction
formultiple comparisons and should be interpreted cautiously, these
findings are interesting for several reasons. First, of the various brain
regions that have been implicated in the perception of pain, the
insula and limbic system are among the ones most consistently
reported across studies.35 Second, functional and structural
alterations in these regions have often been reported in neuro-
imaging studies of patients with different chronic pain syn-
dromes,40,58,75,89 including increases in the connectivity of the
insulawith nodes of the default-mode network.9,55,65 Third, previous
studies have further demonstrated that the limbic systemplays a key
role in the transition from acute-to-chronic pain.56,57 Altogether,
these aspects reinforce the neuroanatomical plausibility of the
pattern in regional MS changes we report in this article.

Morphometric similarity quantifies the correspondence or
kinship of 2 cortical areas for multiple macrostructural features
that are measurable by MRI.77 Hence, high MS between a pair of
cortical regions indicates that there is a high degree of
correspondence between them for cytoarchitectonic features.
This assumption has received empirical support in prior work
showing that morphometrically similar cortical regions share
patterns of gene coexpression and are more likely to be axonally
connected to each other.77 Therefore, here, we interpret reduced
MS as indicating that there is reduced cytoarchitectonic similarity,
or greater cytoarchitectonic differentiation, between these areas
and the rest of the cortex, which is probably indicative of reduced
anatomical connectivity to and from the less similar, more
differentiated cortical areas. On the other hand, increased MS
implies increased cytoarchitectonic similarity and, perhaps,
axonal connectivity with the rest of the cortex. In line with
previousfunctional magnetic resonance imaging and DTI brain
networks studies have demonstrated that “hub” regions aremore
likely to be disturbed and reduce their connectivity in the
presence of brain disease,14 we found negative associations
between regional MS in healthy controls and MS changes in
patients with chronic pain. Therefore, it is not implausible that the
decreases in MS during chronic pain we describe here might
reflect an overall pattern of decreases in axonal connectivity of
“hub” regions with the rest of the cortex, as observed in other
brain disorders. The reverse, ie, increased connectivity, might
drive increases in MS during chronic pain. Nevertheless, we

Figure 5.Chronic pain is associatedwith decoupling ofmorphometric similarity “hubs” and dedifferentiation of highly differentiated regions. In the upper panel, we present
scatterplots depicting significant negative associations between case–control differences in regional morphometric similarity and themeanmorphometric similarity of each
region in healthy controls. In the lower panel, we subdivided these scatter plots in 4 quadrants according to the relationship between the distribution of case–control
differences andmean regional morphometric similarity in healthy controls. The upper left quadrant includes regions of lowMS in healthy controls (highly differentiated from
the rest of the cortex) that increase theirMSwith the rest of the cortex during chronic pain (dedifferentiation). The upper right quadrant includes regions of highMS in healthy
controls (highly connected with the rest of the cortex) that increase their MS during chronic pain (hypercoupling). The lower left quadrant includes regions of low MS in
healthy controls that decrease theirMS during chronic pain (hyperdifferentiation). The lower right quadrant includes region of highMS in healthy controls that decrease their
MS during chronic pain (ecoupling). Across chronic pain conditions, we observed a predominant pattern of increases in regional MS in regions of lowMS (dedifferentiation)
and decreases in regions of high MS (decoupling) in healthy controls. Significance was assessed with spatial permutation testing. A, osteoarthritis dataset; B, chronic low
back pain dataset; C, fibromyalgia dataset. MS, morphometric similarity.
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cannot exclude that either increases or decreases in MS might
simply reflect local changes in cytoarchitectonics or even a
combination of local tissue changes and connectivity.

In an attempt of connecting these MS changes during chronic
pain to the gene expression and cellular pathways potentially
explaining regional vulnerability to those changes, we used PLS to
identify the weighted combination of genes in the whole tran-
scriptome that has a cortical expression map most similar to the
cortical map of cross-condition case–control MS differences we
derived for patients with chronic pain. Further reinforcing the
relationship of this subset of genes with pain, we found enrichment
in PLS11 for pain-related genes but not genes related to other brain
disorders. In PLS12, we did not find enrichment for pain-related
genes but found enrichment for genes related to epilepsy andMDD.
This last finding is in keepwith the idea that chronic painmight share
neurobiological pathwayswith epilepsy18,68,83 anddepression80 and
matches well with the clinical observation that antiepileptic drugs81

and antidepressants27 also improve pain in patients with chronic
pain syndromes. We also characterized further the top genes
positively and negatively associated MS changes in chronic pain by
conducting agnostic gene set enrichment analyses and enrichment
for genes associated with different classes of brain cell types. In
PLS11, we found predominance of genes related to the glial
immune response andhighly expressed inmicroglia, astrocytes, and
oligodendrocyte precursor cells; although in PLS12, we found
predominance of genes related to calcium signalling and LTP,which
are highly expressed in excitatory and inhibitory neurons. Altogether,

these findings suggest that the constitutive distribution of genes
involved in glial immune response and neuronal plasticity, both key
elements of the current pathophysiological models of chronic
pain,37,101 can explain variance in the regional vulnerability to MS
cortical remodelling during chronic pain.

How could engagement of these biological and cellular pathways
lead to the patterned MS changes we report here? Our imaging
transcriptomics findings for PLS11 suggest that neuroinflammation,
with neuronal loss, synapse removal, and glial proliferation,1 might
drive loss of cortex differentiation during chronic pain.36,44 This
hypothesis matches well with recent preclinical models highlighting
the role of neuroinflammation for neuronal sensitization of pain
pathways, at both spinal and brain levels.29,37,38 In humans, the
neuroinflammation hypothesis has received direct support from
positron emission tomography studies showing increased binding of
ligands for the 18-kDa translocator protein, currently used as a
marker of neuroinflammation and glial activation in the brain,2–4,54,87

in the spinal cord, and nerve roots2 of patients with chronic pain as
compared with healthy controls. On the other hand, our
transcriptomic—imaging association findings for PLS12 identify
synaptic plasticity of excitatory and inhibitory neuronal populations as
a potential driver of the increase in theMS of regions with constitutive
low differentiation we report here.44 Maladaptive neuronal plasticity,
with dysfunctional regulation of the cortical E/I balance has been
suggested to contribute to chronic pain.44,60,70,72 Shifting of the E/I
towards hyperexcitability,73,88 as a consequence of either enhanced
excitation or reduced inhibition,49,53 is believed to augment central

Figure 6. Gene expression profiles related to cross-condition changes in regional morphometric similarity during chronic pain. (A) We summarized case–control
changes in regional morphometric similarity (MS) across chronic pain conditions using principal component analysis (PCA). The first component (PC1) explained
the large majority of variance 64.45% and was the only component with an eigenvalue. 1. The cortical distribution of the scores of PC1 is depicted in the upper
part of panel A. In the lower part, we show the cortical distribution of PLS1 scores summarizing the regional weighted expression of genes associated with cross-
condition changes in regional MS during chronic pain. In the scatter plot on the right, we depict a significant positive correlation between PLS1 gene expression
weights and the PC1 scores summarizing case–control regional MS differences across conditions. In panel B, we present the top 3 genes positively and negatively
associated with PCA1, ranked by the respective loading into PLS1. Loading (Z-score) refers to the weight of each gene in PLS1. Genes with positive weights are
highly expressed in regionswhereMS increases in patients, whereas geneswith negative weights are highly expressed in regionswhereMSdecreases. In the right
part of panel B, we provide cortical maps summarizing the regional distribution of the top genes with the highest (CMTM3) or lowest (FAM126B) weights in PLS1.
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pain processing.44,60 One key idea around this model is that
peripheral injury triggers plastic changes or LTP in the cortical
synapses.13 Long-term potentiation promotes the formation of
synapses and remodelling of dendritic spine substructures,98 which
compartmentalize calcium.42,98 Hence, it is possible that complex-
ification of the synaptic structure, reflecting long-lasting plastic
changes in synaptic plasticity, might manifest as decreased MS.
However, we should also acknowledge that neuroinflammatory and
synaptic processes in the central nervous system tend to comple-
ment each other.63,100 Therefore, assuming that increases and
decreases inMSduring chronic painmight involvemutually exclusive
biological processes is likely simplistic. Future studies combining ex
vivo MRI and histological examinations of the postmortem human
brain of patients with chronic pain would be helpful in testing this
transcriptomic regional vulnerability model further.

Our study has some limitations worth noting. First, our case–
control data sets are relatively small, which might have affected our
statistical power to detect small differences (particularly in the context
of stringent correction for the number of regions examined).
Therefore, future studieswith larger sample sizes would be important
to assess the replicability of our findings. Second, in the absence of
multimodal data, we calculatedMS using only 5 parameters from the
T1-weighted imagesof eachparticipant. Thismight have reduced the
precision in estimatingMS. Future studies attempting to replicate our
findings should ideally use multiple imagingmodalities (ie, DTI). Third,
although still a general limitation of the field and not of this specific
work, the whole-brain gene expression data derive only from 6
postmortem adult brains (mean age5 43 years) and include data in
the right hemisphere from 2 donors, which led us to exclude MS
changes in the right hemisphere for the transcriptomic association
analyses. By using constitutive gene expression in a small cohort of 6

postmortem brains to infer associations with neuroimaging markers
acquired in different cohorts, we are assuming that regional gene
expression is a conserved canonical signature that generalizes well
beyond the brain samples included in the AHBA. Although we
focused our analyses on probes that were selected to maximize
differential stability across donors, 6 postmortem brains are
insufficient to make strong claims about the stability of gene
expression across brains in humans. Third, we pooled data from 3
different cohorts of patients with different chronic pain syndromes
that were collected using different protocols and setups. This aspect
poses limitations for investigating condition-specific changes in MS,
which are likely to exist andmight be interesting topursue.Moreover,
even within the boundaries of a specific chronic pain syndrome, it is
likely that different pathophysiological mechanisms are in play in
different patients.64,82,97 This within-group heterogeneity is an
aspect we did not deal with in this study but that future studies
should take into consideration. Fourth, the data sets have varied,
limited clinical information available, making it difficult to assess the
clinical significance of the MS phenotype. Moreover, patients in the
different studies were assessed using different clinical tools and
detailed characterizations of each cohort were not available (ie,
whether different patients might have received different treatments
before enrolment). This lack of detailed and comparable data raises
the question of whether our patients’ cohorts were matched for
important clinical variables, such as pain duration or disability.
Differences in these factors, if existent, might have contributed to
accentuate differences in MS between different chronic pain
conditions. Ideally, future studies should aim to recruit, assess,
and test all patients under the same protocol to minimize
methodological heterogeneity. Fifth, whether MS changes are
permanent or might be reversible after treatment is a question that

Figure 7.Gene set and cell-type enrichment analyses of the top genes associated with cross-condition changes in regional morphometric similarity during chronic
pain. In panel A, we present the results of gene set enrichment analyses on the top genes positively (PLS11) and negatively (PLS12) associated with cross-
condition changes in regional morphometric similarity during chronic pain, as implemented in the Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA) platform. For PLS11, we present the top 10 Gene Ontology (GO)—biological pathways terms for which we found significant
enrichment, ranked by P-value after FDR correction. For PLS12, none of the GO terms survived correction, but we found significant enrichment for 4 terms from
the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways. Colour scale indicates –log(PFDR). The full results of the FUMA analysis can be found in
supplementary data (available at http://links.lww.com/PAIN/B509, http://links.lww.com/PAIN/B510, http://links.lww.com/PAIN/B511). In panel B, we present
the results of a cell-type enrichment analysis, where we investigated whether PLS11 and PLS12 include overrepresentation of genes typically expressed in
specific brain cell types. Enrichment was quantified using odds ratio (OR) and significance calculated with a Fisher exact test. Colour scale indicates OR. Higher
ORs (in red) indicate higher enrichment in genes of a certain cell class. The asterisk denotes cell classes for which we found significant enrichment, after correcting
for the number of cell types tested (*PFDR , 0.05). FDR, false discovery rate; OPCs, oligodendrocyte precursor cells.
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we did not examine but that should be investigated in future
longitudinal studies, given that previous studies have reported
structural changes in the brain of patients with chronic pain that
reverted after treatment.30,74,79 Finally, although our findings are
suggestive of a potential contribution of neuroimmune responses
and neural plasticity to changes in MS, our correlational approach
does not allow us to infer causality. This could be investigated further
in longitudinal studies examining whether pharmacologic modula-
tion of either pathway might attenuate the changes in MS we report
here.

In summary, our study describes a new pattern of cortical MS
remodelling across 3 chronic pain syndromes and identifies factors
related to the glial immune response and imbalances in neuronal
plasticity as candidates for molecular and cellular mechanisms
conferring vulnerability to divergent tails of these cortical changes.
Altogether, our data indicate that cortical MS remodelling in chronic
pain entails a shared component of disease mechanisms that goes
beyond specific clinical syndromes boundaries and might involve
disruption ofmultiple elements of the cellular architecture of the brain
which is unlikely to be efficiently targeted by current one-size-fits-all
treatments. Ultimately, these findings highlight that developing new
effective therapeutic approaches to the brain pathology that
accompanies chronic pain might require a multitarget approach
modulating both glial function and neuronal plasticity.
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