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Abstract

Exploring brain changes across the human lifespan is becoming an important topic in

neuroscience. Though there are multiple studies which investigated the relationship

between age and brain imaging, the results are heterogeneous due to small sample

sizes and relatively narrow age ranges. Here, based on year-wise estimation of 5,967

subjects from 13 to 72 years old, we aimed to provide a more precise description of

adult lifespan variation trajectories of gray matter volume (GMV), structural network

correlation (SNC), and functional network connectivity (FNC) using independent com-

ponent analysis and multivariate linear regression model. Our results revealed the fol-

lowing relationships: (a) GMV linearly declined with age in most regions, while

parahippocampus showed an inverted U-shape quadratic relationship with age; SNC

presented a U-shape quadratic relationship with age within cerebellum, and inverted

U-shape relationship primarily in the default mode network (DMN) and frontoparietal

(FP) related correlation. (b) FNC tended to linearly decrease within resting-state net-

works (RSNs), especially in the visual network and DMN. Early increase was revealed

between RSNs, primarily in FP and DMN, which experienced a decrease at older ages.

U-shape relationship was also revealed to compensate for the cognition deficit in

attention and subcortical related connectivity at late years. (c) The link between middle
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occipital gyrus and insula, as well as precuneus and cerebellum, exhibited similar chang-

ing trends between SNC and FNC across the adult lifespan. Collectively, these results

highlight the benefit of lifespan study and provide a precise description of age-related

regional variation and SNC/FNC changes based on a large dataset.
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1 | INTRODUCTION

Human lifespan development is a major topic of interest in neurosci-

ence. The brain maturation process is likely to experience a predomi-

nantly genetically determined growth first, followed by a more plastic

gene–environment interaction period (Cao, Huang, & He, 2017;

Collin & van den Heuvel, 2013; van den Heuvel et al., 2013). Neu-

rodevelopmental trajectories in gray matter (GM) volumetric variations

have been extensively studied (Fjell, McEvoy, Holland, Dale, &

Walhovd, 2014; Kennedy et al., 2009; Narvacan, Treit, Camicioli,

Martin, & Beaulieu, 2017; Terribilli et al., 2011). Consistent GM reduc-

tion was primarily located in frontal, temporal, parietal, and insular area

(Abe et al., 2008; Farokhian, Yang, Beheshti, Matsuda, & Wu, 2017;

Raz & Rodrigue, 2006). However, conflicting results were also

observed when using different sample sizes and age ranges. For exam-

ple, preservation of hippocampus was found when the samples cov-

ered a large lifespan (Bagarinao et al., 2018; Grieve, Clark, Williams,

Peduto, & Gordon, 2005), whereas atrophy was observed when age

effects were evaluated only in older samples (Lemaitre et al., 2005).

Apart from the cerebral alterations, structural or functional con-

nectivity was also revealed to undergo characteristic variations across

the lifespan (Cao et al., 2014; Wang, Su, Shen, & Hu, 2012; Yang

et al., 2014; Zuo et al., 2010). For example, a number of studies

focused on changes in functional network connectivity (FNC) have

stated that FNC tended to decrease within resting-state networks

(RSNs) with aging, including visual network and default mode network

(DMN; E. A. Allen et al., 2011), and increase between RSNs, especially

between components of somatomotor network, ventral attention net-

work and dorsal attention network, which were best fit by convex

quadratic models (Betzel et al., 2014). FNC can be extracted from dif-

ferent methodologies, including independent component analysis

(ICA) and ROI-based network construction. In this study, the FNC

matrix was estimated by computing the correlation among pairs of

time courses identified from ICA as (Calhoun, Adali, Pearlson, & Pekar,

2001; Jafri, Pearlson, Stevens, & Calhoun, 2008; Segall et al., 2012;

Xu, Groth, Pearlson, Schretlen, & Calhoun, 2009), which captures net-

works that co-vary across time courses. In parallel, we followed our

previous paper (Erhardt, Allen, Damaraju, & Calhoun, 2011; Segall

et al., 2012) to define the relationships between different structural

ICA derived components as structural network correlations (SNC).

Here, leveraging a large dataset (5,967 scans) covering subjects

at every age from 13 to 72 years old, we aimed to provide a more

robust and precise elaboration of age-related variations of GM vol-

ume (GMV), SNC and FNC. Moreover, based on a well-matched

structure–function template, we compared how age-related FNC

changes were similar to age-related SNC variations. We performed

three analyses in response to the following hypotheses regarding the

age-varying imaging discoveries: (a) As for the GMV, we expected

hippocampus or para-hippocampus would show an inverted U-shape

relationship with age, since this region has been widely reported to

be sensitive to aging (Bartsch & Wulff, 2015; Burke et al., 2018).

(b) For structural or functional network investigation, we hypothe-

sized that inverted U-shape relationships would be revealed between

FNC or SNC of brain regions in charge of higher-order cognitive

processing, since the late-maturing brain regions are revealed to be

more sensitive to the deleterious effects of aging (Kalpouzos et al.,

2009; Toga, Thompson, Mori, Amunts, & Zilles, 2006; Zuo et al., 2017).

(c) An exploratory analysis: after examining the age-varying FNC and

SNC patterns, we compared between each other and expected to find

certain similarity between functional and structural links.

2 | MATERIALS AND METHODS

2.1 | Data acquisition and preprocessing

The data used in this study consisted of 6,101 structural magnetic res-

onance imaging (MRI) scans and 7,500 resting-state functional MRI

(fMRI) scans, which were collected at the University of New Mexico

(UNM) and the University of Colorado Boulder (UC, Boulder). Data in

the UC, Boulder site were collected using a 3T Siemens TIM Trio MRI

scanner with 12 channel radiofrequency coils, while data in UNM site

were acquired using the same type of 3T Siemens TIM Trio MRI scan-

ner, and a 1.5T Avanto MRI scanner. For the scans, MRI protocols

were harmonized for all subjects. Site effects were controlled for in

the subsequent analysis. All the data were previously collected,

anonymized, and had informed consent received from subjects. As the

data is a de-identified convenience dataset, we do not have access to

the health and identifier information. Some individuals with brain dis-

orders were likely included, however, we have confirmed that the

brain images do not have any obvious pathology or atrophy.

T1-weighted structural images were acquired with a five-echo

MPRAGE sequence with TE = 1.64, 3.5, 5.36, 7.22, 9.08 ms, TI = 1.2 s,

TR = 2.53 s, flip angle = 7�, number of excitations = 1, field of
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view = 256 mm, slice thickness = 1 mm, and resolution = 256 × 256.

The structural data were preprocessed based on voxel-based morphom-

etry (VBM) in SPM12 (Ashburner & Friston, 2005). The preprocessing

pipeline included: (a) spatial registration to a reference brain; (b) joint

bias correction and tissue classification into GM, white matter and cere-

brospinal fluid using SPM12 old segmentation; (c) spatial normalization

to the standard Montreal Neurological Institute (MNI) space using

nonlinear transformation; (d) modulation by scaling with the amount of

volume changes, and (e) smoothing to 10 × 10 × 10 mm FWHM (Silver

et al., 2011; Sui et al., 2013). The smoothed GMV images from each

dataset were spatially correlated to the mean image to assess outliers.

Scans with a correlation <0.7 were removed.

The fMRI images were used in a previous study that evaluated

replicability in time-varying functional connectivity patterns (Abrol

et al., 2017), which has clearly reported the acquisition parameters

and preprocessing pipelines. T2*-weighted functional images were

acquired using a gradient-echo EPI sequence with TE = 29 ms, TR = 2 s,

slice thickness = 3.5 mm, flip angle = 75�, slice gap = 1.05 mm, matrix

size = 64 × 64, field of view = 240 mm, voxel size = 3.75 mm ×

3.75 mm × 4.55 mm. The data preprocessing pipeline included discard

of the first three images for the magnetization equilibrium, realign-

ment using INRIalign (Freire & Mangin, 2001), timing correction with

the middle slice as reference, spatial normalization into the MNI

space. Images collected at 3.75 mm × 3.75 mm × 4.55 mm were then

slightly upsampled to 3 mm × 3 mm × 3 mm, resulting in a data cube

of 53 × 63 × 46 voxels. The upsampled images were further

smoothed with a 10 mm Gaussian model (Silver et al., 2011). The

fMRI data covered the entire cerebellum. Anomaly detection in

the form of correlation analysis on the five upper and lower slices of

the functional images was performed on all 7,500 scans in order to

detect scans that failed the reorientation process or had any missing

slices. This outlier detection removed 396 subjects, thus leaving

behind a total number of 7,104 subjects corresponding to approxi-

mately 95% of the available data. The time courses for all subjects

were postprocessed in the FNC construction step to remove any

residual noise sources.

After preprocessing, 5,967 scans were retained with both struc-

tural and functional MRI images. The complete demographic informa-

tion was shown in Table 1.

2.2 | Independent components derived from ICA
for functional and structural data

ICA analysis on the functional data was conducted in our previous

study (Abrol et al., 2017) using group ICA (GICA) implemented in the

GIFT toolbox (http://mialab.mrn.org/software/gift/; Calhoun, Adali,

Pearlson, & Pekar, 2002). The number of components was set to be

100. After visual inspection of all the 100 components, 61 components

were selected with peak activations in GM, time courses dominated

by low-frequency fluctuations, and high spatial overlap with resting

networks. We then grouped the 61 components into a nine-network

template: visual network (VIS), somatomotor network (SM), dorsal

attention network (DA), ventral attention network (VA), limbic network

(LIMBIC), frontoparietal network (FP), DMN, subcortical network

(SUB), and cerebellar network (CB). The first seven networks were

identified through quantitative comparisons with Yeo et al.'s seven-

network template (Yeo et al., 2011). We extended to include subcorti-

cal and cerebellar regions as two additional networks, which were

identified using the anatomical automatic labeling (AAL) template. The

criteria for sorting the components was based on the peak location.

ICA decomposition on the structural data was investigated with

source-based morphometry (SBM), which decomposed the GMV

images into a loading parameter matrix (the A matrix in Figure 1a) and

a source matrix (the S matrix in Figure 1a; Calhoun et al., 2001; Xu

et al., 2009). The loading parameter matrix represented the weight of

components for each subject and the source matrix indicated the

corresponding spatial maps. For the purpose of comparing the similar-

ities between age-related structural and functional changes, we used

the same number of components (100) as functional data for ICA anal-

ysis. Components with significant spatial overlap with ventricles, large

vasculature, white matter and the brainstem, or located at the bound-

aries between these regions and GM were excluded as (Du et al.,

2015). Of all the 100 structural components identified from ICA,

71 GM components were retained for analysis after removal of arti-

fact components via visual inspections and further divided into the

nine domains defined above (Figure S2).

2.3 | Construction of age-resolved SNC and FNC
matrix

2.3.1 | Network construction from structural data

SNC matrices were constructed from 13 to 72 years old using a

sliding-age window method (Figure 1b-2). Loading parameters were

TABLE 1 Demographic information

Numbers of subjects

Total 5,967

Gender

Male 3,757

Female 2,210

Site

Site 1 (UC Boulder 3T) 490

Site 2 (UNM 3T) 3,914

Site 3 (UNM 1.5T) 1,563

Age (y)

13–22 2,080

23–32 1,690

33–42 934

43–52 710

53–62 364

63–72 189
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F IGURE 1 Legend on next page.
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cross-correlated within windows that contained participants of the

same age and incrementally moved across the age-range in regular

increments (Vasa et al., 2018). The step size was set by 1-year-old. The

window width depended on the number of subjects in each age stage.

A partial correlation, using gender, site, and age × gender as covariates,

was used to compute the SNC, then 60 SNC matrices would be con-

structed corresponding to the 60 age stages.

2.3.2 | Network construction from functional data

Back reconstruction using group information guided ICA (GIG-ICA)

was performed after GICA (Du & Fan, 2013), with the selected

61 components as a reference, to estimate subject-level time courses

and maps for each subject. The back-reconstructed time-courses went

through additional processing steps to remove any residual noise

sources mostly including low-frequency trends originating from the

scanner drift, motion-related variance emerging from spatial non-

stationarity caused by movement, and other nonspecific noise arti-

facts unsatisfactorily decomposed by the implemented linear mixed

model. More specifically, the postprocessing steps featured de-

trending existing linear, quadratic, and cubic trends, multiple linear

regression of all realignment parameters together with their temporal

derivatives, outlier detection using 3D spike removal, and low pass fil-

tering with high-frequency cut-off being set to 0.15 Hz. Finally, the

time courses were variance normalized. An FNC matrix was finally

constructed across time courses for each subject with gender, site and

age × gender as covariates (Jafri et al., 2008). After that, we sorted all

FNC matrices into an age-increasing order and computed a mean FNC

matrix for each age stage (from 13 to 72 years old; Figure 1d). Accord-

ingly, 60 FNC matrices were constructed corresponding to 60 age

stages.

2.4 | Correlations between age and GMV, SNC,
and FNC

We applied a following multivariate linear regression (MLR) model to

compute the relationship between age and GMV (case 1: Figure 1b-1),

SNC (case 2: Figure 1b-2) and FNC (case 3: Figure 1c).

Ŷ = β0 + β1 �Age+ β2 �Age2 + β3 �covariates + e ð1Þ

Here, Ŷ is a [5,967×1] vector, representing the structural loading

parameters for case 1. Ŷ is a [60×1] vector, representing the values

of the same cell in all 60 SNC/FNC matrix for case 2 and case 3. Age

term includes ages with associated parameters β1. Age
2 term is a

matrix consisting of squared ages with the associated parameter β2,

and e is an error term. In case 1, covariates term indicated gender, site

and age × gender. As these covariates were already regressed when

constructing the SNC and FNC matrices, the covariates term was

crossed out for case 2 and case 3. Cells with significant p values

(FDR<0.05) of parameter β1 indicated an age-related linear relationship,

and cells with significant p values (FDR<0.05) of parameter β2 indicated

an age-related quadratic relationship. In case 1, as 71 structural compo-

nents were used to measure the relationship between structural loading

parameters and age using the MLR model, FDR correction for the signif-

icance of β1 and β2 was based on the 71 p values. In case 2, as the MLR

model was used to select the significant cells in the SNC matrices across

60 age stages, FDR correction for the significance of β1 and β2 was

based on 2,485 cells ([71×70]/2). In case 3, FDR correction for the sig-

nificance of β1 and β2 was based on 1830 cells ([61×60]/2). At last, T

maps corresponding to these significant cells were further plotted.

2.5 | Comparisons between age-related SNC and
FNC variations

To further compare similarities between age-related SNC changes and

FNC variations, we adopted a well-matched structure–function tem-

plate revealed in a recent study (Luo et al., 2019, Figure S3). Based

on the template, we could find the matching age-related cells

between SNC and FNC matrix. Then we plotted curves with age of

these matched cells and further computed the correlation between

curves of each matched pair (Figure 1e).

3 | RESULTS

3.1 | GMV changes across the adult lifespan

Nineteen GM components were revealed to show a linear relationship

with age (significance was measured using effect magnitude [partial

R2 > .05] and FDR-corrected p values [p < 0.05]). Among these,

15 components exhibited a linear declining relationship (Figure 2a).

F IGURE 1 Illustration of the analysis pipeline. (a) Structural and functional data were first decomposed by ICA. (b) The analysis pipeline of
computing the relationship between age and structural data. (b-1) We first computed the relationship between each component in the A matrix

and age using a multiple linear regression (MLR) model, which measures how GMV changes across the adult lifespan. (b-2) We then applied a
sliding-age window to the structural loading parameters [A matrix] to construct structural network correlation (SNC) matrix for each age stage
and further examined the relationship between age and SNC using MLR. (c) For the functional data, group-level spatial maps [S] were used to
back reconstruct the matrix [time courses by components] for each subject and then functional network connectivity (FNC) was constructed
crosstime courses for each subject. We further computed the mean FNC matrix for each age stage and investigated the significantly age-related
cells across all mean FNC matrices using the same MLR model. (d) Based on the significantly age-related SNC and FNC cells, we finally measured
the similarity of the changing trends for all the paired SNC cells and FNC cells identified from a well-matched structure–function template
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Components from cerebellar and somatomotor domains, especially

the vermis and precentral area, showed the highest declining correla-

tions with age (Figure 2b). Four other components (s-IC4, s-IC23,

s-IC38, and s-IC49) exhibited a linear positive relationship with age,

which were composed of the thalamus, parahippocampal, hippocam-

pus, and parts of the cerebellum, respectively. The component that

primarily consisted of the parahippocampus and temporal pole (s-

IC38) further exhibited an inverted U-shape relationship with age. By

fitting the component into a quadratic plot, we estimated the turning

point to be 43.68 years old as shown in Figure 2c.

3.2 | SNC changes across the adult lifespan

Figure 3a,b indicate the significant cells showing linear and quadratic

SNC changes with age. No cells presented significant linear relation-

ship with age, while quadratic relationship (FDR < 0.05) were rev-

ealed, including both U-shape (13 cells) and inverted U-shape types

(16 cells). To rule out randomness, we further computed the pairwise

correlation between the 13 U-shape cells and 16 inverted U-shape

cells. As shown in Figure S4, among all 208 pairs of cells, 96 pairs

presented significant correlation after FDR correction (FDR < 0.05).

For each paired cell, we examined the relationship between age and

one cell (U or inverted U-shape) while controlling for the other cell. As

shown in Table S1, the majority of the significant cells showing

quadratic relationships are retained (light blue background), suggesting

that it is unlikely to identify both U and inverted U-shape relationship

by randomness. Most significant cells with a U-shape relationship

were observed within the cerebellar network. The connectomes of

the significant cells are plotted in Figure 3b-1. Figure 3b-2 describes

the changing trends across the adult lifespan for all significant cells.

By fitting these scatters into a quadratic plot, the turning point was

estimated to be 45.17 years old. Meanwhile, inverted U-shape rela-

tionships were primarily revealed in DMN and FP related correlations.

Figure 3b-3,b-4 separately depict the connectome of the significant

cells and the changing trends across the adult lifespan. By fitting these

scatters into a quadratic plot, the turning point was estimated to be

40.83 years old.

3.3 | FNC variations across the adult lifespan

Figure 4a,b presents the significant FNC cells showing positive and neg-

ative linear relationship with age separately (FDR < 0.0001). The FNC

cells within RSNs, especially the VIS and DMN domains, linearly

decreased with age increase (Figure 4a). Linear increase was revealed

between RSNs, primarily in FP and DMN (Figure 4b). The connectomes

of the significant cells are plotted in Figure 4a-1 and Figure 4b-1.

Figure 4a-2 and Figure 4b-2 plot the changing trends across the adult

lifespan for the significant cells. U-shape relationships are primarily

F IGURE 2 The relationships between age and gray matter volume. (a) T values of the significant components. (b) Spatial maps of the
significant components; three types of relationship were revealed. (c) Scatter plots of the representative components in each type. The blue color
indicated negative T values for all relationships
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revealed in some VA and SUB related connectivity as shown in

Figure 4c. Inverted U-shape relationships with age are revealed primarily

between RSN, centered on the SM, FP, and DMN networks (Figure 4d,

FDR < 0.0001). The connectomes of the significant cells are plotted in

Figure 4c-1,d-1. Figure 4c-2,d-2 separately plot the changing trends of

the significant cells. By fitting these scatters into a quadratic plot, the

turning points were estimated to be 40 years old for U-shape and

36.5 years old for inverted U-shape relationships. To further examine

the effect of head motion on our results, we first computed the mean

framewise displacements (FD) for each subject (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012; C. G. Yan et al., 2013). The relationship

between mean FD and age was not significant as shown in Figure S5

(r = 0.0078, p = .5485). We then added the mean FD as a covariate to

compute the age-related significant FNC cells again. The results are sim-

ilar to the raw results (Figure S6). Moreover, as 720 scans were identi-

fied with mean FD larger than 0.5 among all 5,967 subjects, we

measured the age-related FNC variations again based on the remaining

5,247 subjects. As shown in Figure S7, the results are highly consistent

with the original results, suggesting that head motion does not have

much impact on our results in this study.

3.4 | Comparisons between age-related SNC and
FNC variations

After applied the well-matched structure–function template, 5 SNC

cells are identified to be matched with 11 FNC cells as shown in

Figure 5. Only two overlapping cells exhibited similar inverted U-

shape between SNC and FNC across the adult lifespan. One is the

link between the middle occipital gyrus and insula (cell1-cell2:

r = 0.53, p = 1.23 × 10−5), the other one is the link between the

precuneus and cerebellum (cell3-cell4: r = 0.28, p = .029).

4 | DISCUSSION

To the best of our knowledge, this is the first study to measure the

adult lifespan variation trajectories of GMV, SNC, and FNC based on

the year-wise estimation of a very large dataset (5,967 subjects) from

13 to 72 years old. By applying a well-matched structure–function

template, we further compared how age-related FNC changes were

similar to age-related SNC variations.

F IGURE 3 Correlations between age and structural network correlation. (a) No significant linear relationship was revealed. (b) Both U-shape
and inverted U-shape quadratic relationship were revealed. Figure 3b-1,b-2 separately depict the connectome of the significant U-shape cells and
the changing trends across the adult lifespan. Figure 3b-3,b-4 separately depict the connectome of the significant inverted U-shape cells and the
changing trends across the adult lifespan
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F IGURE 4 The relationship between age and functional network connectivity. (a) Cells exhibiting a linear positive relationship with age; (a-1):
the connectome of the significant cells; (a-2): the changing trends of the significant cells. (b) Cells exhibiting a linear negative relationship with age;
(b-1): the connectome of the significant cells; (b-2): the changing trends of the significant cells. (c) Cells indicating a U-shape relationship across the
adult lifespan; (c-1): the connectome of the significant cells; (c-2): the changing trends of the significant cells. (d) Cells showing an inverted U-shape
relationship across the adult lifespan; (d-1): the connectome of the significant cells; (d-2): the changing trends of the significant cells
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4.1 | Lifespan changes in GMV

Most trajectories of the structural ICA-decomposed components

showed a linearly declining relationship with age, primarily existed in the

SM, DMN and FP network, consistent with previous studies (J. S. Allen,

Bruss, Brown, & Damasio, 2005; Liu et al., 2017; Spreng & Turner,

2013). For example, Spreng et al. observed that GMV declined linearly

with age in DMN across the adult lifespan of 18–96 years (Spreng &

Turner, 2013). Allen et al. revealed a negative correlation between

GMV and age in the frontal, parietal and visual networks (J. S. Allen

et al., 2005). Relative preservation of GMV in the thalamus and para-

hippocampal gyrus has been similarly reported as (Bagarinao et al.,

2018). An inverted U-shape relationship was further revealed in para-

hippocampal area, consistent with (J. S. Allen et al., 2005; Kalpouzos

et al., 2009). Notably, we also observed a significant inverted U-shape

relationship in s-IC23, with peaks at hippocampus and fusiform, how-

ever, the partial R square for these components was 0.017. In this study,

we only reported the components which presented a partial R square

value larger than 0.05. Moreover, selection bias in older participants in

cross-sectional data is a potential limitation to the lower age-related

reduction in the hippocampus of elder subjects as highlighted in (Nyberg

et al., 2010). In addition, the GMV showed both positive and negative

linear correlations with age in the cerebellar and subcortical networks

(Figure 2). As shown in Figure S2, even though both s-IC49 and s-IC36

belongs to the cerebellar network, the s-IC36 composed of the vermis

and s-IC49 primarily composed of the posterior cerebellum. Previous

studies have reported different volumetric trajectories in the anterior

cerebellum/vermis, and posterior cerebellum. The anterior cerebellum

and vermis follow a logarithmic pattern such that volumes were largest

in adolescents and dropped quickly during young adulthood (Bernard,

F IGURE 5 The cells presenting similar inverted U-shape relationship with age between SNC and FNC. Two cells (green circle) were revealed
with the significant similar changing trend: middle occipital gyrus-insula link (cell 1 and cell 2, p = 1.23 × 10−5) and precuneus-cerebellum link (cell
3 and cell 4, p = .029)
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Leopold, Calhoun, & Mittal, 2015). While the volumetric pattern of the

posterior cerebellum seems to follow the protracted developmental pat-

tern of the prefrontal cortex (Bernard et al., 2015). Moreover, it was

suggested that this posterior cerebellar motor representation serves dif-

ferent functions than the anterior cerebellar motor representation

(Donchin et al., 2012). Therefore, we would observe different relation-

ship with age in the two areas. For the subcortical network, the s-IC20

presented negative relationship with age, with peaks at the caudate,

while a positive relationship was observed in s-IC4, which composed of

thalamus. Previous studies have also reported different age-related vol-

umetric variations in caudate (Walhovd et al., 2011) and thalamus

(Bagarinao et al., 2018; Grieve et al., 2005).

4.2 | Lifespan changes in structural network
correlation

In order to make an extensive examination of age-related variations in

both cortical properties and connectivity, we also studied how structural

or functional connectivity changed with age across the adult lifespan.

The DMN and FP related connectivity presented an inverted U-shape

relationship, which are consistent with “last-in-first-out” rule: the late-

maturing brain regions are revealed to be more sensitive to the deleteri-

ous effects of aging (Kalpouzos et al., 2009; Terribilli et al., 2011). The

connectivity of these areas would mature after other brain areas,

followed by atrophy, and then present a significant inverted U-shape

tendency with age. Collin et al. also suggested that the dynamic changes

in connectome organization throughout the lifespan follows an inverted

U-shaped pattern (Collin & van den Heuvel, 2013). Moreover, since

these brain regions are primarily involved in cognitive functions like

attention, executive function and cognitive control, older brain will pre-

sent increased activation in other related connectivity, for example, the

dorsal attention and ventral attention network in this study, to reveal

neural compensatory mechanisms (Romero-Garcia, Atienza, & Cantero,

2014), leading to a U-shape relationship. Structural correlation within

cerebellar network also presented a U-shape relationship with age,

which is consistent with previous studies (Brenhouse & Andersen, 2011;

Durston et al., 2001). Besides, since the structural data were constructed

based on the ICA-decomposed GM components, the age-related GMV

variations could reflect some SNC changes to a certain degree. For

example, as shown in Figure 2a, the GMV linearly increased with age pri-

marily in cerebellum and limbic system, while the other brain regions

showed a linearly decreased relationship with age. Consistent with this,

we also observed quadratically increased trends within the cerebellar

network and quadratically decreased relationship in other brain net-

works for the SNC cells as shown in Figure 3b.

4.3 | Lifespan changes in functional network
connectivity

Both linear and quadratic relationships with age were revealed in the

FNC cells. Early linearly increase in FNC were primarily observed

between RSNs, which experienced decrease at older ages, for exam-

ple, the connectivity in STG, ACG, MCG, and SFG areas, consistent

with previously reported results (Betzel et al., 2014; Geerligs, Renken,

Saliasi, Maurits, & Lorist, 2015). According to the “last-in-first-out”

hypothesis revealed in the frontal and temporal areas as discussed

above, the connectivity between frontal and temporal areas matured

after other brain areas, followed by atrophy, and then exhibited an

inverted U-shape tendency with age. The FNC within RSNs decreased

linearly over the adult lifespan, especially in DMN and VIS, consistent

with other studies (Andrews-Hanna et al., 2007; Geerligs et al., 2015;

Tomasi & Volkow, 2012; L. Yan, Zhuo, Wang, & Wang, 2011). Late

increase at older ages was observed in attention and SUB related area.

The U/inverted-U shape relationship may implicate the compensation

of human brain connectivity among key networks responsible for the

cognition deficit in attention and high executive function during aging

(Chen et al., 2018).

4.4 | Comparisons between changes in SNC
and FNC

Relationships between age-related SNC changes and FNC variations

are complex. Several previous studies reported that regions with few

or no direct structural connections may exhibit high functional con-

nectivity, which indicates the presence of indirect connections

between structure and function (Damoiseaux & Greicius, 2009;

Honey et al., 2009). Fjell et al. demonstrated that anatomical align-

ment of SNC and FNC seemed restricted to specific networks, for

example, certain regions of the DMN network, and changes in SNC

and FNC were not necessarily strongly correlated (A. M. Fjell et al.,

2017). In this study, we observed two matched SNC and FNC cells

exhibiting a similar inverted U-shape across the adult lifespan as

shown in Figure 5:(a) the link between middle occipital gyrus and

insula; (b) the link between precuneus and cerebellum. These have not

been shown previously. The link between middle occipital gyrus and

insula was reported to be responsible for face emotion processing

(Guo et al., 2015). The precuneus has also been identified to react to

fearful faces (Zhao, Zhao, Zhang, Cui, & Fu, 2017) and is part of the

extended face-processing network (Fox, Iaria, & Barton, 2009). Cere-

bellum was revealed to be implicated in rapidly coordinating informa-

tion processing, aversive conditioning, and learning the precise timing

of anticipatory responses (Auday, Taber-Thomas, & Perez-Edgar,

2018). Concerning the integration of contextual body signals in facial

emotion perception, previous studies have shown an association with

precuneus (contextual integration) and cerebellum (motor resonance;

Santamaría-García et al., 2019). Additionally, the turning point of qua-

dratic relationship for age-related FNC variations was earlier than the

turning point of SNC. FNC was revealed to detect brain activity

through measuring variations related to blood flow, which are sensi-

tive to environment changes (Deakin et al., 2008; Lahti, Holcomb,

Medoff, & Tamminga, 1995). While SNC measures the links between

pairs of co-varying GM patterns, the deficits of which take time to

manifest. These may partly help explain why age-related FNC

1734 LUO ET AL.



variations would present an earlier changing point compare to age-

related SNC changes.

4.5 | Limitations of the current study

There are several limitations to the current study. The first limitation is

the lack of assessment of health status for the individuals included,

which may leave a potential effect on the results under different psychi-

atric, neurological, or other neurodegenerative conditions. As the data

included a large sample size with a large age range, we believe the

results may be more driven by the common characteristics of age-

related changes. The second limitation is the cross-sectional nature of

the data. Studies which used cross-sectional subjects may suffer from

cohort effects and could not investigate changes over time within sub-

jects compared to longitudinal studies. While longitudinal studies cannot

totally replace cross-sectional studies for some limitations, such as the

life expectancy of scanners (Salthouse, 2012). Third, although structural

covariance of brain region volumes have been proved to be associated

with both structural connectivity and transcriptomic similarity

(R. Romero-Garcia et al., 2018; Yee et al., 2018), it is an indirect, group-

wise measurement to scale the structural connectivity compared to

tracking individual white matter fiber connectivity using diffusion mag-

netic resonance imaging (dMRI). Further work evaluating age-related

variations using dMRI-based white matter connectivity is needed.

Fourth, the resolution of the fMRI images is sub-optimal (3.75 × 3.75

× 4.55 mm) compared to the newer multi-band sequences (2–3 mm iso-

tropic). In addition, there are some existing large N datasets, for exam-

ple, ENIGMA (Favre et al., 2019; Hoogman et al., 2019; van Velzen

et al., 2019), 10 K in 1 day (van den Heuvel et al., 2019) and morpho-

metric similarity networks (Seidlitz et al., 2018), which introduce several

new network features that can be used to investigate age-related varia-

tions in both healthy as well as disease.

ACKNOWLEDGMENTS

The authors thank Srinivas Rachakonda for lending his expertise on

the GIFT toolbox functions, Helen Petropoulos for providing informa-

tion on the fMRI data analyzed in this paper and the anonymous

reviewers for their valuable comments and effort to improve the manu-

script. This work was supported by the National Institutes of Health

(No. 2R01EB005846, P20GM103472, R01REB020407), the National

Science Foundation (No. 1539067), the Natural Science Foundation of

China (No. 61773380), the Strategic Priority Research Program of the

Chinese Academy of Sciences (No. XDB03040100) and Beijing Munici-

pal Science and Technology Commission (No. Z181100001518005).

CONFLICT OF INTEREST

The authors report no biomedical financial interests or potential con-

flicts of interest.

DATA AVAILABILITY STATEMENT

The structural and functional data used in the present study can be

accessed upon request to the corresponding authors.

ORCID

Jing Sui https://orcid.org/0000-0001-6837-5966

Anees Abrol https://orcid.org/0000-0001-9223-5314

Victor M. Vergara https://orcid.org/0000-0001-9404-0924

Yong Xu https://orcid.org/0000-0001-9679-2273

REFERENCES

Abe, O., Yamasue, H., Aoki, S., Suga, M., Yamada, H., Kasai, K., …
Ohtomo, K. (2008). Aging in the CNS: Comparison of gray/white mat-

ter volume and diffusion tensor data. Neurobiology of Aging, 29(1),

102–116. https://doi.org/10.1016/j.neurobiolaging.2006.09.003
Abrol, A., Damaraju, E., Miller, R. L., Stephen, J. M., Claus, E. D.,

Mayer, A. R., & Calhoun, V. D. (2017). Replicability of time-varying

connectivity patterns in large resting state fMRI samples. NeuroImage,

163, 160–176. https://doi.org/10.1016/j.neuroimage.2017.09.020

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M.,

Silva, R. F., … Calhoun, V. D. (2011). A baseline for the multivariate

comparison of resting-state networks. Frontiers in Systems Neurosci-

ence, 5, 2. https://doi.org/10.3389/fnsys.2011.00002

Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Normal neuroana-

tomical variation due to age: The major lobes and a parcellation of the

temporal region. Neurobiology of Aging, 26(9), 1245–1260. https://doi.
org/10.1016/j.neurobiolaging.2005.05.023

Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D.,

Raichle, M. E., & Buckner, R. L. (2007). Disruption of large-scale brain

systems in advanced aging. Neuron, 56(5), 924–935. https://doi.org/
10.1016/j.neuron.2007.10.038

Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage,

26(3), 839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018

Auday, E. S., Taber-Thomas, B. C., & Perez-Edgar, K. E. (2018). Neural cor-

relates of attention bias to masked facial threat cues: Examining chil-

dren at-risk for social anxiety disorder. Neuroimage Clinical, 19,

202–212. https://doi.org/10.1016/j.nicl.2018.04.003
Bagarinao, E., Watanabe, H., Maesawa, S., Mori, D., Hara, K., Kawabata, K.,

… Sobue, G. (2018). An unbiased data-driven age-related structural

brain parcellation for the identification of intrinsic brain volume

changes over the adult lifespan. NeuroImage, 169, 134–144. https://
doi.org/10.1016/j.neuroimage.2017.12.014

Bartsch, T., & Wulff, P. (2015). The hippocampus in aging and disease:

From plasticity to vulnerability. Neuroscience, 309, 1–16. https://doi.
org/10.1016/j.neuroscience.2015.07.084

Bernard, J. A., Leopold, D. R., Calhoun, V. D., & Mittal, V. A. (2015).

Regional cerebellar volume and cognitive function from adolescence

to late middle age. Human Brain Mapping, 36(3), 1102–1120. https://
doi.org/10.1002/hbm.22690

Betzel, R. F., Byrge, L., He, Y., Goni, J., Zuo, X. N., & Sporns, O. (2014).

Changes in structural and functional connectivity among resting-state

networks across the human lifespan. NeuroImage, 102, 345–357.
https://doi.org/10.1016/j.neuroimage.2014.07.067

Brenhouse, H. C., & Andersen, S. L. (2011). Developmental trajectories dur-

ing adolescence in males and females: A cross-species understanding of

underlying brain changes. Neuroscience and Biobehavioral Reviews, 35

(8), 1687–1703. https://doi.org/10.1016/j.neubiorev.2011.04.013
Burke, S. N., Gaynor, L. S., Barnes, C. A., Bauer, R. M., Bizon, J. L.,

Roberson, E. D., & Ryan, L. (2018). Shared functions of Perirhinal and

Parahippocampal cortices: Implications for cognitive aging. Trends in Neu-

rosciences, 41(6), 349–359. https://doi.org/10.1016/j.tins.2018.03.001
Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method

for making group inferences from functional MRI data using indepen-

dent component analysis. Human Brain Mapping, 14(3), 140–151.
https://doi.org/10.1002/hbm.1048

Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2002). A method for

making group inferences from functional MRI data using independent

LUO ET AL. 1735

https://orcid.org/0000-0001-6837-5966
https://orcid.org/0000-0001-6837-5966
https://orcid.org/0000-0001-9223-5314
https://orcid.org/0000-0001-9223-5314
https://orcid.org/0000-0001-9404-0924
https://orcid.org/0000-0001-9404-0924
https://orcid.org/0000-0001-9679-2273
https://orcid.org/0000-0001-9679-2273
https://doi.org/10.1016/j.neurobiolaging.2006.09.003
https://doi.org/10.1016/j.neuroimage.2017.09.020
https://doi.org/10.3389/fnsys.2011.00002
https://doi.org/10.1016/j.neurobiolaging.2005.05.023
https://doi.org/10.1016/j.neurobiolaging.2005.05.023
https://doi.org/10.1016/j.neuron.2007.10.038
https://doi.org/10.1016/j.neuron.2007.10.038
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.nicl.2018.04.003
https://doi.org/10.1016/j.neuroimage.2017.12.014
https://doi.org/10.1016/j.neuroimage.2017.12.014
https://doi.org/10.1016/j.neuroscience.2015.07.084
https://doi.org/10.1016/j.neuroscience.2015.07.084
https://doi.org/10.1002/hbm.22690
https://doi.org/10.1002/hbm.22690
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neubiorev.2011.04.013
https://doi.org/10.1016/j.tins.2018.03.001
https://doi.org/10.1002/hbm.1048


component analysis (vol 14, pg 140, 2001). Human Brain Mapping, 16(2),

131–131. https://doi.org/10.1002/hbm.10044

Cao, M., Huang, H., & He, Y. (2017). Developmental Connectomics from

infancy through early childhood. Trends in Neurosciences, 40(8),

494–506. https://doi.org/10.1016/j.tins.2017.06.003
Cao, M., Wang, J. H., Dai, Z. J., Cao, X. Y., Jiang, L. L., Fan, F. M., … He, Y.

(2014). Topological organization of the human brain functional

connectome across the lifespan. Developmental Cognitive Neuroscience,

7, 76–93. https://doi.org/10.1016/j.dcn.2013.11.004
Chen, Y., Zhao, X., Zhang, X., Liu, Y., Zhou, P., Ni, H., … Ming, D. (2018).

Age-related early/late variations of functional connectivity across the

human lifespan. Neuroradiology, 60(4), 403–412. https://doi.org/10.

1007/s00234-017-1973-1

Collin, G., & van den Heuvel, M. P. (2013). The ontogeny of the human

connectome: Development and dynamic changes of brain connectivity

across the life span. The Neuroscientist, 19(6), 616–628. https://doi.
org/10.1177/1073858413503712

Damoiseaux, J. S., & Greicius, M. D. (2009). Greater than the sum of its

parts: A review of studies combining structural connectivity and

resting-state functional connectivity. Brain Structure & Function, 213

(6), 525–533. https://doi.org/10.1007/s00429-009-0208-6
Deakin, J. F., Lees, J., McKie, S., Hallak, J. E., Williams, S. R., &

Dursun, S. M. (2008). Glutamate and the neural basis of the subjective

effects of ketamine: A pharmaco-magnetic resonance imaging study.

Archives of General Psychiatry, 65(2), 154–164. https://doi.org/10.

1001/archgenpsychiatry.2007.37

Donchin, O., Rabe, K., Diedrichsen, J., Lally, N., Schoch, B., Gizewski, E. R., &

Timmann, D. (2012). Cerebellar regions involved in adaptation to force

field and visuomotor perturbation. Journal of Neurophysiology, 107(1),

134–147. https://doi.org/10.1152/jn.00007.2011
Du, Y. H., & Fan, Y. (2013). Group information guided ICA for fMRI data

analysis. NeuroImage, 69, 157–197. https://doi.org/10.1016/j.

neuroimage.2012.11.008

Du, Y. H., Pearlson, G. D., Liu, J. Y., Sui, J., Yu, Q. B., He, H., …
Calhoun, V. D. (2015). A group ICA based framework for evaluating

resting fMRI markers when disease categories are unclear: Application

to schizophrenia, bipolar, and schizoaffective disorders. NeuroImage,

122, 272–280. https://doi.org/10.1016/j.neuroimage.2015.07.054

Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., &

Van Engeland, H. (2001). Anatomical MRI of the developing human

brain: What have we learned? Journal of the American Academy of

Child & Adolescent Psychiatry, 40(9), 1012–1020. https://doi.org/10.
1097/00004583-200109000-00009

Erhardt, E. B., Allen, E. A., Damaraju, E., & Calhoun, V. D. (2011). On net-

work derivation, classification, and visualization: A response to Habeck

and Moeller. Brain Connectivity, 1(2), 1–19.
Farokhian, F., Yang, C. L., Beheshti, I., Matsuda, H., & Wu, S. C. (2017). Age-

related Gray and White matter changes in Normal adult brains. Aging

and Disease, 8(6), 899–909. https://doi.org/10.14336/Ad.2017.0502
Favre, P., Pauling, M., Stout, J., Hozer, F., Sarrazin, S., Abe, C., … for the

ENIGMA Bipolar Disorder Working Group. (2019). Correction: Wide-

spread white matter microstructural abnormalities in bipolar disorder:

Evidence from mega- and meta-analyses across 3033 individuals.

Neuropsychopharmacology, 44, 2298. https://doi.org/10.1038/

s41386-019-0521-6

Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B. (2014).

What is normal in normal aging? Effects of aging, amyloid and Alzheimer's

disease on the cerebral cortex and the hippocampus. Progress in Neurobi-

ology, 117, 20–40. https://doi.org/10.1016/j.pneurobio.2014.02.004
Fjell, A. M., Sneve, M. H., Grydeland, H., Storsve, A. B., Amlien, I. K.,

Yendiki, A., & Walhovd, K. B. (2017). Relationship between structural

and functional connectivity change across the adult lifespan: A longitu-

dinal investigation. Human Brain Mapping, 38(1), 561–573. https://doi.
org/10.1002/hbm.23403

Fox, C. J., Iaria, G., & Barton, J. J. (2009). Defining the face processing net-

work: Optimization of the functional localizer in fMRI. Human Brain

Mapping, 30(5), 1637–1651. https://doi.org/10.1002/hbm.20630

Freire, L., & Mangin, J. F. (2001). Motion correction algorithms may create

spurious brain activations in the absence of subject motion.

NeuroImage, 14(3), 709–722. https://doi.org/10.1006/nimg.2001.0869

Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015).

A brain-wide study of age-related changes in functional connectivity.

Cerebral Cortex, 25(7), 1987–1999. https://doi.org/10.1093/cercor/

bhu012

Grieve, S. M., Clark, C. R., Williams, L. M., Peduto, A. J., & Gordon, E. (2005).

Preservation of limbic and paralimbic structures in aging. Human Brain

Mapping, 25(4), 391–401. https://doi.org/10.1002/hbm.20115

Guo, W., Liu, F., Xiao, C., Zhang, Z., Liu, J., Yu, M., … Zhao, J. (2015).

Decreased insular connectivity in drug-naive major depressive disor-

der at rest. Journal of Affective Disorders, 179, 31–37. https://doi.org/
10.1016/j.jad.2015.03.028

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P.,

Meuli, R., & Hagmann, P. (2009). Predicting human resting-state func-

tional connectivity from structural connectivity. Proceedings of the

National Academy of Sciences of the United States of America, 106(6),

2035–2040. https://doi.org/10.1073/pnas.0811168106
Hoogman, M., Muetzel, R., Guimaraes, J. P., Shumskaya, E., Mennes, M.,

Zwiers, M. P., … Franke, B. (2019). Brain imaging of the cortex in

ADHD: A coordinated analysis of large-scale clinical and population-

based samples. The American Journal of Psychiatry, 176(7), 531–542.
https://doi.org/10.1176/appi.ajp.2019.18091033

Jafri, M. J., Pearlson, G. D., Stevens, M., & Calhoun, V. D. (2008). A method

for functional network connectivity among spatially independent

resting-state components in schizophrenia. NeuroImage, 39(4),

1666–1681. https://doi.org/10.1016/j.neuroimage.2007.11.001

Kalpouzos, G., Chetelat, G., Baron, J. C., Landeau, B., Mevel, K.,

Godeau, C., … Desgranges, B. (2009). Voxel-based mapping of brain

gray matter volume and glucose metabolism profiles in normal aging.

Neurobiology of Aging, 30(1), 112–124. https://doi.org/10.1016/j.

neurobiolaging.2007.05.019

Kennedy, K. M., Erickson, K. I., Rodrigue, K. M., Voss, M. W.,

Colcombe, S. J., Kramer, A. F., … Raz, N. (2009). Age-related differ-

ences in regional brain volumes: A comparison of optimized voxel-

based morphometry to manual volumetry. Neurobiology of Aging, 30

(10), 1657–1676. https://doi.org/10.1016/j.neurobiolaging.2007.

12.020

Lahti, A. C., Holcomb, H. H., Medoff, D. R., & Tamminga, C. A. (1995).

Ketamine activates psychosis and alters limbic blood flow in schizo-

phrenia. Neuroreport, 6(6), 869–872.
Lemaitre, H., Crivello, F., Grassiot, B., Alperovitch, A., Tzourio, C., &

Mazoyer, B. (2005). Age- and sex-related effects on the neuroanatomy

of healthy elderly. NeuroImage, 26(3), 900–911. https://doi.org/10.

1016/j.neuroimage.2005.02.042

Liu, K., Yao, S. X., Chen, K. W., Zhang, J. C., Yao, L., Li, K., … Guo, X. J.

(2017). Structural brain network changes across the adult lifespan.

Frontiers in Aging Neuroscience, 9, 275.

Luo, N., Sui, J., Abrol, A., Turner, J. A., Damaraju, E., Fu, Z., … Calhoun, V. D.

(2019). Structural brain architectures match intrinsic functional networks

and vary across domains: A study from 15000+ individuals (in press).

https://www.biorxiv.org/content/10.1101/2019.12.17.879502v1

Narvacan, K., Treit, S., Camicioli, R., Martin, W., & Beaulieu, C. (2017). Evolu-

tion of deep gray matter volume across the human lifespan. Human Brain

Mapping, 38(8), 3771–3790. https://doi.org/10.1002/hbm.23604

Nyberg, L., Salami, A., Andersson, M., Eriksson, J., Kalpouzos, G.,

Kauppi, K., … Nilsson, L. G. (2010). Longitudinal evidence for dimin-

ished frontal cortex function in aging. Proceedings of the National

Academy of Sciences of the United States of America, 107(52),

22682–22686. https://doi.org/10.1073/pnas.1012651108

1736 LUO ET AL.

https://doi.org/10.1002/hbm.10044
https://doi.org/10.1016/j.tins.2017.06.003
https://doi.org/10.1016/j.dcn.2013.11.004
https://doi.org/10.1007/s00234-017-1973-1
https://doi.org/10.1007/s00234-017-1973-1
https://doi.org/10.1177/1073858413503712
https://doi.org/10.1177/1073858413503712
https://doi.org/10.1007/s00429-009-0208-6
https://doi.org/10.1001/archgenpsychiatry.2007.37
https://doi.org/10.1001/archgenpsychiatry.2007.37
https://doi.org/10.1152/jn.00007.2011
https://doi.org/10.1016/j.neuroimage.2012.11.008
https://doi.org/10.1016/j.neuroimage.2012.11.008
https://doi.org/10.1016/j.neuroimage.2015.07.054
https://doi.org/10.1097/00004583-200109000-00009
https://doi.org/10.1097/00004583-200109000-00009
https://doi.org/10.14336/Ad.2017.0502
https://doi.org/10.1038/s41386-019-0521-6
https://doi.org/10.1038/s41386-019-0521-6
https://doi.org/10.1016/j.pneurobio.2014.02.004
https://doi.org/10.1002/hbm.23403
https://doi.org/10.1002/hbm.23403
https://doi.org/10.1002/hbm.20630
https://doi.org/10.1006/nimg.2001.0869
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1002/hbm.20115
https://doi.org/10.1016/j.jad.2015.03.028
https://doi.org/10.1016/j.jad.2015.03.028
https://doi.org/10.1073/pnas.0811168106
https://doi.org/10.1176/appi.ajp.2019.18091033
https://doi.org/10.1016/j.neuroimage.2007.11.001
https://doi.org/10.1016/j.neurobiolaging.2007.05.019
https://doi.org/10.1016/j.neurobiolaging.2007.05.019
https://doi.org/10.1016/j.neurobiolaging.2007.12.020
https://doi.org/10.1016/j.neurobiolaging.2007.12.020
https://doi.org/10.1016/j.neuroimage.2005.02.042
https://doi.org/10.1016/j.neuroimage.2005.02.042
https://www.biorxiv.org/content/10.1101/2019.12.17.879502v1
https://doi.org/10.1002/hbm.23604
https://doi.org/10.1073/pnas.1012651108


Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E.

(2012). Spurious but systematic correlations in functional connectivity

MRI networks arise from subject motion. NeuroImage, 59(3),

2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018

Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cog-

nitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30

(6), 730–748. https://doi.org/10.1016/j.neubiorev.2006.07.001
Romero-Garcia, R., Atienza, M., & Cantero, J. L. (2014). Predictors of cou-

pling between structural and functional cortical networks in normal

aging. Human Brain Mapping, 35(6), 2724–2740. https://doi.org/10.
1002/hbm.22362

Romero-Garcia, R., Whitaker, K. J., Vasa, F., Seidlitz, J., Shinn, M.,

Fonagy, P., … Consortium, N. (2018). Structural covariance networks

are coupled to expression of genes enriched in supragranular layers of

the human cortex. NeuroImage, 171, 256–267. https://doi.org/10.

1016/j.neuroimage.2017.12.060

Salthouse, T. A. (2012). Robust cognitive change. Journal of the Interna-

tional Neuropsychological Society, 18(4), 749–756. https://doi.org/10.
1017/S1355617712000380

Santamaría-García, H., Ibáñez, A., Montaño, S., García, A. M., Patiño-

Saenz, M., Idarraga, C., … Baez, S. (2019). Out of context, beyond the

face: Neuroanatomical pathways of emotional face-body language

integration in adolescent offenders. Frontiers in Behavioral Neurosci-

ence, 13, 34–34. https://doi.org/10.3389/fnbeh.2019.00034
Segall, J. M., Allen, E. A., Jung, R. E., Erhardt, E. B., Arja, S. K., Kiehl, K., &

Calhoun, V. D. (2012). Correspondence between structure and func-

tion in the human brain at rest. Frontiers in Neuroinformatics, 6, 10.

https://doi.org/10.3389/fninf.2012.00010

Seidlitz, J., Vasa, F., Shinn, M., Romero-Garcia, R., Whitaker, K. J.,

Vertes, P. E., … Bullmore, E. T. (2018). Morphometric similarity net-

works detect microscale cortical organization and predict inter-

individual cognitive variation. Neuron, 97(1), 231–247.e237. https://
doi.org/10.1016/j.neuron.2017.11.039

Silver, M., Montana, G., Nichols, T. E., & Alzheimer's Disease Neuroimaging

Initiative. (2011). False positives in neuroimaging genetics using voxel-

based morphometry data. NeuroImage, 54(2), 992–1000. https://doi.
org/10.1016/j.neuroimage.2010.08.049

Spreng, R. N., & Turner, G. R. (2013). Structural covariance of the default

network in healthy and pathological aging. Journal of Neuroscience, 33

(38), 15226–15234. https://doi.org/10.1523/Jneurosci.2261-13.2013
Sui, J., He, H., Pearlson, G. D., Adali, T., Kiehl, K. A., Yu, Q., … Calhoun, V. D.

(2013). Three-way (N-way) fusion of brain imaging data based on mCCA

+jICA and its application to discriminating schizophrenia. NeuroImage, 66,

119–132. https://doi.org/10.1016/j.neuroimage.2012.10.051

Terribilli, D., Schaufelberger, M. S., Duran, F. L., Zanetti, M. V.,

Curiati, P. K., Menezes, P. R., … Busatto, G. F. (2011). Age-related gray

matter volume changes in the brain during non-elderly adulthood.

Neurobiology of Aging, 32(2), 354–368. https://doi.org/10.1016/j.

neurobiolaging.2009.02.008

Toga, A. W., Thompson, P. M., Mori, S., Amunts, K., & Zilles, K. (2006).

Towards multimodal atlases of the human brain. Nature Reviews Neuro-

science, 7(12), 952–966. https://doi.org/10.1038/nrn2012
Tomasi, D., & Volkow, N. D. (2012). Aging and functional brain networks.

Molecular Psychiatry, 17(5), 549–558. https://doi.org/10.1038/mp.

2011.81

van den Heuvel, M. P., Scholtens, L. H., van der Burgh, H. K., Agosta, F.,

Alloza, C., Arango, C., … Project, C. C. D. (2019). 10Kin1day: A

bottom-up Neuroimaging initiative. Frontiers in Neurology, 10, 425.

van den Heuvel, M. P., van Soelen, I. L., Stam, C. J., Kahn, R. S.,

Boomsma, D. I., & Hulshoff Pol, H. E. (2013). Genetic control of functional

brain network efficiency in children. European Neuropsychopharmacology,

23(1), 19–23. https://doi.org/10.1016/j.euroneuro.2012.06.007
van Velzen, L. S., Kelly, S., Isaev, D., Aleman, A., Aftanas, L. I., Bauer, J., …

Schmaal, L. (2019). White matter disturbances in major depressive dis-

order: A coordinated analysis across 20 international cohorts in the

ENIGMA MDD working group. Molecular Psychiatry. https://doi.org/

10.1038/s41380-019-0477-2

Vasa, F., Seidlitz, J., Romero-Garcia, R., Whitaker, K. J., Rosenthal, G.,

Vertes, P. E., … Consortium, N. (2018). Adolescent tuning of associa-

tion cortex in human structural brain networks. Cerebral Cortex, 28(1),

281–294. https://doi.org/10.1093/cercor/bhx249
Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N.,

… Fjell, A. M. (2011). Consistent neuroanatomical age-related volume

differences across multiple samples. Neurobiology of Aging, 32(5),

916–932. https://doi.org/10.1016/j.neurobiolaging.2009.05.013
Wang, L. B., Su, L. F., Shen, H., & Hu, D. W. (2012). Decoding lifespan

changes of the human brain using resting-state functional connectivity

MRI. PLoS One, 7(8), e44530.

Xu, L., Groth, K. M., Pearlson, G., Schretlen, D. J., & Calhoun, V. D. (2009).

Source-based morphometry: The use of independent component anal-

ysis to identify gray matter differences with application to schizophre-

nia. Human Brain Mapping, 30(3), 711–724. https://doi.org/10.1002/
hbm.20540

Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di

Martino, A., … Milham, M. P. (2013). A comprehensive assessment of

regional variation in the impact of head micromovements on func-

tional connectomics. NeuroImage, 76, 183–201. https://doi.org/10.

1016/j.neuroimage.2013.03.004

Yan, L., Zhuo, Y., Wang, B., & Wang, D. J. (2011). Loss of coherence of low

frequency fluctuations of BOLD FMRI in visual cortex of healthy aged

subjects. Open Neuroimaging Journal, 5, 105–111. https://doi.org/10.
2174/1874440001105010105

Yang, Z., Chang, C., Xu, T., Jiang, L., Handwerker, D. A., Castellanos, F. X.,

… Zuo, X. N. (2014). Connectivity trajectory across lifespan differenti-

ates the precuneus from the default network. NeuroImage, 89, 45–56.
https://doi.org/10.1016/j.neuroimage.2013.10.039

Yee, Y., Fernandes, D. J., French, L., Ellegood, J., Cahill, L. S.,

Vousden, D. A., … Lerch, J. P. (2018). Structural covariance of brain

region volumes is associated with both structural connectivity and

transcriptomic similarity. NeuroImage, 179, 357–372. https://doi.org/
10.1016/j.neuroimage.2018.05.028

Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,

Hollinshead, M., … Buckner, R. L. (2011). The organization of the

human cerebral cortex estimated by intrinsic functional connectivity.

Journal of Neurophysiology, 106(3), 1125–1165. https://doi.org/10.

1152/jn.00338.2011

Zhao, K., Zhao, J., Zhang, M., Cui, Q., & Fu, X. (2017). Neural responses to

rapid facial expressions of fear and surprise. Frontiers in Psychology, 8,

761. https://doi.org/10.3389/fpsyg.2017.00761

Zuo, X. N., He, Y., Betzel, R. F., Colcombe, S., Sporns, O., & Milham, M. P.

(2017). Human Connectomics across the life span. Trends in Cognitive

Sciences, 21(1), 32–45. https://doi.org/10.1016/j.tics.2016.10.005
Zuo, X. N., Kelly, C., Di Martino, A., Mennes, M., Margulies, D. S.,

Bangaru, S., … Milham, M. P. (2010). Growing together and growing

apart: Regional and sex differences in the lifespan developmental

trajectories of functional homotopy. Journal of Neuroscience, 30(45),

15034–15043. https://doi.org/10.1523/JNEUROSCI.2612-10.2010

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Luo N, Sui J, Abrol A, et al. Age-

related structural and functional variations in 5,967 individuals

across the adult lifespan. Hum Brain Mapp. 2020;41:

1725–1737. https://doi.org/10.1002/hbm.24905

LUO ET AL. 1737

https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neubiorev.2006.07.001
https://doi.org/10.1002/hbm.22362
https://doi.org/10.1002/hbm.22362
https://doi.org/10.1016/j.neuroimage.2017.12.060
https://doi.org/10.1016/j.neuroimage.2017.12.060
https://doi.org/10.1017/S1355617712000380
https://doi.org/10.1017/S1355617712000380
https://doi.org/10.3389/fnbeh.2019.00034
https://doi.org/10.3389/fninf.2012.00010
https://doi.org/10.1016/j.neuron.2017.11.039
https://doi.org/10.1016/j.neuron.2017.11.039
https://doi.org/10.1016/j.neuroimage.2010.08.049
https://doi.org/10.1016/j.neuroimage.2010.08.049
https://doi.org/10.1523/Jneurosci.2261-13.2013
https://doi.org/10.1016/j.neuroimage.2012.10.051
https://doi.org/10.1016/j.neurobiolaging.2009.02.008
https://doi.org/10.1016/j.neurobiolaging.2009.02.008
https://doi.org/10.1038/nrn2012
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1016/j.euroneuro.2012.06.007
https://doi.org/10.1038/s41380-019-0477-2
https://doi.org/10.1038/s41380-019-0477-2
https://doi.org/10.1093/cercor/bhx249
https://doi.org/10.1016/j.neurobiolaging.2009.05.013
https://doi.org/10.1002/hbm.20540
https://doi.org/10.1002/hbm.20540
https://doi.org/10.1016/j.neuroimage.2013.03.004
https://doi.org/10.1016/j.neuroimage.2013.03.004
https://doi.org/10.2174/1874440001105010105
https://doi.org/10.2174/1874440001105010105
https://doi.org/10.1016/j.neuroimage.2013.10.039
https://doi.org/10.1016/j.neuroimage.2018.05.028
https://doi.org/10.1016/j.neuroimage.2018.05.028
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.3389/fpsyg.2017.00761
https://doi.org/10.1016/j.tics.2016.10.005
https://doi.org/10.1523/JNEUROSCI.2612-10.2010
https://doi.org/10.1002/hbm.24905

	Age-related structural and functional variations in 5,967 individuals across the adult lifespan
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Data acquisition and preprocessing
	2.2  Independent components derived from ICA for functional and structural data
	2.3  Construction of age-resolved SNC and FNC matrix
	2.3.1  Network construction from structural data
	2.3.2  Network construction from functional data

	2.4  Correlations between age and GMV, SNC, and FNC
	2.5  Comparisons between age-related SNC and FNC variations

	3  RESULTS
	3.1  GMV changes across the adult lifespan
	3.2  SNC changes across the adult lifespan
	3.3  FNC variations across the adult lifespan
	3.4  Comparisons between age-related SNC and FNC variations

	4  DISCUSSION
	4.1  Lifespan changes in GMV
	4.2  Lifespan changes in structural network correlation
	4.3  Lifespan changes in functional network connectivity
	4.4  Comparisons between changes in SNC and FNC
	4.5  Limitations of the current study

	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT

	REFERENCES


