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ABSTRACT Using polyclonal antibodies raised against clathrin, we have developed an enzyme- 
linked immunoassay that can specifically measure the quantity of clathrin in crude cell extracts. 
We found that the quantity (weight percent of total protein) of clathrin was similar in cell 
types that exhibit large differences in their levels of endocytosis and exocytosis (lymphoid 
cells, 0.11%; liver cells, 0.07%, fibroblasts, 0.18%; myeloma cells, 0.16%). However, the 
quantity of clathrin was found to be significantly higher in brain cortex (0.75%). 

Cellular clathrin was separated by high-speed centrifugation into two fractions: an unassem- 
bled form present in high-speed supernatants and an assembled form (clathrin coats) present 
in the pellets. We show that the fraction of clathrin in the unassembled state varies considerably 
depending on the cell type studied (14% in brain cortex to 70% in lymphocytes). 

Our data support the view that the amount of clathrin (relative to total cell protein) in 
eucaryotic cells is not related to the extent of receptor-mediated endocytosis and intracellular 
membrane traffic. However, the fraction of assembled clathrin seems to be higher in endo- 
cytically and/or exocytically active cells. 

Clathrin is the main constituent of the polyhedral protein 
lattice that forms the coat of coated pits and coated vesicles 
(1). Considerable data has shown that coated pits and coated 
vesicles are involved in many cellular processes, including 
receptor-mediated endocytosis (for a review, see reference 2), 
exocytosis of newly synthesized proteins (3), and plasma 
membrane recycling (for a review, see reference 4). However, 
an important question still unresolved concerns the molecular 
mechanism(s) underlying the fission and fusion events that 
occur during the vesicular transport. 

Many arguments support the view that the fission and 
fusion events are related to a cycle of assembly-disassembly 
of clathrin coats. In vitro, clathrin coats dissociate reversibly 
into triskelions, flexible, three-armed structures comprising 
three clathrin heavy chains (180,000 mol wt) associated with 
three light chains (30,000--40,000 mol wt depending on the 
tissue and species) (5, 6). Triskelions are able to bind to 
stripped coated vesicles reforming clathrin cages (7). In vivo, 
coated vesicles arising from coated pits during receptor-me- 
diated endocytosis appear to shed their clathrin coats rapidly 
before fusing with endosomes (8, 9). It is likely that the coats 
are removed enzymatically from the coated vesicles (10) and 
that the disassembled components return to the plasma mem- 

brane to be reassembled. 
However, the question of whether a pool of free triskelions 

exists is still being debated (11, 12). Immunocytochemical 
studies that use polyclonal anticlathrin antibodies have re- 
vealed clathrin associated with coated pits or coated vesicles 
with very little background staining in the nonmembranous 
regions of the cytoplasm. This has been interpreted to indicate 
the absence of clathrin within the cytoplasm (13-16). On the 
other hand, Louvard et al. (16) have recently produced a 
monoclonal antibody that recognizes an epitope present on 
the clathrin heavy chain. This monoclonal antibody gives 
diffuse staining throughout the cytoplasm, which suggests the 
presence of a "soluble" pool of clathrin. 

In an effort to determine whether or not an intracellular 
pool of unassembled clathrin exists, we developed an enzyme 
immunoassay in which crude cell lysates (containing clathrin) 
inhibit the binding of anticlathrin antibodies to immobilized 
clathrin. We separated clathrin pools into their assembled and 
unassembled forms by centrifugation. Our results indicate 
that although the amount of clathrin is relatively constant 
from one cell type to another (0.1-0.2% of cellular proteins), 
with the notable exception of brain cortex (0.7%), the ratio of 
assembled to unassembled clathrin varies greatly. A positive 
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correlation exists between the size of  the clathrin assembled 
pool and the extent of  cellular activities mediated by coated 
structures. 

MATERIALS AND METHODS 

Animals: Male 5-8-mo-old rats of the Fischer 344 strain were used. 
They were reared in specific pathogen-free conditions in the breeding center of 
the Pasteur Institute (Dr. J-L. Gu6net). 

Cells and Tissues: Macrophage-depleted lymphoid cells were pre- 
pared from rat cervical and mesenteric lymph nodes as previously described 
(17). Mouse myeloma IgG-secreting cell line X63Ag8 (18) was grown in 
Dulbecco modified Eagle's medium (Boehringer GmbH, Mannheim, Federal 
Republic of Germany [FRG]) supplemented with l mM sodium pyruvate 
(Flow Laboratories, Irvine, U. K.), 50 IU/ml penicillin and 50 gg/ml strepto- 
mycin (Flow Laboratories), and 10% fetal calf serum (Boehringer) in an 
atmosphere of 90% air and 10% CO2. Cells were harvested during exponential 
growth. Veto cells (monkey kidney fibroblasts) were grown in monolayer in 
Dulbecco's modified Eagle's medium (Seromed, M/inich, FRG), supplemented 
with 25 mM glucose (Sigma Chemical Co., St. Louis, MO), penicillin-strepto- 
mycin, and 10% fetal calf serum (Seromed) in an atmosphere of 90% air and 
10% CO2. Cells were seeded 24 h before the experiments and were just confluent 
when they were removed from the petri dishes. Brains and livers were taken 
from freshly killed rats. Sheep erythrocytes were purchased from Institut Pasteur 
Production (Paris, France). They were kept at 4"C in Alsever. 

Preparation and Fractionation of Cell Lysates and Tissue 
Hornogenates: Before lysis, lymphoid cells and myeloma cells were 
washed four times in PBS (10 mM potassium phosphate buffer, pH 7.4, 0.15 
M NaCl). Fibroblasts were removed from petri dishes with 0.05% trypsin, 
0.02% EDTA (Boehringer) and washed once in PBS containing 10% fetal calf 
serum and three times in PBS. Cells were counted in a hemocytometer. The 
cell viability, as tested by trypan blue dye exclusion, was >90% in all of our 
experiments. Lymphoid cells (5-7 x l0 s cells), myeloma cells (4-7 x l07 cells), 
and Veto cells (3-6 x l07 cells) were lysed in 2-3 ml of a buffer (Pearse's buffer 
A) consisting of 0. l M 2-(N-morpholino) ethane sulfonic acid, 1.0 mM EGTA, 
0.5 mM MgCl2, 0.02% NaN3 (wt/vol), 0.005% phenylmethylsulfonyl fluoride, 
pH 6.5, and containing 0.2% Triton X-100 (vol/vol) (Merck AG, Darmstadt, 
FRG). Cell suspensions were left for l0 min at room temperature and 20 rain 
at 4"C. Nuclei were removed by centrifugation at 1,000 g for 5 min at 4"C. The 
cell lysates were then divided in two fractions. In order to dissociate clathrin 
coats, we adjusted 0.5 ml of cell lysates to pH 9.5 with 15-20 ttl of I M Na2COa. 
After 30--45 min at 4"(?, these fractions were centrifuged for l h at 100,000 g 
at 4"C in a TST 55.5 rotor (Kontron, Zurich, Switzerland). The 
supernatants were collected and neutralized to pH 7.4 with 100 t~l of 1 M 
phosphate buffer, pH 7.4, or 25 #l of I M KH2PO4. Total clathrin was measured 
in these fractions. The remaining cell lysates (1.5-2.5 ml) were centrifuged for 
1 h at 100,000 g at 4"C. The supernatants were collected, the pH was raised to 
9.5, and neutralization was performed as described above. Clathrin measured 
in these high-speed supernatants is referred to in the text as unassembled 
clathrin. The corresponding pellets were resuspended in 0.5 ml of cold buffer 
A containing 0.2% Triton X-100 using a Dounce homogenizer, adjusted to pH 
9.5, and recentrifuged for l h at 100,000 g. The supernatants were then collected 
and neutralized. Clathrin measured in these fractions is referred to as assembled 
clathrin. In each supernatant, the protein concentration was estimated using 
the Bio-Rad (Bradford) protein assay (Bio-Rad Laboratories, Munich, FRG) 
with bovine IgG (Miles Laboratories, Elkhart, IN) as standard. 

Sheep erythrocytes (10 I° cells) were washed twice in PBS and lysed in 5 ml 
of buffer A containing 0.2% Triton X-100 as described above. After centrifu- 
gation for 5 min at 1,000 g, the protein concentration was determined by using 
the method of Lowry et al. (19) with bovine lgG as the standard. 2 ml (20 mE,/ 
ml) of the lysate was then adjusted to pH 9.5, centrifuged at 100,000 g, and 
neutralized with KH2PO4 as described above. 

Rat brain cortex (after removal of brain stem, cerebellum, and meninges) 
and livers were washed several times with a large volume of cold buffer A. In 
some experiments, livers were perfused through the whole circulation or 
through the portal vein with PBS, l mM EDTA, pH 7.0. Livers and brain 
cortex were then homogenized with a Waring blender (four times for 10 s each 
time at full speed) in -100 and l0 ml, respectively, of cold buffer A containing 
0.2% Triton X-100. Homogenates were centrifuged for 10 rain at 1,500 g to 
remove large aggregates. The pellets were washed once in the same volume of 
cold buffer A containing 0.2% Triton X-100 and the two supernatants were 
pooled. The protein concentration was adjusted to 5-20 mg/ml. Tissue ho- 
mogenates were then fractionated as described above. We have summarized in 
Fig. l the entire experimental procedure. 

Purification and Coated Vesicles: Coated vesicles were isolated 
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FIGURE I Preparation of cell and tissue fractions. 

from calf brains following the method first developed by Pearse (1) as modified 
by Keen et al. (20) and using D20-Ficoll gradients instead of sucrose gradients 
(2 l). The final purification was achieved by gel filtration through a Sephacryl 
S-1000 (Pharmacia Fine Chemicals, Uppsala, Sweden) column prcequilibrated 
with buffer A. The fractions corresponding to the second peak of elution (22) 
were pooled and concentrated. By electron microscopy using negative staining 
methods, these fractions were seen to contain nearly pure coated vesicles (<5% 
of smooth vesicles). Coated vesicles were kept at 4°C in the same buffer until 
USe. 

Purification of Clathrin Triskelions: Coated vesicles purified as 
described above were dialysed overnight at 4°C against 10 mM Tris-HCl, pH 
7.5. Coated vesicles were then centrifuged for 1 h at 100,000 g. The analysis of 
the supernatant by SDS PAGE (23) revealed one band ~180,000 mol wt and 
two bands around -30,000 tool wt. Protein concentration was estimated using 
a specific absorptivity E [ ~  of 11.9 at 280 nm for clathrin triskelions (7). 
Aliquots of purified clathrin were kept at -80"(2 until use. 

Enzyme Immunoassay: Clathrin present in cell or tissue extracts 
was quantitated using an enzyme-linked immunoadsorbent assay. To perform 
this assay, we have used a crude rabbit immune serum raised against empty 
clathrin cages prepared from pig brain coated veficles (16). In control experi- 
ments, a pool of normal rabbit sera was used instead of the immune serum. 
Polystyrene flat-bottom microtiter plates (Nunc, Denmark) were coated with 
purified clathrin. Coating was carried out for 2 h at 37°C and overnight at 4°C 
in 0.1 M sodium carbonate buffer, pH 9.5 (1.5 #g/ml clathrin, 50 #l/well). The 
cells were then washed five times with PBS supplemented with 0. 1% Tween 20 
(Merck) and free-binding sites were saturated in the same buffer containing 
0.4% BSA (fraction V, Industrie Biologique Fran~fise, Villeneuve-la-Garenne, 
France) (PBS-Tween-BSA buffer) for 30 min at 4°C. Cell lysates or tissue 
homogenates ( 1-20 mg/ml) were serially diluted in PBS-Tween-BSA (dilutions: 
1/5 up to 1/640), preincubated for l h at 37°C, and overnight at 4"(2, with 
rabbit anticlathrin immune serum (final dilution: 1/3, 200) and then added 
onto the plates for 3 h at 4°C (60 #l/well). A standard curve with purified 
clathrin diluted in buffer A containing 0.2% Triton X-100 and 0.4% BSA was 
carried out simultaneously for each experiment. A stock solution of clathrin 
was raised to pH 9.5 with 1 M Na2CO3, neutralized with 1 M phosphate buffer, 
pH 7.4, or 1 M KH2PO4, diluted in PBS-Twcen-BSA, and preincubated with 
rabbit anticlathrin immune serum under the same conditions as cell lysates. 
To determine 100% antibody binding, we added immune serum to dilutions 
of buffer A containing 0.2% Triton X-100 and 0.4% BSA (previously raised to 
pH 9.5 and neutralized) in PBS-Tween-BSA. To measure nonspeeific binding, 
we performed control experiments using a pool of normal rabbit sera (final 
dilution: 1/3,200) instead of the immune serum. The microtiter plates were 
washed six times with PBS-Twcen, the wells were filled with fl-galactosidase- 
linked affinity-purified horse anti-rabbit IgG (a girl from Dr. L. Leclercq, 
Institut Pasteur), diluted in PBS-Tween-BSA, and incubated for 2 h at 4°C. 
After six additional washings with PBS-Tween, the enzymatic reaction was 
allowed to take place at 37°C in 0. l M phosphate buffer, pH 7.0, containing 
l0 -3 M MgSO4, 2 x l0 -4 M MnSO4, 2 x l0 -3 M magnesium titriplex (Merck), 
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0.1 M 2-mercaptoethanol, and 2.5 x 10 -3 M p-nitrophenyl B-o-galactopyran- 
oside (Sigma Chemical Co.), according to Guesdon et al. (24). After the yellow 
color of the reaction product developed (usually 4-6 h at 37"C), the reaction 
was stopped by adding 2 M Na2CO3 and the absorbance was measured at 414 
nm in a Titertek Muitiskan Photometer (Flow Laboratories). 

We calculated the concentration of clathrin present in cell lysates or tissue 
homogenates at 50% inhibition by referring to the concentration of purified 
clathrin giving the same inhibition. Knowing the total protein content, we 
calculated the absolute amount of clathrin in the different fractions of cell 
lysates or tissue homogenates. The percentage of unassembled elathrin was 
given by the formula: 

percent unassembled = (amount of clathrin in high-speed supernatants)/ 

(amount of clathrin in high speed supernatants + amount of clathrin in 

corresponding pellets) x 100. 

To estimate the clathrin recovery during the fractionation procedure, we 
calculated the amount of clathrin in the total clathrin fraction (with the protein 
content of this fraction taken as 100%). The yield of the fractionation was given 
by the formula: 

percent recovery 

= (amount of clathrin recovered in high-speed supernatants 

+ pellets)/(amount of total clathrin) x 100. 

RESULTS 

The polyclonal rabbit anticlathrin immune serum used in 
these experiments has been shown to bind to clathrin coats 
in situ and to clathrin heavy chains and its associated light 
chains blotted on nitrocellulose (16). Binding to immobilized 
native triskelions is now reported. 

Standard Curve with Purified Clathrin 

In preliminary experiments, we were able to show that 
binding of the rabbit anticlathrin immune serum to clathrin 
immobilized on microtiter plates was efficiently inhibited by 
the addition of serial dilutions of purified clathrin. This ob- 
servation allowed us to develop a quantitative immunoassay 
(see Materials and Methods). The purified clathrin, under the 
conditions of our assay, should be present in solution as 
triskelions (6, 25) and should not reassociate into baskets (see 
section below). Fig. 2A shows a typical curve of inhibition 
with purified clathrin. 50% binding (or 50% inhibition) was 
usually obtained by preincubating a dilution of immune 
serum (1/3, 200) with 0.3-0.5 vg/ml of clathrin. 

In control experiments, the binding of a pool of normal 
rabbit sera was found to be < 10% of the binding of anticlath- 
rin immune serum at the same dilution. We also tested the 
ability of unrelated antigen to interfere with the specific 
binding. Concentrations up to 0.5 mg/ml of mouse actin, 
mouse myosin, pig and mouse tubulin, rabbit IgG, or pig 
thyroglobulin produced no significant inhibition. Finally, 
when a sheep erythrocyte lysate was used, no inhibition was 
observed. This observation is consistent with the hypothesis 
that this cell type lacks clathrin (<0.01% of proteins in cell 
lysate). It is known that mature erythrocytes do not perform 
either endocytosis or intracellular membrane transport (26, 
27), two cellular mechanisms thought to require the partici- 
pation of clathrin. 

Inhibition Curves with Cell and Tissue Extracts 

The binding of anticlathrin immune serum was inhibited 
by extracts obtained from either tissue culture cells or organs. 
The cell extracts were prepared in a buffer (buffer A) known 

to stabilize clathrin coats in vitro. Clathrin coats were then 
efficiently disassembled into triskelions (see Table II) by rais- 
ing the pH of the extracts to 9.5, centrifuging them at 100,000 
g, and neutralizing the supernatant to pH 7.4. Next, the 
immune serum was added to serial dilutions of these super- 
natants. Fig. 2 B shows a typical curve of inhibition obtained 
with a rat liver extract. The slope of this curve was parallel to 
that obtained with purified clathrin, a result consistent with 
the inhibition of binding being due to clathrin in the extract. 

To confirm the specificity of the immunoassay, Veto or 
X63Ag8 cell extracts were depleted of their clathrin content 
using an immunoprecipitation procedure. For this purpose, 
an aliquot of the cell extracts was incubated with an excess of 
affinity-purified rabbit anticlathrin antibodies. The immuno-  
complexes were subsequently precipitated using sheep anti- 
rabbit IgG. The removal of the excess of anticlathrin antibod- 
ies was monitored by incubating the cell extracts on microtiter 
plates coated with clathrin. Using a cell lysate depleted in 
clathrin by this procedure, we observed no inhibition of 
binding to immobilized clathrin (data not shown). 

In other sets of experiments, we added purified clathrin to 
the extracts before performing the immunoassay. In the ex- 
periment shown in Fig. 2B, clathrin was added to a liver 
extract to a final concentration of 10 #g/ml. The resultant 
clathrin level was found almost equal to the sum of endoge- 
nous and exogenous (added) clathrin. This indicates that in 
our experimental conditions, the amount  of measurable clath- 
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FIGURE 2 (A) Standard curve with purified clathrin. A solution of 
purified clathrin (25 p.g/ml) in stabilizing buffer A containing 0.2% 
Triton X-100 and 4 mg/ml BSA (previously adjusted to pH 9.5 and 
neutralized) was serially diluted in PBS-Tween-BSA. Rabbit anti- 
clathrin immune serum (final dilution: 1/3, 200) was added to each 
dilution, incubated for 1 h at 37°C and overnight at 4°C. The 
inhibition of binding was then measured by enzyme-linked immu- 
nosorbent assay as described in Materials and Methods. 50% inhi- 
bition of binding corresponded to 0.38/~g/ml of purified clathrin in 
this experiment. (B) Inhibition curve with a rat liver extract. Rat liver 
extract (10 mg/ml) was prepared as described in Fig. 1. The inhibi- 
tion of binding of the rabbit anti-clathrin immune serum was mea- 
sured with (@) or without ((3) addition of 10 #g/ml of purified 
clathrin (exogenous clathrin). A standard curve was constructed in 
a parallel experiment (E]), using purified clathrin, and in this case 
50% inhibition of binding was obtained with 0.35 #g/ml purified 
clathrin. 50% inhibition of binding was obtained at the dilutions 1/ 
56 (0) and 1117 (O) of liver extracts, which corresponded to 0.6 ~g/ 
ml and 0.2 p.g/ml of clathrin respectively. The difference between 
these two values (0.4/~g/ml) is due to added exogenous clathrin 
(0.35 p,g/ml). 
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rin was not affected by other cellular proteins. It is worth 
mentioning that we have been able to measure clathrin in cell 
or tissue extracts that contained up to 4-5 mg/ml of total 
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FIGURE 3 Quantification of clathrin in rat brain cortex. A rat brain 
cortex extract was prepared and fractionated as described in Fig. 1. 
50% inhibition was obtained for 0.057 mg/ml of "total" (0), 0.175 
mg/ml of "high-speed supernatant" (O) and 0.0094 mg/ml of "pellet" 
(A) fractions respectively. By referring to the standard curve of 
inhibition with purified clathrin (I-I), we have calculated the con- 
centration of clathrin in these fractions and the absolute amount of 
clathrin per mg of protein. In this experiment, the percentage of 
unassembled clathrin was found to be 24%. Clathrin recovery was 
110%. 
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FIGURE 4 Quantification of clathrin in rat lymphocytes. A rat lym- 
phocyte extract was prepared and fractionated as described in Fig. 
1. 50% inhibition was obtained with 0.4 mg/ml of "total" (0), 0.7 
mg/ml of "high-speed supernatant" (O) and 0.082 mg/ml of "pellet" 
(A) fractions respectively. By referring to the standard curve of 
inhibition with purified clathrin (r-I), we have calculated the con- 
centration of clathrin in these fractions and the absolute amount of 
clathrin per mg of protein. In this experiment, the percentage of 
unassembled clathrin was found to be 72%. Clathrin recovery was 
87%. 

cellular protein. Therefore, given that 0.3-0.5 gg/ml of puri- 
fied clathrin produced 50% inhibition of the binding of im- 
mune serum (Fig. 2A), it should be possible to detect clathrin 
in an extract when it makes up only 0.01% of the total protein. 
The experiment shown in Fig. 2B also indicates that clathrin 
is stable during the whole experimental procedure. We cannot 
rule out that some proteolytic degradation occurred; however, 
it did not quantitatively affect the antigen-antibody reaction. 

Quantification of Total, Assembled, and 
Unassembled Clathrin in Cell and Tissue Extracts 

Total, assembled, and unassembled clathrin was quanti- 
tated in rat lymphoid cells, Vero cells, X63Ag8 myeloma 
cells, rat liver, and rat brain cortex. Figs. 3 and 4 give typical 
titration curves that we obtained with rat brain cortex and rat 
lymphocytes. We then measured the ratio of clathrin in an 
assembled and unassembled state using the centrifugation 
procedure. We found that most of the clathrin was in an 
assembled form in rat brain cortex extracts (86%), whereas 
only 30% was in the assembled form in lymphocytes (Table 
I). In these experiments, the yield of clathrin was 110% (brain 
cortex) and 87% (rat lymphocytes). Similar experiments were 
performed with Vero cells, myeloma cells, and rat livers. We 
summarize in Table I the results we obtained. We observed 
that the relative abundance of clathrin with respect to total 
cellular protein is similar in Vero cells (0.18%), myeloma cells 
(0.16%), rat liver cells (0.07%), and lymphocytes (0.11%). 
The amount of total clathrin was found to be significantly 
higher (0.75%) in brain cortex. From these values, we also 
calculated the average number oftriskelions per cell, assuming 
a molecular weight of 640,000 for a clathrin triskelion. This 
number ranged from 2.8 x 104 in lymphoid cells to 4.8 x l0 s 
in myeloma cells. 

Additional Control Experiments 
The following experiments were performed to further vali- 

date our experimental procedure. 
EFFECTIVENESS OF THE F R A C T I O N A T I O N  PRO-  

C E D U R E" C l a t h r i n  pools were separated by centrifugation 
(Fig. 1). We assumed that unassembled clathrin would be 
recovered in the supernatants whereas clathrin coats would 
be recovered in the corresponding pellets. As the clathrin 
quantification assay requires that clathrin triskelions be free 
in solution, the pellet that contained clathrin coats, once 
isolated, was exposed to a pH of 9.5 to dissociate clathrin 
coats into triskelions. Triskelions were subsequently separated 
from an insoluble residue by centrifugation, and the super- 

TABLE I 

Clathrin Content and Distribution of Clathrin Pools in Various Cell Types 

Clathrin (% of cellular Assembled/unas- 
Cell extract proteins) Triskelions per cell Unassembled clathrin sembled 

% 

Rat brain cortex 0.75 _ 0.1" ND 14 + 8 6.0 
Rat livers (perfused) 0.07 + 0.0 ND 35 + 3* 1.8 
X63Ag8 0.16 + 0.07 3.8 x 10 s _ 1.25 x 10 s 45 + 5 1.2 
Vero cells 0.18 + 0.02 4.8 x 105 _ 10 s 59 + 5 0.7 
Rat lymphoid cells 0.11 + 0.03 2.8 x 104 _ 0.9 x 104 70 _+ 2 0.42 
Sheep erythrocytes Undetectable - -  ND ND 

ND, not determined. 
* Means _+ 1 SD of three or four experiments. 
* Unperfused livers were used for the measurements of assembled and unassembled clathrin to avoid a possible redistribution of clathrin pools induced by 

perfusion. 
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natant was recovered and adjusted to pH 7.4. To quantitate 
unassembled clathrin in the same experimental conditions, 
we also adjusted the pH of the first supernatant to pH 9.5 
and then neutralized it. 

The following experiments were designed to test the validity 
of this procedure. First, we centrifuged at 100,000 g a solution 
of purified clathrin (10 #g/ml) in buffer A containing 0.2% 
Triton and 4 mg/ml BSA (previously adjusted to pH 9.5 and 
neutralized). Under these conditions, no significant amount 
of triskelions was found in the pellet. Then we centrifuged 
freshly prepared coated vesicles and centrifuged them at 
100,000 g in buffer A containing 0.2% Triton and 4 mg/ml 
BSA (Fig. 5). Two concentrations of coated vesicles were 
tested (20 and 2 #g/ml), corresponding to the range of con- 
centrations of assembled pools of clathrin calculated to be in 
extracts from brain cortex and lymphocytes, respectively. As 
shown in Fig. 5, >90% of clathrin from coated vesicles could 
be recovered as a pellet. The above results demonstrate the 
stability of clathrin coats during our experimental procedures. 
Moreover, these results indicate the efficiency of a centrifu- 
gation to separate quantitatively unassembled from assembled 
clathrin. 

E F F I C I E N C Y  OF C L A T H R I N  D I S A S S E M B L Y  BY H I G H  

PH: It is known that high pH leads to a nearly complete 
dissociation of clathrin coats into triskelions (20). To confirm 
this, we analyzed the pellet resulting from centrifugation at 
pH 9.5 o fa  fibroblast extract. We treated this pellet at pH 9.5 
and then centrifuged the sample and measured the quantity 
of clathrin in the supernatant and pellet fractions. As shown 
in Table II, the amount of re-extracted clathrin represented 
only 2% of that found after the first centrifugation. We found 
also that the residual pellet contained no significant amount 
of clathrin. 

Similar experiments were performed with the residual pellet 
resulting from the extraction of the assembled pool of clathrin 
of brain cortex. These experiments also indicate that a negli- 
gible amount of clathrin was lost in the residual pellets (Table 
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FIGURE 5 Stability of purified coated vesicles. Purified coated ves- 
icles (20 ~.g/ml [A, A] and 2 #g/ml [O, @]) in 1 ml of stabilizing 
buffer (0.2% Triton containing 4 mg/ml BSA) were centrifuged for 
1 h at 100,000 g. 0.95 ml of the supernatants were removed, 
adjusted to pH 9.5 and neutralized (&, @). The remaining 0.05 ml 
was brought to 0.5 ml of buffer (0.2% Triton, 4 mg/ml BSA), adjusted 
to pH 9.5 and neutralized (A O). These fractions were then tested 
for clathrin content. 91% of clathrin molecules were present in the 
"pellet" fraction (&). The amount of clathrin molecules in the high- 
speed supernatant corresponding to a 2-~.g/ml concentration of 
coated vesicles (O) was not measurable. 

II). These results have also been confn'med by immunoblot- 
ting of the residual pellet (data not shown). 

EFFECT OF CELL LYSIS PROCEDURE ON THE RECOV- 
ERY OF UNASSEMBLED CLATHRIN" In order to lyse the 
cells efficiently, we routinely added 0.2% Triton X-100 to 
buffer A. Triton X-100 up to a concentration of 1% does not 
dissociate clathrin from coated vesicles (28). Under these cell 
lysis conditions, we might be isolating assembled clathrin in 
the form of complete cages (derived from coated vesicles) and 
partial cages (derived from coated pits) (29). Pearse has re- 
ported that some of the coated particles isolated in the pres- 
ence of Triton X-100 from human placenta are possibly 
derived from both coated pits and coated vesicles (21). To 
determine whether in our conditions Triton X-100 may favor 
the dissociation of incomplete cages, we either broke X63Ag8 
myeloma cells in the absence of Triton X-100 with a Dounce 
homogenizer or homogenized liver with a Waring blender, 
and fractionated this cell extract. As shown in Table III, 
almost the same amount of unassembled clathrin was found, 
whatever the mode of preparation of the cell extract. 

L A C K  OF C L A T H R I N  R E A S S O C I A T I O N  IN C E L L  OR 

TISSUE EXTRACTS: We tested the possibility that a part of 
the unassembled clathrin could be reassembled during the 
experimental procedures. For this purpose, l 0 ttg/ml of pu- 
rified clathrin (triskelions) was added to a rat brain cortex 
extract. We then fractionated this extract as described in Fig. 
1. Under these conditions, unassembled clathrin now repre- 
sented 50% of the total clathrin, whereas in the control 

TABLE II 

Efficiency of Clathrin Coat Disassembly at High pH 

First Second 
Cell extract supernatant supernatant Pellet 

#g ~g ~g 

Vero cells* 26.5 0.4 (2) ! ND 
Rat brain cortex* 39 5.1 (11) 1 

ND, not detectable. 
* 2.5. ml (4.1 mg/ml) of a Vero cells extract was adjusted to pH 9.5 with 

Na2CO3 and centrifuged for 1 h at 100,000 g. The pellet was resuspended 
in 0.5 ml of buffer A, 0.2% Triton (pH 6.5) and clathrin was re-extracted at 
pH 9.5. The total amount of clathrin was estimated in the first (column 1) 
and second (column 2) supernatants. The residual pellet was also analyzed 
for clathrin content (column 3). 

* 0.5 ml of a rat brain cortex "pellet" fraction (Fig. 1) was centrifuged for 1 h 
,at 100,000 g. We then re-extracted clathrin from the pellet as described 
above and estimated clathrin content in the first and second supernatants 
as well as in residual pellet. 

i Numbers in parentheses indicate the percentage of the first supernatant. 

TABLE III 

Effect of Cell Lysis Procedure on Recovery of Total and 
Unassembled Clathrin 

Lysis procedure Cell extract 

Clathrin 

% of unas- 
% of cellu- sembled 
lar proteins clathrin 

Mechanical breaking Myeloma cells 0.20 45 
alone Liver 0.10 42 

In presence of Triton Myeloma cells 0.22 51 
X- 100 Liver 0.07 37 

X63Ag8 myeloma cells were lysed in buffer A containing Trit0n X-100 (0.2%) 
or in the same buffer without Triton X-100 with a Douncelhom0geneizer 
(100 strokes, on ice). Livers were homogenized with a Waring blender in. 
buffer A containing Triton X-100 (0.2%) or withou.t detergent. Cell lysates 
were obtained and each subcellular fraction was analyzed for clathrin content 
as usual. 
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experiment only 16% ofclathrin was found in an unassembled 
form. We reasoned that most of the added clathrin was 
recovered in the high-speed supernatant (unassembled form), 
suggesting that no reassociation of added triskelions had oc- 
curred during the experiment. 

C L A T H R I N  HEAVY C H A I N S  AND ASSOCIATED L I G H T  

C H A I N S  ARE BOTH PRESEN T IN ASSEMBLED AND UN-  

ASSEMBLED C L A T H R I N  POOLS:  O n e  could argue that 
clathrin heavy chains and associated light chains may not be 
stoichiometrically represented in the assembled and unassem- 
bled pools of clathrin. Since our antiserum recognizes both, 
we tested this possibility by immunoblotting analysis using 
affinity-purified rabbit anticlathrin antibodies (as previously 
described in reference 16). These experiments were carried 
out using total assembled and unassembled fractions from 
brain and lymphocyte extracts. In all cases, heavy and light 
chains were easily identified. Furthermore, the ratio of heavy 
to light chains appeared to be similar (data not shown). 
Therefore, we conclude that each clathrin pool contains both 
polypeptides. 

DISCUSSION 

The aim of this study was to determine the clathrin content 
and the distribution of assembled and unassembled clathrin 
pools within various cell types. For this purpose, we have 
developed a competitive solid-phase enzyme immunoassay 
that can measure clathrin in cell lysates. A fractionation 
procedure was also designed to separate the pools of assembled 
and unassembled clathrin. 

As illustrated in Fig. 2B, cell lysates inhibited the binding 
of the rabbit anticlathrin immune serum to immobilized 
clathrin in a specific way. The inhibition of binding was found 
to be nearly total, which indicates that similar antigenic 
determinants are recognized on clathrin molecules present in 
cell lysates and on immobilized clathrin. In all cell types so 
far tested, these antigenic determinants were present on both 
clathrin heavy chains and associated light chains as demon- 
strated by immunoblotting (reference 16 and unpublished 
results). In addition, the curves of inhibition were found to 
be parallel, which suggests that the anticlathrin antibodies 
have the same affinity for clathrin present in all cell extracts 
tested. These antibodies were found to cross-react efficiently 
with clathrin from chicken, rodents, and other mammalian 
cells including dog, bovine, and human cell lines (16). There- 
fore, the assay we have developed could be applied to a wide 
variety of cells or tissues from various origins. 

One important question, still debated, concerns the exist- 
ence or the nonexistence of unassembled clathrin inside the 
cells (1 l, 12). The results we report here strongly suggest that 
in fact a measurable fraction of clathrin is present in an 
unassembled form (Table I). These data provide further in- 
dependent evidence for the presence of unassembled clathrin 
in the cytoplasm, as we previously suggested using a mono- 
clonal antibody reacting with an epitope unavailable in clath- 
rin coats but accessible in triskelions (16). It is unlikely that 
this cytosolic pool could be generated during our experimental 
procedures, since in using purified coated vesicles, as a model 
system, we found that only a small amount of clathrin disso- 
ciated during the whole procedure (Fig. 3). It also seems 
unlikely that the unassembled pool of clathrin could result 
from the dissociation of incomplete cages (for example, from 
coated pits) after the solubilization of associated membranes 
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with Triton X-100 because we found a similar amount of 
clathrin in the high-speed supernatants after mechanical 
breaking of the myeloma cells or livers prepared in the same 
stabilizing buffer (Table III), a treatment that probably pre- 
serves the association of coated structures with membranes 
(30). 

We have been able to estimate the clathrin content in 
various cell types and tissues. As summarized in Table I, it 
appears that the percentage of clathrin in eucaryotic cells is 
relatively constant. Our data indicate that clathrin represents 
~0.1-0.2% of total cellular proteins. The slightly lower value 
obtained for perfused liver may be due to the fact that 
hepatocytes contain a significant amount of protein destined 
for secretion, in addition to their cellular proteins. A remark- 
able exception, however, is the brain cortex, in which clathrin 
represents 0.7% of total cellular proteins. The significance of 
this result is currently unknown. 

The cell types we have chosen in these experiments exhibit 
large differences in the cellular activities that are thought to 
require the participation of clathrin. In brain cells, coated 
vesicles play a major role in the retrieval of excess cell surface 
membrane in presynaptic neurons (31). In fibroblasts and 
liver cells, clathrin, organized as coated pits and coated vesi- 
cles, has been shown to be involved in receptor-mediated 
endocytosis of various ligands (for a review, see reference 2). 
In myeloma cells, a major function of coated vesicles could 
be to mediate plasma membrane retrieval following the secre- 
tory process of immunoglobulins (17, 32). In this context, 
that cells contain a constant level of clathrin confirms that 
the degree of expression of clathrin is not directly related to a 
particular cellular function as first suggested by Pearse (33). 
Perhaps the most striking data concern normal lymphoid 
cells, because these cells display low secretory and endocytic 
activities yet contain as much total clathrin as other cells. For 
example, we have calculated that normal rat lymphoid cells 
internalize -0.3 nl/h per 106 cells of fluid medium (34). This 
represents 106 times less than mouse L fibroblasts (35) or 364 
times less than rat bepatocytes (36). 

It has been suggested (8, 9) that coated pits and vesicles 
form in vivo by a cycle of assembly-disassembly of clathrin 
coats that has been shown to occur in vitro (5-7, 10, 20, 25, 
28, 37). Furthermore, whereas the concentration of clathrin 
(relative to other proteins) is similar in most of the cell types 
we studied, the ratio of assembled to unassembled clathrin 
varies greatly (Table I). It is striking that brain contains the 
highest level of assembled clathrin and lymphoid cells the 
lowest. This raises the possibility that a positive correlation 
may exist between the size of the assembled pool and the 
intracellular membrane transport activity of the cell. As a 
consequence, an activated lymphocyte could recruit clathrin 
from its unassembled pool to form coated pits and/or coated 
vesicles when the membrane activity increases, for instance, 
during differentiation. Salisbury et al. have indeed observed a 
recruitment of clathrin coats during the capping of surface 
IgG induced by multivalent anti-Ig antibodies on lympho- 
blastoid cells (38). Note also that in the secreting myeloma 
cells there is only 45% of unassembled clathrin compared 
with 70% in the lymphoid cells (Table I). In cultured fibro- 
blasts, Lubinski and Huet (39) have recently shown that 
various ligands can induce accumulation of coated vesicles, 
independently from coated pits, and Larkin et al. (40) reported 
that in fibroblasts depleted in potassium, there is a dramatic 
inhibition of low-density lipoprotein uptake, associated with 



a disappearance of  immunoreactive clathrin coats at the cell 
surface. In each of  these examples, it is likely that the size of  
the unassembled clathrin pool is changing with the physiolog- 
ical state of  the cell. That is, the amount of  unassembled 
clathrin will be decreased with increased membrane transport 
and, conversely, will increase when membrane transport is 
arrested. 

In conclusion, the results of  experiments we report in this 
paper favor the existence of  at least two intracellular pools of  
clathrin. The enzyme immunoassay that we have developed 
to quantify these two pools of  clathrin should provide a useful 
tool to analyze the state of  clathrin in response to changes in 
cellular demands for intracellular membrane transport. 
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