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Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the
low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering
new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and
notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative,
and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful
for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of
triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle
distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites,
regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current
chemotherapeutic strategy against cancer.

1. Introduction

Cancer is a group of diseases characterized by evading growth
suppressors, activating invasion and metastasis, avoiding
immune destruction, and deregulating cellular anabolism
and metabolism. In 2015, a total of 1,658,370 new cancer
cases and 589,430 cancer deaths were projected to occur
in the United States [1]. In China, the estimates of new
cancer incident cases and cancer deaths were 3,372,175 and
2,113,048, respectively [2]. However, chemotherapy always
suffered from increasing multidrug resistance. Thus, iden-
tifying more chemicals extracted from herbal medicines is
an essential step in advancing cancer treatment. Nowadays,
many herbs, typically ginseng and notoginseng, have been
used in clinical practice to treat advanced cancer in eastern
countries, and researchers pay more and more attention to
the potential therapeutic effects of those herbs. Therefore,
it is very important to understand the bioactive effects and
mechanismof themain ingredients and absorbedmetabolites
of these herbs.

Asian ginseng, American ginseng, and notoginseng, the
roots and rhizome of Panax ginseng C. A. Meyer, Panax
quinquefolius L., and Panax notoginseng (Burk.) F. H. Chen,
belong to genus Panax of the family Araliaceae. These
herbs have long been used for preventive and therapeu-
tic purposes for thousands of years in Asian and North
American countries. Ben Cao Gang Mu recorded that Asian
ginseng was usually used as a tonic, sedative, life-prolonging,
or gastrointestinal regulation drug to treat fatigue, blood
deficiency, insomnia, and impotence [3]. American ginseng
was first recorded in Ben Cao Cong Xin in 1757 and was
used for relieving internal heat, cough, bloody phlegm, dys-
phoria and tiredness, and dry and thirsty mouth and throat.
Notoginseng, another herb belonging to the genus Panax, is
well known for treatment of blood disorders. Notoginseng is
usually available in two different forms: the raw and steamed
(processed) forms. The raw notoginseng has been tradition-
ally used for its hemostatic and cardiovascular effects to arrest
internal and external bleeding, reduce swelling and pain,
and remove blood stasis and promote blood circulation [4].
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Unlike raw notoginseng, the steamed form has been widely
accepted to be a tonic to “nourish” the blood and to increase
blood cells in anemic conditions [5].

Modern studies showed that Asian ginseng, Ameri-
can ginseng, and notoginseng exhibited various significant
pharmacological effects, and the anticancer activities of
ginseng types have been extensively investigated based on
the functional capacity of inhibiting cancer cell growth,
inducing angiogenesis, delaying invasion andmetastasis, and
regulating tumor-related immune suppression by their active
ingredients, ginsenosides and their metabolites [6, 7]. PDS
(20(S)-protopanaxadiol (PPD) saponins) and PTS (20(S)-
protopanaxatriol (PPT) saponins) and their metabolites are
the major anticancer active components of the most popular
Panax herbs. Notably, ginsenoside Rg3 was produced as an
antiangiogenic drug in China. In this review, we summarize
and compare the regulatory effects of different ginsenosides
and their metabolites on the development of cancer, and the
corresponding mechanisms have also been discussed.

2. Chemical Structures and Metabolism of
PDS and PTS

Saponins and sapogenins of ginseng types (also named
ginsenosides) are the major bioactive constituents which
were possibly responsible for the comparable and distinct
pharmacological activities in the three Panax herbs [8].
All of the total ginsenosides extracts of these three herbs
are chemical mixtures containing a group of triterpene
glycosides with similar ingredients and structure, which have
been shown to possess anticancer, anti-inflammatory, and
neuroprotective activities and promote blood circulation to
treat cardiocerebrovascular diseases [9]. Nowadays, more
than sixty individual saponins were isolated from these
three Panax herbs. They are classified into two main groups
according to the different aglycone, namely, PDS, such as
ginsenoside Rb1, and PTS, such as ginsenoside Rg1. The two
types of triterpenoid saponins showed diverse or even antag-
onistic pharmacological activities [10]. Cumulated researches
elucidated that the content of total saponins in notoginseng
is higher than those in Asian ginseng [11], while ginsenosides
Rb1, Re, and Rg1 are enriched in American ginseng, and
ginsenosides Rf and Rb2 are enriched in Asian ginseng [12].

It is noteworthy that PDS and PTS are not easily
absorbed by the body through the intestines due to their
hydrophilicity [13]. Little amount of PDS could be absorbed
in the gastrointestinal tract following oral intake. Therefore,
these constituents inevitably come into contact with and
are metabolized by microflora in the alimentary tract. As
shown in Figure 1, upon oral consumption, ginsenosides
are partly transformed into the PPD and PPT through a
series of deglycosylation procedures by acid hydrolysis and
intestinal bacterial actions [14]. All of the metabolites, such
as compound K (CK), PPD, and PPT, are nonpolar compared
to the parental components ginsenosides, which could be
easily absorbed in the gastrointestinal tract and express
biological actions [15]. The ability of PPD to be absorbed
after oral administration had been demonstrated through
pharmacokinetic studies. It was shown that PPDaccumulated

largely in the stomach (44%) and small in the intestine (32%)
and was also present in the brain (0.01%) [16].

Many reports reveal that the metabolites were assessed as
more potent bioactive ingredients than the natural ones. It
is validated that PPD, a stable deglycosylated PDS metabolic
derivative that could be formulated for oral gavage, exerted
antineoplastic actions, which were more effective than its
prototype [17]. A good example is the improved anti-
androgen-independent prostate cancer activity exerted by
the intestinal bacterial metabolites compared to natural
occurring ginsenosides, through decreasing survival rate,
inhibiting proliferation, inducing apoptosis, and leading to
cell cycle arrest in PC-3 cells [18]. The increase of lipotropy
and decrease of C-6 steric hindrance, which were caused by
deglycosylation by intestinal bacteria, might be the reason for
the higher activity of metabolites.

3. Anticancer Effects of Ginsenosides

Preclinical and clinical researches demonstrated that gin-
senosides have cancer preventing activities to various tumors,
including gastric carcinoma, breast cancer, liver cancer,
ovarian cancer, colon cancer, melanoma, and leukemia [19].
Extensive phytochemical and pharmacological studies on
ginseng andnotoginseng proved that the PDS andPTS are the
main anticancer compositions and that the activities of PDS
were more powerful than those of PTS [15, 20, 21]. In general,
the anticancer effects of total ginsenoside fromAsian ginseng
and American ginseng, but not notoginseng, are widely
reported; meanwhile, lots of publications indicated the anti-
cancer effects of many pure ginsenosides, such as ginseno-
sides Rg3 andRh2, isolated fromall of the three ginseng types.
In view of the results reported by Lee et al. [20] and Jin et al.
[21], the relative nonpolar and PDS class ginsenosides exhib-
ited more cytotoxicity on breast cancer cells and efficient
cellular uptake on MCF-7 and MCF-7/MX cells compared
with the relative polar and PTS class compounds. Shim et al.
[15] suggested that the PDS and ginsenosides Rd, Rg3, Rk1,
Rg5, and Rh2 showed potent ormoderate inhibitory activities
on inducing apoptosis of cancer cells through activating the
caspase-3 pathway, whereas the PTS and ginsenosides Rf, Rg1,
Re, Rh1, and Rg2 did not exhibit any inhibitory activity.

The structure-activity relationships indicated that both
glycosylation at C-3-OH and nonoxidation at C-6 on gin-
senosides might be important for the inhibition of the
chymotrypsin-like activity of the 20S proteasome which
plays an important role in selective protein degradation
and regulates cellular events in anticancer process. On the
other hand, several results indicate compound with less
polar chemical structures possesses higher cytotoxic activity
towards cancer cells. The ginsenosides with two molecules
of glucose linked to C-3-OH have a less potent inhibitory
activity than those with one molecule; for example, Rh2
(one glucose at C-3) showed more potent pharmacological
activities than Rg3 (two types of glucose at C-3) [7]. From
this perspective, cytotoxic potencies of the hydrolysates of
PDS and PTS, especially PPD and CK (the hydrolysate of
PPD-type ginsenoside fractions), are much stronger than the
original ginsenosides.
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Figure 1: Major metabolic processes of (a) 20(S)-protopanaxadiol- and (b) 20(S)-protopanaxatriol-type saponins. CK: compound K, PPD:
20(S)-protopanaxadiol, and PPT: 20(S)-protopanaxatriol.
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Figure 2: Therapeutic targets of ginsenosides on cancer. PTS: 20(S)-protopanaxadiol saponins, PDS: 20(S)-protopanaxatriol saponins, PPT:
protopanaxatriol, PPD: protopanaxadiol, and CK: compound K.

It appears that CK, Rh2, Rg3, PPD, and PPT are possibly
responsible for the enhanced anticancer activity of ginseng. In
fact, processing of herbs could change the chromatographic
and pharmacological profiles of notoginseng and cause an
increase of PDS and its hydrolysates, including ginsenosides
Rh2, Rk1, Rk3, andRg3, whichmight contribute to the greater
antiproliferative effects against liver cancer cells, SNU449,
SNU182, and HepG2 of steamed notoginseng than its raw
form [22]. In another case, Lin et al. [23] attested that,
after lactic acid bacteria fermentation, antihepatocarcinoma
activity of notoginseng was improved, along with the fact
that notoginsenoside R1 and ginsenosides Rg1, Rb1, Rd,
and Rh4 were decreased, while ginsenosides Rh1 and Rg3
were increased during fermentation. Additionally, after it
is orally taken, PTS would be inevitably deglycosylated
by intestinal bacteria. For instance, biotransformation of
ginsenoside Rg1 by the fungus Absidia coerulea AS3.2462
yielded five metabolites. Three of them exhibited moderate
reversal activity towards A549/taxolMDR tumor cells in vitro
[24]. The therapeutic targets of ginsenosides on cancer were
summarized in Figure 2.

3.1. Inhibiting Cancer Cell Growth. Extensive experiment data
indicates that ginsenosides could inhibit tumor growth by
inhibiting cancer cell proliferation, which can be related with

inducing apoptosis and autophage of cancer cells, inhibiting
proliferative signaling pathways, or regulating the activity of
tumor suppressors. For instance, ginsenoside Rh1 showed
great estrogenic effect in human breast carcinoma MCF-7
cells [25]. The synthesized monoester of ginsenoside Rh1
showedmoderate effects onmurine H22 hepatoma cells [26].
Yang et al. [27] suggested that ginsenoside Rd could serve as a
lead to develop novel chemotherapeutic or chemopreventive
agents against human cervical cancer.

3.1.1. Inducing Apoptosis and Autophage of Cancer Cells

(1) PPD. Nowadays, PPD has been well characterized to pos-
sess the pleiotropic anticarcinogenesis capabilities in many
cancer cell lines, including A172, A549, B16, Caco-2, Ehrlich
ascites cells L1210, H1299, H358, H838, HCT-116, HCT-8,
HeLa, HepG2, HPAC, Int-407, Jurkat, LNCaP, MCF-7, MDA-
MB-468, Me180, Molt-4, Panc-1, P388, PC3, Raji, SK-HEP-1,
SW-480, T98G, andTHP-1. PPD could induce different forms
of programmed cell death, including typical apoptosis and
autophagy through both caspase-dependent and caspase-
independent mechanisms, which could be testified in models
of two human glioma cell lines, SF188 and U87MG. For the
SF188 cells, PPD activated caspase-3, caspase-7, caspase-8,
and caspase-9 and induced rapid apoptosis. Interestingly, in
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U87MG cells PPD induces cell death without activating any
caspases, but with promoting the dramatic autophagy of cells
[28]. Additionally, PPD induced the intrinsic and extrinsic
apoptotic pathways, activated death receptor 5 and caspase-3,
caspase-8, and caspase-9, and upregulated the mRNA and/or
protein levels of endoplasmic reticulum stress-associated
molecules in HepG2 cells [29]. The research reported by
Popovich and Kitts [30] showed that PPD possessed charac-
teristic effects on the proliferation of human leukemia cells
THP-1 and that the presence of sugars in PPD aglycone struc-
tures reduced the potency to induce apoptosis. It could also
inhibit the growth of acute lymphoblastic leukemia (ALL)
cell lines Reh and RS411 cells by stimulating differentiation
and inhibiting growth and cell cycle progression of ALL cells
without changing cell apoptosis [31].

The analogue of PPD is now also known to be help-
ful for tumor treatment. 20(S)-25-Methoxyl-dammarane-
3𝛽,12𝛽,20-triol (25-OCH

3
-PPD) is a dammarane-type triter-

pene sapogenin isolated from P. notoginseng, which has been
regarded as the principal medicinal component of the plant
and has shown anticancer effects in vitro and in vivo with
a low toxicity to noncancer cells [32]. Bi et al. [33] added it
to LS174, SW620, SW480, and A549 cells and demonstrated
that it significantly inhibited cell proliferation and induced
apoptosis by modulation on 𝛽-catenin, a key mediator in
the Wnt pathway. Meanwhile, other researchers found that
25-OCH

3
-PPD exhibited activity against human H358 and

H838 lung cancer cells and androgen-dependent prostate
cancer cells, LNCaP and PC3, through decreasing survival,
inhibiting proliferation, and inducing apoptosis and G

1
cell

cycle arrest. This compound also decreased the levels of
cell proliferation-associated proteins (MDM2, E2F1, cyclin
D1, and cyclin-dependent kinase 2 (CDK2) and CDK4) and
increased the activation of proapoptotic proteins (cleaved
PARP, cleaved caspase-3, caspase-8, and caspase-9) [32]. Wu
et al. [34] detected that 25-OCH

3
-PPD produced a significant

inhibitory effect on activated t-HSC/Cl-6 cells based on its
regulatory function to increase the level of cellular GSH
and cleaved caspase-3, while PPT, Rg3, Rb1, Rb3, Rg1, Rg2,
and Re showed little or no cytotoxic effects. Aside from 25-
OCH
3
-PPD, 20(R)-dammarane-3𝛽,12𝛽,20,25-tetrol (25-OH-

PPD) has abilities to inhibit proliferation, leading to cycle
arrest, inducing apoptosis on cancer cells, and inhibiting the
growth of xenograft tumors without any host toxicity [35].

(2) CK. 20-O-D-Glucopyranosyl-20(S)-protopanaxadiol (CK,
IH-901, or M1), one of the most important metabolites of
PDS by intestinal microorganisms, is drawing increasing
attention recently due to its potent inhibitory benefits on
cancer, including hepatocarcinoma cells, breast cancer cells,
lymphoma cells, and melanoma cells, in vitro and in vivo
(shown in Table 1) [36]. The IC

50
of CK to inhibit the pro-

liferation was 12.7, 11.4, 8.5, and 9.7𝜇M for B16-BL6, HepG2,
K562, and 95-D cell lines, respectively [37]. Oral adminis-
tration of CK significantly inhibited the tumor proliferation
at the implantation site after intrapulmonary implantation
of Lewis lung carcinoma and colon 26-L5 tumor cells in
concentration- and time-dependentmanners and suppressed
the metastasis to meditational lymph nodes, which was

primarily due to induce caspase-3-dependent apoptosis [38].
Moreover, the analogue of CK, 3-O-oleoyl CK (OCK), caused
2.6-fold suppression of tumor growth compared with CK on
the growth andmetastasis of murine B16-F10 melanoma cells
in C57BL/6 mice [39].

CK exhibits cytotoxicity largely by inducing apoptosis via
generation of reactive oxygen species (ROS), regulating on
cell cycle arrest at the G

1
phase, upregulating Bax, disrupting

the mitochondrial membrane potential, activating caspase-
3, caspase-8, and caspase-9, inhibiting of telomerase activity,
and decreasing cyclooxygenase-2 (COX-2) expression and
prostaglandin E

2
(PGE
2
) levels via an AMP-activated protein

kinase- (AMPK-) dependent pathway [40]. The treatment
of MDA-MB-231 with CK upregulated COX-2 mRNA and
protein and enhanced the production of PGE

2
[41]. Hu et al.

[42] andCho et al. [43] reported that CK significantly inhibits
the viabilities of BGC823, SGC7901, and HL-60 cells in dose-
and time-dependentmannersmainly throughmitochondria-
mediated internal pathway. In theHL-60 treatment, this com-
pound still induced a series of intracellular events associated
with death receptor-dependent apoptotic pathway [43].

Meanwhile, CK led to G
1
cell cycle arrest in tumor cells.

Exposure to CK for 48 hours led to G
1
arrest in Hep3B, U937

cells, MDA-MB-231, Hs578T, and MKN28 cells [40, 41, 44].
The CK-mediated G

1
arrest resulted from an increase in

p27Kip1mRNA and protein expression followed by a decrease
in CDK2 kinase activity. Saiki [45] proposed that the induc-
tion of apoptosis of tumor cells by CK involved the upregula-
tion of the CDK inhibitor p27Kip1 as well as the downregula-
tion of c-Myc and cyclin D1 in a time-dependent manner.

In addition to PPD and CK, Rh2 and Rg3 may be
also effective preclinical candidate compounds for liver can-
cer, breast cancer, prostatic cancer, pediatric acute myeloid
leukemia and glioblastoma, and so forth (shown in Table 1).
X. Wang and Y. Wang indicated that Rh2 significantly
prolonged the survival of mice with pediatric leukemia
and induced apoptosis of leukemia cells through miR-21-
modulated suppression of Bcl-2 [46]. Liu et al. found that
Rh2 dose-dependently reduced SCC viability and increased
autophagy and reduced 𝛽-catenin signaling in SCC cells [47].

3.1.2. Inhibiting Proliferative Signaling Pathways. Besides the
activities mentioned above, PPD and CK can exert their
anticancer effect through direct antiproliferation activation.
In fact, our results suggest that the anticancer activity of
PPD in colon cancer cells may bemediated through targeting
multiple cancer signaling pathways, namely, nuclear factor-
kappa B (NF-𝜅B), JNK, andmitogen-activated protein kinase
(MAPK)/extracellular signal-regulated kinase (ERK) signal-
ing pathways [48]. Hwang et al. [49] also demonstrated the
antiproliferative and proapoptotic effects of an enzymatically
fortified ginseng extract on KATO3 cells appear to be asso-
ciated with the upregulation of Bax, the activation of NF-𝜅B,
and the inhibition ofmTORandPKB signals. PPDalso down-
regulates the PI3K/Akt signaling pathway in A549 cells [50].
Yu et al. [51] found that PPD inhibited estrogen-stimulated
gene expression and cell proliferation both in vitro and in
vivo through blocking [3H]-17-𝛽-estradiol- (E

2
-) induced
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transcriptional activation and inhibiting colony formation of
endometrial cancer cells. Kang et al. described the fact that
CK induced the activation of c-Jun N-terminal kinase (JNK)
and the transcription factor AP-1, a downstream target of
JNK [44]. Furthermore, CK induced apoptosis and inhibits
fibroblast growth factor receptor 3 (FGFR3) expression and
signaling in myeloma cell line KMS-11, suggesting candidacy
for the chemoprevention and the treatment of myeloma [52].

CK also depresses several cell proliferation signaling
pathways, for example, ERK, Janus activated kinase (JAK)
1/signal transducer and activator of transcription 3 (STAT3),
AMPK pathway, and FGFR3 signaling. The treatment of
MDA-MB-231 with CK upregulated COX-2 mRNA and
protein, enhanced the production of PGE

2
, and induced the

sustained activation of ERK [41]. Furthermore, CK inhibited
phosphorylation of STAT3 and its upstream activator, JAK1,
but not JAK2, downregulated STAT3 target genes bcl-xL, bcl-
2, survivin, cyclin E, and D1, and enhanced the expression of
protein tyrosine phosphatase SHP-1, but not phosphatase and
tensin homolog (PTEN) in this treatment [53].

Similar to PPD and CK, other PDS also target in the can-
cer cell proliferation related signaling pathways. For example,
our results strongly suggest that ginsenoside Rg3 diminishes
nuclear staining intensity of 𝛽-catenin; the anticancer activity
of Rg3 may be in part caused by blocking the nuclear
translocation of 𝛽-catenin in colon cancer cells [54]. Besides,
treatment with ginsenoside Rd dose- and time-dependently
inhibited themigration and invasion of humanhepatocellular
carcinoma HepG2, Hep3B, SNU-398, and SNU-878 cells via
blocking MAPK signaling, inhibiting the phosphorylation of
ERK and p38 MAPK, inhibiting AP-1 activation [55].

3.1.3. Regulating the Activity of Tumor Suppressors. Tumor
suppressor, such as p53, VHL, ING4, Rb, PTEN, p16, p21,
APC, DCC, NF1, NF2, WT1, and DR4 death receptor, is a
type of genes that protects a cell from one step on the path
to cancer [56]. Defects in the tumor suppressor pathway
make tumors vulnerable to varieties of stresses, which can
be exploited therapeutically. CK inhibits HCT-116, SW-480,
and HT-29 cancer cell growth by upregulation of p53/p21,
FoxO3a-p27/p15, and Smad3 and downregulation of cdc25A,
CDK4/CDK6, and cyclin D1/3 [57]. Similarly, PPD could
activate p53 and p21 and downregulate the levels of CDK2,
cyclin E and cyclin D1, and PCNA in NIH3T3 cells [58].

As shown in Table 1, several other PDS, such as ginseno-
sides Rg3, Rh2, Rk1, and Rs3, also demonstrated activation
of the activity of p53 and p21 [59]. Rs3 could elevate the
protein levels of p53 and p21WAF1 and then downregulate
the activities of the cyclin-dependent kinases in SK-HEP-
1 cells [60]. Sin et al. indicated that Rg3 could induce
senescence-like growth arrest by regulating Akt and p53/p21-
dependent signaling pathways in human glioma cells [61].
Rg3-mediated phosphorylation of p53 resulted in inhibition
of Akt phosphorylation, which in turn reduced MDM2-
mediated p53 degradation [62]. Rg3 also has antiprolifera-
tive activity against melanoma by decreasing HDAC3 and
increasing acetylation of p53 on lysine (k373/k382) both in
vitro and in vivo [63]. Moreover, Rh2 induces apoptosis and
paraptosis-like cell death in colorectal cancer cells through

activation of p53 [64] and increases the expression level of
DR4 death receptor [65]. Guo et al. [66] found that significant
increases in Fas expression and caspase-8 activity tempo-
rally coincided with an increase in p53 expression in p53-
nonmutated HeLa and SK-HEP-1 cells upon Rh2 treatment.

3.2. Antiangiogenesis. Tumor-induced angiogenesis (neovas-
cularization) is one of the most important events concerning
tumor growth and metastasis [45]. As shown in Tables 1 and
2, PPT, PPD, and several PDS, namely, CK, Rg3, Rh2, Rb1,
andF2, presented significantly antiangiogenic effect.Through
investigating their antiangiogenic effects in an angiogenesis
model of human umbilical vein endothelial cells (HUVECs),
Usami et al. [67] found that PPD displayed inhibition on pro-
liferative activity of HUVECs in a dose-dependent manner
and had potential as anticancer drug candidates.

Jeong et al. [68] investigated the antiangiogenic activity
and relative mechanisms of CK in HUVECs. The outcomes
revealed that CK significantly inhibited the proliferation and
downregulated phosphorylation of p38 MAPK and AKT
in bFGF treated HUVECs. Besides, it inhibited the migra-
tion and tube formation, reduced secreted level of vascular
endothelial growth factor (VEGF), and increased the secreted
level of pigment epithelium-derived factor (PEDF) at noncy-
totoxic concentrations. In vivo experimental results revealed
that CK effectively disrupted bFGF-induced neovasculariza-
tion in theMatrigel plugs excised frommice and inhibited the
tumor formation of SGC7901 cells in nude mice [42, 68].

Recently, 20(S)-ginsenoside Rg3 was produced as a new
anticancer drug in China due to its antiangiogenic effect.
Clinical studies show that Rg3, especially in combination
with chemotherapy, can reduce chemotherapy side effect
and improve life quality and survival rates of patients
with non-small cell lung cancer [171], gastric cancer [172],
esophageal cancer [173], and so forth. The mechanism might
be correlated with antitumor angiogenesis and improving the
immune function. The results were confirmed in many ani-
mal models, such as C57BL/6mice bearing Lewis lung tumor
model and rabbits inoculated with liver VX2 tumor model.
Yu et al. found that Rg3 could suppress the tumor growth and
angiogenesis in VX2 transplanted hepatic tumor model in
experimental rabbits. The tumor microvessel density (MVD)
and the expression of VEGF were significantly lower than
those of the control group [174]. Rg3 also enhanced the
antiangiogenic of capecitabine in a model of BALB/c mice
inoculated with 4T1 breast cancer [175] and inhibited neo-
vascularization and growth of mouse Lewis lung carcinoma
with gemcitabine in C57BL/6 mice inoculated with Lewis
lung carcinoma [176].

3.3. Delaying Invasion and Metastasis. Besides the activities
mentioned above, some compounds belong to PDS and PTS
also exert other pharmacological effects about anticancer.
PDS and its metabolites, including Rb2, Rd, F2, Rh2, Rg3,
CK, and PPD, could inhibit the tumor invasion and metas-
tasis. Moreover, PTS (shown in Table 2) and its metabolites,
including Rg1, Rh1, and PPT, also affect the tumor invasion
and metastasis process. Inhibiting epithelial-mesenchymal
transition (EMT) and regulating the expression and activity
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Table 1: Summary of the anticancer activities of PPD and PDS.

Compounds Activities Mechanisms

Protopanaxadiol
(PPD) Antiproliferation

G
1
phase arrest; promotes melanin production and increases DNA binding sites on the

cell surface and cell adhesiveness [69]; stimulates differentiation [31]; induces
caspase-dependent apoptosis [70]; activates NF-𝜅B signaling [71]; downregulates
PI3K/Akt signaling pathway [50]

Inhibit tumor
growth

Suppresses NF-𝜅B, JNK, and MAPK/ERK signaling pathways [48]; downregulates
full-length AR expression and activity and its constitutively active splice variants [6]

Antimetastasis Downregulates MMP-9 [72] and MMP-2 [73]
Antiangiogenesis Inhibits the proliferation HUVECs

Synergy and
attenuation

Synergies with cyclophosphamide, mitoxantrone, 5-FU, docetaxel, epicatechin,
paclitaxel or vinblastine, irinotecan, tamoxifen, or doxorubicin [74–76]. Reverses
MDR and inhibits P-gp [77]

Ginsenoside Rg3 Antiproliferation

Induces calcium-dependent apoptosis and autophagy [78]; induces DNA
double-strand breaks [79]; downregulates HIF-1𝛼 expression under hypoxia
conditions [80]; downregulates PI3K/Akt [81] and three modules of MAP kinases [82];
inhibits COX-2, NF-𝜅B, phosphorylation of STAT3, ERK1/2, and JNK [83]

Active tumor
suppressors

Induces senescence-like growth arrest by regulating Akt and p53/p21-dependent
signaling pathways [61]

Inhibit cellular
metabolism

Increases the cellular GSH/GSSG ratio, enhances the 𝛾-GCS activity, and suppresses
ROS generation [84]

Antiangiogenesis

Degrades serum IGF-1 level [85]; downregulates KDR and VEGF expressions [86];
decreases intratumoral microvessel density [87]; inhibits VEGF dependent p38/ERK
signaling in vitro and inhibits the mobilization of endothelial progenitor cells from the
bone marrow microenvironment to the peripheral circulation [88]

Inhibit tumor
growth

Downregulates Wnt/𝛽-catenin signaling [54]; decreases HDAC3 and increases
acetylation of p53 [63]; decreases FUT4/LeY expression and inhibits the activation of
EGFR/MAPK pathway [89]

Antimetastasis

Suppresses invasion and MMP-9 expression level [90]; inhibits micro-lymphatic
metastasis of colorectal neoplasms [91]; blocks hypoxia-induced EMT, activates the
ubiquitin-proteasome pathway to promote HIF-1𝛼 degradation, upregulates
E-cadherin via transcriptional suppression of Snail, and downregulates vimentin
under hypoxic conditions [92]

Synergy and
attenuation

Reverses P-gp-mediated MDR [93]; increases radiosensitivity [94]; synergies with
5-FU, As

2
O
3
(arsenic trioxide), capecitabine, cisplatin, CTX, docetaxel, doxorubicin,

gemcitabine, gemcitabine plus cisplatin, mitomycin C and tegafur, paclitaxel,
ribonuclease inhibitor, suramin, tamoxifen, TRAIL, verapamil, and
vinorelbine+cisplatin [95–100]

Immunomodulation
Improves cellular immunity and stimulates ConA-induced lymphocyte proliferation
and augmentation of Th1-type cytokines IL-2 and IFN-𝛾 levels in mice [101]; improves
the immune function [102]

Prevent
tumorigenesis

Reduces tumor incidence in N:GP(S) newborn mice injected with benzo(a)pyrene
[103]; downregulates NF-𝜅B and AP-1 [104]

Ginsenoside Rh2 Antiproliferation

G
1
phase arrest [105]; induces cell differentiation and reduces telomerase activity [106];

induces Ca2+-dependent mitochondrial apoptosis pathway [107]; induces autophagy
[78]; activates NF-𝜅B signaling pathway and upregulates TNF-𝛼 [108]; reduces
Akt/mTOR signaling [109]

Active tumor
suppressors

Increases the expression level of DR4 death receptor [65]; upregulates miRNA-128
expression [110]; activates p53 [64]

Inhibit cellular
metabolism

Induces AMPK and p38 MAPK activation. AMPK determines apoptotic sensitivity of
cancer cells to Rh2 [111]

Inhibit tumor
growth

Inhibits EGFR signaling through PI3K/Akt/mTOR signaling pathways [112] and
upregulation of miR-491 [113]; augment of TGF-𝛽 receptor signaling [114]

Antiangiogenesis Inhibits angiogenesis and lymphangiogenesis and downregulates JAM expression [115]



8 Evidence-Based Complementary and Alternative Medicine

Table 1: Continued.

Compounds Activities Mechanisms
Synergy and
attenuation

Synergies with cisplatin, betulinic acid, CTX, daunomycin, vinblastine, docetaxel,
paclitaxel, and mitoxantrone [116, 117]; reverses P-gp-mediated MDR [118]

Prevent
tumorigenesis

Decreases the tumor incidence in N:GP(S) newborn mice injected with
benzo(a)pyrene model [103, 119]

CK/IH-901/M1 Antiproliferation
G
1
phase arrest [120]. Inhibits telomerase activity and downregulates the human TERT

gene [121]; induces mitochondria-dependent apoptotic pathway [122]; inhibits FGFR3
expression and signaling [52]; induces autophagy [123]

Active tumor
suppressors

Inhibits DNA methyltransferase 1 and reactivates epigenetically silenced genes. IC
50
:

20 ± 1.0 𝜇g/mL [124]; upregulates cytochrome C, p53, and Bax expression [125]
Inhibit cellular
metabolism

CAMK-IV/AMPK pathways [126]; inhibits histone deacetylase activity [127];
modulates AMPK-COX-2 signaling [40]

Anti-inflammation
Inhibits colonic inflammation and tumorigenesis promoted by Western diet. Inhibits
tumor xenograft growth. Reduces EGFR and ErbB2 activation and Cox-2 expression
[128]

Inhibit tumor
growth

Bid-mediated mitochondrial pathway [42]; increases Ca2+ influx, mainly through
TRPC channels and by targeting AMPK [129]

Antimetastasis
Inhibits adhesion, invasion, and spontaneous metastatic growth. Inhibition of AP-1
and MAPK pathways [130]; suppresses the activation of the NF-𝜅B pathway and
inhibition of MMP-2/MMP-9 expression [131]

Antiangiogenesis Regulates MMP expression, as well as the activity of sphingosine kinase-1 and its
related sphingolipid metabolites [132]; blockades of type IV collagenase secretion [133]

Synergy and
attenuation

Synergies with cisplatin, CTX [134]; increases radiosensitivity [135]; decreases the
toxicity of irinotecan [136]

Prevent
tumorigenesis

Prevents tumorigenesis of aberrant crypts in C57BL:6 mice colonized with
ginseng-hydrolyzing bacteria

Ginsenoside Rb1 Antiproliferation Increases the expression levels of caspase-3 and caspase-8 [137]

Antiangiogenesis Inhibits the HGF/SF-induced chemoinvasion. Inhibits tyrosine kinase [10]; regulates
pigment epithelium-derived factor through the estrogen 𝛽 receptor [138]

Attenuation Reduces CTX-induced DNA damage and apoptosis effects [139]
Chemoprevention Induces cytochrome P450 1A1 expression. Aryl hydrocarbon receptor [140]

Ginsenoside Rb2 Antiproliferation Increases the expression levels of caspase-3 and caspase-8 [137]
Antimetastasis Inhibits the adhesion and invasion and suppression of MMP-2 [141]
Prevent
tumorigenesis

Prevents the downregulation of gap junctional intercellular communication by TPA
and hydrogen peroxide [142]

Ginsenoside Rb3 Antiproliferation Inhibits DNA transferring and duplication [143]; inhibits RNF-𝛼-induced NF-𝜅B
activity and inhibits COX-2 and iNOS mRNA levels [144]

Synergy and
attenuation Increases cisplatin’s antiproliferative activity in MCF-7 cells [145]

Ginsenoside Rc Antiproliferation Antiproliferation of HCT-116 and HT-29 cells [146]
Synergy and
attenuation

Reverses MDR, reduces the activity of the efflux pump, enhances T cell proliferation,
and increases the NK cell activity [147]

Ginsenoside Rd Antiproliferation
Inhibits the chymotrypsin-like activity of 26S proteasome [148]; induces apoptosis and
reduces oxidative stress and associates with DNA replication and repair, protein
synthesis and degradation, mutagenesis, and metastasis [149]

Antimetastasis Blocks MMP activation and MAPK signaling pathways [55]
Synergy and
attenuation

Reverses MDR, reduces the activity of the efflux pump, enhances T cell proliferation,
and increases the NK cell activity [147]

Ginsenoside Rk1 Antiproliferation Induces apoptosis, upregulation of Fas, FasL, and Bax, and downregulation of
procaspase-8 and procaspase-3, mutant p53, and Bcl-2 [59]

Ginsenoside Rs3 Antiproliferation G
1
/S phase arrest. Elevates protein levels of p53 and p21WAF1 and downregulates the

activities of the cyclin-dependent kinases [60]



Evidence-Based Complementary and Alternative Medicine 9

Table 1: Continued.

Compounds Activities Mechanisms

Ginsenoside F2 Antiproliferation Induces apoptosis accompanied by protective autophagy. Activates intrinsic apoptotic
pathway and mitochondrial dysfunction [150]

Inhibit tumor
growth

IC
50
: 49.9 ± 4.2 𝜇M. Accumulation of ROS and activating the ASK-1/JNK signaling

pathway [19]
Antimetastasis IC

50
: 50 𝜇g/mL. Activation of caspase-3 and caspase-8 and inhibition of MMP-9 [151]

Ginsenosides Mb, Mc,
and Mx Antiproliferation Antiproliferation of HCT-116 and HT-29 cells [146], as well as HL-60, HGC-27,

Colon205, and Du145 cells [152]

Table 2: Summary of the anticancer activities of PPT and PTS.

Effects Activities Mechanisms
Ginsenosides F1 and
F5 Antiproliferation Induces chromatin condensation and increases sub-G

1
hypodiploid cells.

IC
50
: 23.2 𝜇M and 62.4 𝜇M [153]

Ginsenoside Re Antiproliferation
Increases GSH/GSSG ratio, enhances the 𝛾-GCS activity, and suppresses
ROS generation [84]; inhibits the transferring and duplication of DNA
[143]

Synergy and
attenuation Synergies with cisplatin. Increases cisplatin’s antiproliferative activity [145]

Ginsenoside Rf Antiproliferation
G
2
/M phase arrest. IC

50
: 11.36 𝜇M. Upregulates Bax and downregulates

Bcl-2, CDK1, and cyclin B1, activates caspase-3 and caspase-9, and releases
cytochrome C [154]

Ginsenoside Rg1 Antiproliferation

Inhibits ubiquitin activating enzyme (E
1
) activity [155]; S phase arrest and

induces cell senescence [156]; increases the expression levels of caspase-3
and caspase-8; induces apoptosis [137]; inhibits EpoR-mediated
JAK2/STAT5 signal pathway [157]

Immunomodulation Activates tumor killer cells and enhances the production of NO from
IFN-𝛾 activated-macrophages [158]

Inhibit tumor growth Inhibits colon cancer growth. Downregulates the expression of cyclin D1,
PCNA, and VEGF [159]

Antimetastasis
Suppresses TPA-induced tumor cell invasion and migration by inhibition
of NF-𝜅B-dependent MMP-9 expression [160]; inhibits transforming
growth factor-𝛽1-induced epithelial-to-mesenchymal transition [161]

Synergy and
attenuation

Synergist with IL-2. Activates lymphokine activated killer cells as a
synergistic of IL-2 [162]

Chemoprevention Induces cytochrome P450 1A1 expression. Aryl hydrocarbon receptor
[140]

Ginsenoside Rg2 Antiproliferation IC
50
: 9.0 𝜇M [153]

Ginsenoside Rh1 Antiproliferation Induces differentiation. Stimulates the nuclear translocation of
glucocorticoid receptor [163]; induces apoptosis [30]

Antimetastasis

Inhibits the invasion and migration. Suppresses MMP-1 expression
through inhibition of AP-1 and MAPK signaling pathway [164]; inhibits
MMPs gene expression by suppressing MAPKs, PI3K/Akt, and
downstream NF-𝜅B and AP-1 [165]

Notoginsenoside R1 Antiproliferation Induces differentiation; affects synthesis of DNA and RNA [166];
upregulates p53 gene and downregulates Bcl-2 gene [167]

Protopanaxatriol
(PPT) Antiproliferation Increases sub-G

1
cells [168]; induces apoptosis. Activation of p53 and p21

and downregulation of CDK2, cyclin E and cyclin D1, and PCNA [58]

Antiangiogenesis Inhibits the proliferative activity of HUVECs in a dose-dependent
manner. EC

50
: 6.64 𝜇g/mL [67]

Antimetastasis Enhances natural-killer cytotoxicity by esterified protopanaxatriol [169];
inhibits invasion and downregulation of MMP-9 [72]

Synergy and
attenuation

Reverses daunomycin and vinblastine resistance [170]; synergies with
mitoxantrone; inhibits BCRP-associated vanadate sensitive ATPase
activity [21]
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of cellular adhesive molecules, matrix metalloproteinases
(MMPs), and collagenases are involved in the anti-invasion
effect of ginsenosides.

The results obtained by Li et al. [73] indicated that PPD
significantly inhibited the invasiveness of HT1080 cells in
vitro, and this action is primarily due to downregulating the
expression of MMP-2. Cathcart et al. found that ginsenoside
Rd dose- and time-dependently inhibited the migration and
invasion of human hepatocellular carcinoma HepG2, Hep3B,
SNU-398, and SNU-878 cells via reducing the expression
of MMP-1, MMP-2, and MMP-7 [177] and inducing focal
adhesion formation and modulating vinculin localization
and expression [55].

Other reports indicated that both Rg1 and Rg3 suppress
liver cancer cell HepG2 or lung cancer cell A549 migration
and invasion in vitro by inhibiting the transforming growth
factor- (TGF-) 𝛽1-induced EMT [161, 178]. The anti-invasion
effects of Rg3 and Rh2 were proved related with the expres-
sion ofMMP-13 both in B16F10mousemelanoma cancer cells
and in glioblastoma multiforme cells [179, 180]. 20(S)-Rg3
also effectively inhibits EMT innudemouse xenograftmodels
of ovarian cancer by blocking hypoxia-induced epithelial-
mesenchymal transition [92] and limited metastasis and
promoted survival by downregulating VEGF overexpression
in HCC tumor [181].

3.4. Regulating of Tumor-Related Immune Suppression. The
evidences support the effect of ginsenosides on overcoming
tumor to evade the immune system. Wang et al. [182]
reported that CK could inhibit tumor growth by decreasing
the expressions of immunosuppression-related gene and
suppressing the production of proinflammatory cytokines.
Hao et al. found that total ginsenosides from Asian ginseng
can promote the growth inhibition and apoptosis of human
T lymphocyte Jurkat cells induced by PG human lung
carcinoma cells, which may be related to the upregulation
of cytokine TGF-𝛽1 secretion in PG cells [183]. Zhou et
al. [184] have compared the anticancer activity of CK plus
cyclophosphamide (CTX) with that of CTX alone. The result
exhibited that the combination effect was significantly supe-
rior and synergistic, which might due to immunoregulation
activity of CK by improving the WBC, interleukin- (IL-) 2,
and interferon- (IFN-) 𝛾 degraded of CTX. Further studies
implied that OCK did not directly affect tumor growth in
vitro, whereas it promoted tumor cell lysis by lymphocytes,
particularly nonadherent splenocytes [185].

Dendritic cell (DC) plays a pivotal role in the initiation
of T cell-mediated immune responses through influencing
T cell differentiation towards the Th1, Th2, or Th17 type
and regulating factors related to the direction of the T
cell polarization [186]. PPT exerts anticancer bioactivity
mainly through its ability to improve immunity on DC-
based vaccines [187], and the activity of PPT is stronger
than its original ginsenosides form, PTS. Stimulation with
20𝜇M of PPT increased expression of CD80, CD83, and
CD86 and decreased endocytic activity in DCs [188]. As the
most important anticancer compound in ginseng, Rg3 also
presented inhibition of tumor growth and immunomodula-
tion activities in H22-tumor bearing mice attributed to the

improvement of cellular immunity. It could stimulate ConA-
induced lymphocyte proliferation and augmentation of Th1-
type cytokines IL-2 and INF-𝛾 levels in mice [101].

In addition to the above, ginsenosides also improve the
immune destruction of organism. Jang et al. [189] indicated
thatmethanol extract of culturedwild ginseng cambialmeris-
tematic cells (CMCs) is effective for potentiation of NK cell
and anticancer activity. PPT-primed mature DCs displayed
enhanced T cells stimulatory capacity in an allogeneic mixed
lymphocyte reaction. Mature DCs differentiated with PPT
induced the differentiation of naive T cells towards a Th1
response. The production of IFN-𝛾 and 51Cr release on PPT-
primed mature DCs was augmented, while small amounts of
IL-4 depending on IL-12 secretion were investigated [188].

3.5. Deregulating Cellular Anabolism and Metabolism. More
and more evidence indicated that the anticancer effect of
ginsenosides is also related with its abilities on regulat-
ing abnormal tumor anabolism, metabolism, and glycol-
ysis. Li et al. [190] showed that 20(S)-Rg3 could inhibit
Warburg effect through STAT3/HK2 pathways, and 20(S)-
Rg3 decreased metabolic enzymes in glycolysis including
PKM2, HK2, GLUT1, and LDH, but the mechanism still
needed further study. Aglycone of Rh4 inhibits melanin
synthesis in B16 melanoma cells via the protein kinase A
pathway [191]. Investigations indicated that Rh4 significantly
reduced the cyclic AMP (cAMP) level and downregulated
microphthalmia-associated transcription factor and tyrosi-
nase in B16 melanoma cells. Otherwise, Rg1 has been shown
to bind to the glucocorticoid receptor (GR), leading to the
downregulation of GR expression and the induction of GR-
mediated transcription synergistically with cAMP in FTO2B
rat hepatoma cells [192].

As a kind of aldose reductase inhibitor, Rh2 induced
AMPK and p38 MAPK activation and thus determined
the apoptotic sensitivity of cancer cells [111]. Rg3 and its
metabolite CK also impact on the cancer-related metabolism
pathways like AMPK. Yuan et al. found that Rg3-induced
apoptosis in HT-29 colon cancer cells is associated with
AMPK signaling pathway [193]. CK-mediated cell death of
HT-29 colon cancer cells is regulated by calcium/calmodulin-
dependent protein kinase- (CAMK-) IV/AMPK pathways
[126] andCK induced apoptosis bymodulatingAMPK-COX-
2 signaling in MCF-7 human breast cancer cells [40].

3.6. Inhibiting Tumor-Prompting Inflammation. Tumor pro-
motion often accompanies an elevated ornithine decar-
boxylase (ODC) activity, acute inflammation, and induc-
tion of COX-2 activity, and the eukaryotic transcription
factor NF-𝜅B has been involved in intracellular signaling
pathways associated with inflammation and carcinogenesis
[194]. CK has been reported to possess anti-inflammatory
effects by inhibiting 12-O-tetradecanoylphorbol-13-acetate-
(TPA-) induced COX-2 expression. Lee et al. [195] showed
that topical application of CK onto shaven backs of female
ICR mice led to the inhibition of TPA-induced expression of
COX-2 and production of PGE

2
. CK pretreatment inhibited

TPA-induced epidermal NF-𝜅B DNA binding in mouse skin,
which appeared to be mediated by blocking phosphorylation
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and subsequent degradation of I𝜅B𝛼. The regulatory effect
on COX-2 and NF-𝜅B has also been found in Rg3-pretreated
mouse skin stimulated by TPA [104].

3.7. Depressing Carcinogenesis. Eliminating and reducing risk
factors of carcinogenesis are considered a critical step to
tumor prevention and control. Korean investigators car-
ried out extensive long-term anticarcinogenicity experiments
with 2000 newborn mice stimulated by several chemical
carcinogens and suggested that traditional Chinese medicine
ginseng holds a potential anticancer effect [196]. There was a
22% decrease (𝑝 < 0.05) in the incidence of urethane induced
lung adenoma by the use of red ginseng extract. Yun and col-
leagues indicated that red ginseng extract showed inhibition
of lung tumor incidence, while fresh ginseng did not [196].
Another research from Yun’s group also demonstrated that
the anticarcinogenicity of ginseng was more prominent in
aged or heat treated extracts of ginseng and red ginsengmade
by steaming. Moreover, ginsenosides Rg3, Rg5, and Rh2 were
found to be active anticarcinogenic compounds [103].

The report by Keum and colleagues suggested that Rg3
also inhibits the tumor promotion. Pretreatment of dorsal
skins of female ICR mice with Rg3 significantly inhib-
ited TPA-induced ornithine decarboxylase activity and 7,12-
dimethylbenz[a]anthracene-initiated papilloma formation.
Rg3 pretreatment also abrogated the expression of COX-
2 in TPA-stimulated mouse skin possibly through down-
regulation of NF-𝜅B and AP-1 transcription factors [104].
Furthermore, Rb2 prevents human cancers by downregula-
tion of gap junctional intercellular communication by TPA
and hydrogen peroxide in WB-F344 rat liver epithelial cells
[142]. CK could prevent tumorigenesis of aberrant crypts in
C57BL:6 mice colonized with ginseng-hydrolyzing bacteria
[197].

Phase 2 detoxification enzymes protect against carcino-
genesis and oxidative stress. Lee et al. [198] illustrated that
PPD induced the activity of phase 2 detoxification enzymes.
Ginseng extracts and components (such as PPD and PPT)
were assayed for inducer activity of NQO1 (quinone reduc-
tase), a phase 2 enzyme, in Hepa1c1c7 cells. Wang et al. [140]
suggested that the chemopreventive effect of Panax ginseng
may be also due, in part, to ginsenosides Rg1 and Rb1’s
ability to compete with aryl hydrocarbons for both the aryl
hydrocarbon receptor and CYP1A1 in HepG2 cell.

3.8. Synergy with Chemotherapy. It is suggested that the com-
bination of ginsenoside or notoginsenoside with chemother-
apy drugs acts synergistically to produce therapeutic effects
greater than those that can be achieved with single use.
With the aim of increasing the activities and decreasing
the side effects, the adjuvant potentials of saponins had
been screened. Combining 25-OCH

3
-PPDwith conventional

chemotherapeutic agents or radiation led to potent anticancer
effects. The tumor regression was almost complete following
administration of 25-OCH

3
-PPD and taxotere/gemcitabine

[35]. Researchers had also hypothesized that the potential
therapeutic efficacy of PTS and PDS possibly could be
enhanced when they are cotreated with various kinds of
known tumor necrosis factor- (TNF-) 𝛼 antagonists [119].

As is mentioned above, PPD could also be an adjuvant
agent to achieve more effective anticancer activities. It has
been assessed by calcein AM efflux assay that PPDwas able to
inhibit P-glycoprotein (P-gp) activity as potently as verapamil
on MDR cells, while it did not affect ATPase activity of P-gp
[77]. Combinations of PPD and docetaxel yieldmore additive
or synergistic activity on established PC-3 tumors com-
pared to animals treated with docetaxel alone [117]. Besides,
PPD synergistically enhances cytotoxicity of tamoxifen and
mitoxantrone in an estrogen receptor-independent fashion,
probably by downregulating Akt activity [21, 51].

As shown in Table 1, PDS including Rc, Rd, Rb1, Rh2,
and Rb3 show synergistic activity with chemotherapeutic
drugs. Choi et al. [199] demonstrated that PTS isolated
from ginseng also has a chemosensitizing effect on P-
gp-mediated multidrug resistance (MDR) cells by increas-
ing the intracellular accumulation of drugs through direct
interaction with P-gp at the azidopine site. Kitagawa et
al. [200] examined that PPT increased the accumulation
of P-gp substrate daunorubicin 3.6-fold, more potent than
that of CK. Collectively, ginseng types or ginsenosides
administration might render an improved efficiency and an
ameliorated toxicity of chemotherapy during cancer treat-
ment.

4. Conclusion

Observations published in the last years suggest that gin-
senoside could be an anticancer agent for various cancers,
and the anticancer property of ginsenoside is associated
with the induction of apoptosis or autophagy and inhibition
of cell proliferation, metastasis, and angiogenesis, as well
as modulating the immune system. As the major active
components of ginseng types, PTS and PDS ginsenosides
have shown wide anticancer properties with respective char-
acteristics. Compared with PTS, PDS ginsenosides (e.g., Rg3)
and its metabolites or derivates have stronger therapeutic
potential for inhibiting the growth, angiogenesis, metastasis,
inflammation, and immune evasion of cancer. On the other
hand, PTS and PPT regulate abnormal tumor anabolism,
metabolism, and glycolysis in cancer. PTS and its derivatives
also depress carcinogenesis and improve the antitumor activ-
ity of chemotherapeutic drugs.

As a result of the multiple targets and signaling pathways
of ginsenosides, we still could not get a clear understanding
of the anticancer effect of ginseng types. But the current
research has confirmed the anticancer effect of ginseng
types in the aspects mentioned above. Although the research
progress on ginseng has greatly promoted its application,
how PTS and PDS target cancer-related signaling pathways
remains unclear, and the further details and mechanism are
still unknown. Thus, it is of importance to understand the
characteristics and possible mechanisms associated with the
anticancer effects of ginseng derivatives.

Abbreviations

25-OCH3-PPD: 20(S)-25-Methoxyl-dammarane-
3𝛽,12𝛽,20-triol
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25-OH-PPD: 20(R)-Dammarane-3𝛽,12𝛽,20,25-tetrol
Akt: Protein kinase B
ALL: Acute lymphoblastic leukemia
AMPK: AMP-activated protein kinase
cAMP: Cyclic AMP
AP-1: Activator protein-1
AR: Androgen receptor
ASK-1: Apoptosis signal regulating kinase-1
ATP: Adenosine triphosphate
Bcl-2: B-cell lymphoma-2
BCRP: Breast cancer resistance protein
CDK: Cyclin-dependent kinase
CK: Compound K
COX-2: Cyclooxygenase-2
CTX: Cyclophosphamide
DC: Dendritic cell
EGFR: Epidermal growth factor receptor
EMT: Epithelial-mesenchymal transition
ERK: Extracellular signal-regulated kinase
bFGF: Basic fibroblast growth factor
FGFR3: Fibroblast growth factor receptor 3
FUT4: Fucosyltransferase 4
GCS: Glasgow Coma Scale
GR: Glucocorticoid receptor
GSH: Glutathione
GSSG: Oxidized glutathione
HDAC3: Histone deacetylase 3
HGF/SF: Hepatocyte growth factor/scatter factor
HIF-1: Hypoxia inducible factor-1
HUVEC: Human umbilical vein endothelial cell
IFN: Interferon
IL: Interleukin
JAK: Janus activated kinase
JAM: Junctional adhesion molecule
JNK: c-Jun N-terminal kinase
KDR: Kinase insert domain receptor
MAPK: Mitogen-activated protein kinase
MDR: Multidrug resistance
MMP: Matrix metalloproteinase
MVD: Mevalonate (diphosphate) decarboxylase
NADPH: Nicotinamide adenine dinucleotide

phosphate
NF-𝜅B: Nuclear factor-kappa B
NO: Nitric oxide
NQO1: NADPH quinone oxidoreductase 1
OCK: 3-O-Oleoyl compound K
PARP: Poly(ADP-ribose) polymerase
PCNA: Proliferating cell nuclear antigen
PDS: 20(S)-Protopanaxadiol saponin
PGE
2
: Prostaglandin E

2

PI3K: Phosphatidylinositol 3-kinase
PPD: 20(S)-Protopanaxadiol
PPT: 20(S)-Protopanaxatriol
PTEN: Phosphatase and tensin homolog
PTS: 20(S)-Protopanaxatriol saponin
RNF-𝛼: RING finger protein-alpha
ROS: Reactive oxygen species
TERT: Telomerase reverse transcriptase
TGF: Transforming growth factor

TPA: 12-O-Tetradecanoylphorbol-13-acetate
TRAIL: Tumor necrosis factor-related

apoptosis-inducing ligand
TRPC: Transient receptor potential channel
VEGF: Vascular endothelial growth factor.
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