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ABSTRACT Exploiting sparsity in the image gradient magnitude has proved to be an effective means
for reducing the sampling rate in the projection view angle in computed tomography (CT). Most of
the image reconstruction algorithms, developed for this purpose, solve a nonsmooth convex optimization
problem involving the image total variation (TV). The TV seminorm is the `1 norm of the image gradient
magnitude, and reducing the `1 norm is known to encourage sparsity in its argument. Recently, there has
been interest in employing nonconvex `p quasinorms with 0<p<1 for sparsity exploiting image reconstruc-
tion, which is potentially more effective than `1 because nonconvex `p is closer to `0—a direct measure
of sparsity. This paper develops algorithms for constrained minimization of the total p-variation (TpV),
`p of the image gradient. Use of the algorithms is illustrated in the context of breast CT—an imaging
modality that is still in the research phase and for which constraints on X-ray dose are extremely tight.
The TpV-based image reconstruction algorithms are demonstrated on computer simulated data for exploiting
gradient magnitude sparsity to reduce the projection view angle sampling. The proposed algorithms are
applied to projection data from a realistic breast CT simulation, where the total X-ray dose is equivalent
to two-view digital mammography. Following the simulation survey, the algorithms are then demonstrated
on a clinical breast CT data set.

INDEX TERMS Computed tomography, X-ray tomography, image reconstruction, iterative algorithms,
optimization.

I. INTRODUCTION
Much research for iterative image reconstruction (IIR) in
computed tomography (CT) has focused on exploiting gra-
dient magnitude image (GMI) sparsity. Several theoretical
investigations have demonstrated accurate CT image recon-
struction from reduced data sampling employing various
convex optimization problems involving total variation (TV)
minimization [1]–[6]. Many of these algorithms have been
adapted to use on actual scanner data for sparse-view CT [7]–
[12] or gated/dynamic CT [7], [13]–[17]. While the volume
of work on this topic speaks to the success of the idea of
exploiting GMI sparsity, TV minimization is not the most
direct method for taking advantage of this prior.

The most direct measure of sparsity is totaling the number
of nonzero pixels in an image. Mathematically, the number
of nonzero components of a vector can be expressed as the `0
norm, which is understood to be the limit as p goes to zero of
the pth power of the `p norm:

‖v‖pp ≡
∑
i

|vi|p. (1)

As of yet, no algorithms have been developed for CT IIR
that minimize `0 of the GMI, and sparsity exploiting IIR has
focused on minimizing `1 of the GMI – also known as TV.
Logically, p < 1 should improve on exploitation of GMI
sparsity for sampling reduction, but optimization problems
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involving `p for 0 < p < 1 are nonconvex and may have
multiple local minima. Recent theoretical results, however, do
show that values of p leading to nonconvex optimization prob-
lems may be practical for compressive sensing applications
[18]–[20]. For exploiting GMI sparsity in particular accurate
solvers have been developed for minimization of the total
p-variation (TpV) using reweighting techniques [21].

For tomographic X-ray imaging, the idea of exploiting
nonconvex `p norms has been applied to perfusion imaging
[22] and metal artifact reduction [23]. We have investigated
the use of TpV minimization in the context of IIR for digital
breast tomosynthesis [24]. While these works show poten-
tial applications, they do not characterize quantitatively how
muchmore sampling reduction is made possible by exploiting
nonconvex TpV minimization as compared with convex TV
minimization.

Despite the interest in TV-based IIR for CT over the past
few years, the undersampling allowed for CT by TV mini-
mization has only recently been quantified [5]. The aim of
this article is to develop accurate solvers for nonconvex TpV
minimization and to quantify further reduction of the number
of projections needed. Although the primary interest here is
in ideal theoretical image recovery, we also apply the same
algorithms to a realistic simulation of a breast CT in order to
demonstrate that the presented algorithms are robust against
noise and may prove useful for actual use with CT scanner
data. Section II provides theoretical motivation for noncon-
vex optimization; Section III presents the IIR algorithms for
TpVminimization; Section IV discusses algorithm parameter
choices; Section V surveys image reconstruction on ideal
CT simulated data to test phantom recovery as a function of
number of views and value of p; Section VI presents image
reconstruction by nonconvex TpVminimization on a realistic
breast CT simulation; and finally, Section VII applies one of
the proposed algorithms to clinical breast CT data.

II. MOTIVATION FOR NONCONVEX OPTIMIZATION FOR
EXPLOITING SPARSITY IN IIR
We write the CT data model generically as a linear system

g = X f, (2)

where f ∈ RN is the image vector comprised of voxel
coefficients, X ∈ RM×N is the system matrix generated
by projection of the voxels, and g ∈ RM is the data
vector containing the estimated projection samples. The
model can be applied equally to 2D and 3D geometries, and
we note that there are many specific forms to this linear
system depending on sampling, image expansion elements,
and approximation of continuous fan- or cone-beam
projection.

We focus on CT configurations with sparse angular sam-
pling, where the sampling rate is too low for Eq. (2) to have a
unique solution. In this situation, there has been much interest
in exploiting GMI sparsity of the object to narrow the solution
space and potentially obtain an accurate reconstruction from
under-sampled data. The formulation of this idea results in a

nonconvex constrained optimization:

f◦ = argmin
f
‖(|∇f|)‖0 such that g = X f, (3)

where the argument of the `0-norm is the voxel-wise mag-
nitude of the image spatial gradient, and ∇ ∈ RdN×N

represents a discrete gradient operator with spatial dimension
d = 2 or 3. In order to make clear the distinction between a
spatial-vector valued image, such as an image gradient, and
a scalar valued image, we employ a vector symbol for the
former case. For example, let Ez = ∇f be the gradient of an
image, where we stack the partial-derivative image vectors, so
that Ez ∈ R2N or ∈ R3N depending on whether we are working
on 2 or 3 dimensions, respectively. Also, we use the absolute
value symbol to convert a vector-valued image to a scalar
image by taking the magnitude of the spatial-vector at each
pixel/voxel. For example,m = |Ez| is a scalar image indicating
the spatial-vector magnitude of Ez. We define multiplication,
division, and other operations on vectors (other than matrix
multiplication) by performing the operation separately for
each component. Finally, we define multiplication between
a scalar image m and spatial-vector image Ez; Ez′ = m Ez by
scaling the spatial-vector pixelwise/voxelwise, i.e., Ez′i = mi Ezi
for i = 1, . . . ,N . The `0-norm in Eq. (3) counts the number
of non-zero components in the argument vector; and g is the
available projection data. In words, this optimization seeks
the image f with the lowest GMI sparsity while agreeing
exactly with the data.
The optimization problem in Eq. (3) does not lead directly

to a practical image reconstruction algorithm, because, as of
yet, no large scale solver is available for this problem. Also,
the equality constraint, requiring perfect agreement between
the available and estimated data, makes no allowance for
noise or imperfect physical modeling of X-ray projection.
In working toward developing a practical image reconstruc-
tion algorithm, different relaxations of Eq. (3) have been
considered. One such relaxation is

f◦ = argmin
f
‖(|∇f|)‖pp such that ‖g− X f‖2 ≤ ε, (4)

where the `0-norm is replaced by the `p-norm, and the
data equality constraint is relaxed to an inequality constraint
with data-error tolerance parameter ε. An important strategy,
which has been studied extensively in compressive sensing
[25], [26], is to set p = 1, which corresponds to TVminimiza-
tion. This, on the one hand, maintains some of the sparsity
seeking features of Eq. (3) and, on the other hand, leads
to a convex problem, which has convenient properties for
algorithm development. For example, a local minimizer is a
global minimizer in convex optimization.
Another interesting option for GMI sparsity-exploiting

image reconstruction is to consider Eq. (4) for 0 < p < 1.
Such a choice for p leads to nonconvex optimization, which
can allow for greater sampling reduction than the p = 1
case while maintaining highly accurate image reconstruc-
tion. These gains intuitively stem from the fact p < 1 is
closer to the ideal sparsity-exploiting case of p → 0; the
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catch, however, is on the algorithmic side where one has to
deal with potential local minima, which are not part of the
global solution set. Despite this potential difficulty, practical
algorithms based on this nonconvex principle are available
[20], [27], and gains in sampling reduction for various imag-
ing systems have been reported for both simulated and real
data cases. For X-ray tomography, use of this nonconvex
strategy has shown promising results [24], [28], but the algo-
rithms proposed in those works for CT are only motivated
by the optimization problem in Eq. (4) and are not accurate
solvers of this problem. An accurate solver is important for
theoretical studies of CT image reconstruction with under-
sampled data and may also aid in developing algorithms for
limited-data tomographic devices.

III. ALGORITHM FOR CONSTRAINED TpV MINIMIZATION
In order to address constrained minimization problems such
as the one in Eq. (4), the optimization problem is frequently
converted to unconstrained minimization essentially by con-
sidering the Lagrangian of Eq. (4):

f◦ = argmin
f
‖(|∇f|)‖pp + µ‖g− X f‖

2
2. (5)

This approach is employed often even for the convex case
of p ≥ 1. Here, we derive an algorithm for solving Eq. (4)
directly by employing the Chambolle-Pock (CP) framework
[29], [30]. The strategy, illustrated in a simple one dimen-
sional example in Appendix VIII-A, is to convert TpV min-
imization to a convex weighted TV minimization problem,
and write down the CP algorithm which solves the convex
weighted problem. Once we have this algorithm, reweighting
[31], [32] is employed to address the original TpV minimiza-
tion problem. Maintaining the constrained form of the non-
convex minimization problem in Eq. (4) has two physically-
motivated advantages: (1) the data-error tolerance ε has more
physical meaning than the regularization parameter µ of the
corresponding unconstrained problem of Eq. (5) [2], [33], and
(2) this form is more convenient for assessing p-dependence
of the reconstructed images because changing p does not alter
the data fidelity of the solution.

We start by rewriting Eq. (4), using an indicator function
to encode the constraint:

f◦ = argmin
f

{
‖(|∇f|)‖pp + δB2(ε)(X f− g)

}
. (6)

The indicator function is defined by

δS (x) =

{
0 x ∈ S
∞ x /∈ S,

(7)

and the ball Bp is defined as the following set:

Bp(r) ≡ {x such that ‖x‖p ≤ r}. (8)

We also define an ‘‘ellipsoidal’’ set E∞:

E∞(r) ≡ {x such that ‖x/r‖∞ ≤ 1}, (9)

where ‖v‖∞ = max{|v1|, . . . , |vN |} denotes the maximum
norm. For p < 1, Eq. (6) is not a convex problem, and as

a result the CP algorithm cannot be applied directly to it.
Following the reweighting strategy, we alter the objective
function and introduce a weighted convex term to replace the
nonconvex one:

f◦ = argmin
f

{
‖(w|∇f|)‖1 + δB2(ε)(X f− g)

}
. (10)

A CP algorithm for this convex problem is straightforward
to derive, which will be done in Sec. III-A. To obtain an
algorithm for the nonconvex problem in Eq. (6), we use the
same algorithm solving Eq. (10) except that we alter the
weights at each iteration by

w =

(√
η2 + |∇f|2

η

)p−1
, (11)

where η is a smoothing parameter introduced to avoid the
singularity for p < 1. The additional 1/η factor in the
definition of w sets the maximum value possible for w to
unity. Note also that w > 0 for p ≤ 1.
Before going on to deriving the reweighted CP algorithm,

we introduce two parameters λ and ν, which are convenient
for algorithm efficiency and avoiding algorithm instability
due to the reweighting. Both of these parameters are intro-
duced into the weighted TV term of Eq. (10):

f◦ = argmin
f

{
λ

ν
‖(w|ν∇f|)‖1 + δB2(ε)(X f− g)

}
. (12)

It is clear that ν does not alter this optimization problem in
any way, because the ν in the denominator cancels the one in
front of∇. The parameter λ does affect the objective function,
but for fixed weights w the solution of Eq. (12) does not
depend on λ because of the hard constraint enforced by the
indicator function. The effect of both of these parameters will
be discussed in detail in Sec. IV-A.

A. ALGORITHM DERIVATION AND PSEUDOCODE
The CP algorithm is designed to solve the following primal-
dual pair of optimization problems:

x◦ = argmin
x
{G(x)+ F(Kx)}, (13)

v◦ = argmax
v

{
−G∗(KT v)− F∗(v)

}
, (14)

where G and F are convex functions and K is a matrix,
and where ∗ indicates convex conjugation by the Legendre
transform

F∗(v) = max
v′

{
vT v′ − F(v′)

}
, (15)

G∗(x) = max
x′

{
xT x′ − G(x′)

}
.

As described in Ref. [30], many optimization problems of
interest for CT image reconstruction can be mapped onto the
generic minimization problem of Eq. (13). Deriving a CP
algorithm involves the following steps:
(1) Make identifications between an optimization problem of
interest, in our case Eq. (10), and Eq. (13).
(2) Derive convex conjugates F∗ and G∗.
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(3) Compute the proximal mappings proxτ [G](x) and
proxσ [F

∗](v), defined by

proxσ [F
∗](v) = argmin

v′

{
F∗(v′)+

1
2σ
‖v− v′‖22

}
,

proxτ [G](x) = argmin
x′

{
G(x′)+

1
2τ
‖x− x′‖22

}
. (16)

(4) Substitute necessary components into Algorithm 1.

Algorithm 1 Pseudocode for N Steps of the Generic CP
Algorithm

1: L ← ‖K‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n← 0
2: initialize x0 and v0 to zero vectors
3: x̄0← x0
4: repeat
5: vn+1← proxσ [F

∗](vn + σK x̄n)
6: xn+1← proxτ [G](xn − τK

T vn+1)
7: x̄n+1← xn+1 + θ (xn+1 − xn)
8: n← n+ 1
9: until n ≥ N

Because both terms in Eq. (12) contain linear transforms,
the whole objective function is identified with F and the
linear transform K combines both X-ray projection X and the
discrete gradient ∇. The necessary assignments are

F(y, Ez) =
λ

ν

∥∥(w|Ez|)∥∥1 + δB2(ε)(y− g),

G(f) = 0,

K =
(
X
ν∇

)
, (17)

where the dual space contains vectors which are a concatena-
tion of a data vector of size M and an image gradient vector
of size image dimension d times N , (y, Ez)T ∈ R(M+dN ) and
K ∈ R(M+dN )×N . Note that in making the assignments, the
parameter ν appears in the objective function F(y, Ez) and the
linear transform K . Even though this parameter plays no role
in the optimization problem in Eq. (12), it affects algorithm
performance because it enters into the linear transform affect-
ing L, σ and τ at line 1 in Algorithm 1.
The detailed derivations for the necessary components

G∗, F∗, proxτ [G], proxσ [F
∗] are presented in Appendices

B, C, and D. Using the substitutions for the prox mappings
generates the pseudocode in Algorithm 2 aside from the
reweighting step in line 9. Note that the∇ operator in this line
does not have a factor of ν in front. This omission is by design,
so that level of smoothing does not change with ν. This
algorithm nominally solves Eq. (6), but there is no proof of
convergence. We are only guaranteed that Algorithm 2 solves
Eq. (12) if the weights w are fixed. As w is in fact changing
at line 9, convergence metrics take on an extra role; they not
only tell when the solution is being approached but also if
the particular choice of algorithm parameters yields stable or

unstable updates. In particular, the convergence criteria play
an important role in determining ν and λ in Sec. IV-A.

Algorithm 2 Pseudocode for N Steps of the CP Algorithm
Instance for Reweighted Constrained TpV Minimization

1: INPUT: data g, data-error tolerance ε, exponent p, and
smoothing parameter η

2: INPUT: algorithm parameters ν, λ
3: L ← ‖(X , ν∇)‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n←

0
4: initialize f0, y0, and Ez0 to zero vectors
5: f̄0← f0
6: repeat
7: y′n← yn + σ (X f̄n − g)
8: yn+1← max(‖y′n‖2 − σε, 0)

y′n
‖y′n‖2

9: w←
(√

η2 +
∣∣∇ f̄n∣∣2/η)p−1

10: Ez′n = Ezn + σν∇ f̄n
11: Ezn+1← Ez′n((λw/ν)/max(λw/ν, |Ez′n|))
12: fn+1← fn − τ (XT yn+1 + ν∇T Ezn+1)
13: f̄n+1← fn+1 + θ (fn+1 − fn)
14: n← n+ 1
15: until n ≥ N
16: OUTPUT: fN
17: OUTPUT: w, yN , and EzN for evaluating cPD and condi-

tions 3.

To check convergence, we derive the conditional primal-
dual (cPD) gap and auxiliary conditions [30]. From the
expressions for G∗ and F∗ the dual maximization problem
to Eq. (12) becomes

(y◦, Ez◦)T = argmax
(y,Ez)T

{
−ε‖y‖2 − yT g

−δE∞(λw/ν)(|Ez|)− δ0(−ν∇T Ez− XT y)
}
. (18)

To form cPD, the primal-dual gap is written down without the
indicator functions:

cPD =
λ

ν
‖(w|ν∇f|)‖1 + ε‖y‖2 + yT g. (19)

Auxiliary conditions are generated by each of the indicator
functions in both the primal and dual objective functions.
From the primal problem in Eq. (12) there is one constraint
and from the dual maximization there are two additional
constraints:

condition 1: ‖X f− g‖2 ≤ ε (20)

condition 2: |Ez| ≤ λw/ν (21)

condition 3: ν∇T Ez+ XT y = 0. (22)

Condition 1 is the designed constraint on the data-
error. Condition 2 does not provide a useful check
because it is directly enforced at line 11 of Algorithm 2.
Condition 3 is non-trivial and provides a useful part of the
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convergence check. Before demonstrating this nonconvex
algorithm for GMI sparsity-exploiting image reconstruction,
we present another variant that uses ‘‘anisotropic’’ TpV. It
will be seen that this variant may allow for even greater
reduction in sampling requirements.

B. CONSTRAINED, ANISOTROPIC TpV MINIMIZATION
To this point we have been considering the isotropic form of
TpV, which in two dimensions has the particular numerical
implementation

‖(|∇f|)‖pp ≡
∑
s,t

(√
(fs,t − fs−1,t )2 + (fs,t − fs,t−1)2

)p
,

where fs,t labels the scalar pixel value at image pixel loca-
tion (s, t). Now we consider constrained minimization using
anisotropic TpV, the `p quasinorm of the gradient-vector
image rather than of the GMI:

f◦ = argmin
f

{
‖∇f‖pp + δB2(ε)(X f− g)

}
, (23)

where in two dimensions the numerical implementation of
anisotropic TpV is

‖∇f‖pp ≡
∑
s,t

{
|fs,t − fs−1,t |p + |fs,t − fs,t−1|p

}
.

The consequence of this change is that for reweighting, the
weights are computed separately for each partial-derivative
image, allowing for finer control. Note that the expressions
for isotropic and anisotropic TpV are the same when p = 2.

The reweighting program for solving Eq. (23) is listed
in Algorithm 3, where the only differences in the listing
appear at lines 10 and 12. For clarity, the component scalar
images of the vector-valued weight images are written out at
line 10, assuming a 2D gradient operator. Extension to 3D is
straightforward. For convergence checking, we have

cPDani =
λ

ν

∥∥ν( Ew∇f)∥∥1 + ε‖y‖2 + yT g. (24)

The auxiliary conditions 1 and 3 remain the same.

IV. SYSTEM SPECIFICATION AND PARAMETER TUNING
Two linear transforms are important for the present theoretical
studies on CT image reconstruction from limited projection
data: the system matrix X modeling X-ray projection, and the
matrix ∇ representing the finite differencing approximation
of the image gradient. For computing the gradient ∇, 2 point
forward differencing in each dimension is used, as described
in Ref. [30].

For specifying X , we simulate a configuration similar to
that of breast CT except that we only consider here 2D fan-
beam CT. The X-ray source to detector midpoint distance is
taken to be 72 cm and the source to rotation center is 36 cm.
The detector is modeled as a linear array with 256 detector
bins. The source scanning arc is a full 360◦ circular trajectory.
The angular sampling interval is equispaced along the trajec-
tory, but the number of views is varied for the sparse sampling

Algorithm 3 Pseudocode for N Steps of the CP Algorithm
Instance for Reweighted Constrained Anisotropic TpV
Minimization

1: INPUT: data g, data-error tolerance ε, exponent p, and
smoothing parameter η

2: INPUT: algorithm parameters ν, λ
3: L ← ‖(X , ν∇)‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n←

0
4: initialize f0, y0, and Ez0 to zero vectors
5: f̄0← f0
6: repeat
7: y′n← yn + σ (X f̄n − g)
8: yn+1← max(‖y′n‖2 − σε, 0)

y′n
‖y′n‖2

9: Eh← ∇ f̄n

10: Ew = {w1,w2} ←

(
1
η

{√
η2 + h21,

√
η2 + h22

})p−1
11: Ez′n = Ezn + σνEh
12: Ezn+1← Ez′n((λ Ew/ν)/max(λ Ew/ν, Ez′n))
13: fn+1← fn − τ (XT yn+1 + ν∇T Ezn+1)
14: f̄n+1← fn+1 + θ (fn+1 − fn)
15: n← n+ 1
16: until n ≥ N
17: OUTPUT: fN
18: OUTPUT: Ew, yN , and EzN for evaluating cPDani and con-

ditions 3.

investigation. The pixel array consists of a 128× 128 grid 18
cm on a side. Only the pixels in the inscribed circle of radius
18 cm are allowed to vary, accordingly the total number of
active image pixels in the field-of-view (FOV) is 12,892 out
of the 16,384 of the full square array.1 The matrix elements
of X are computed by the line-intersection method.
The test phantom, shown in Figure 1, models fat, fibrog-

landular tissue, and microcalcifications with linear attenua-
tion coefficients of 0.194 cm−1, 0.233 cm−1, and 1.6 cm−1,
respectively, for a monochromatic X-ray beam at 50 keV. The
phantom is a realization of a probabilistic model described
in Ref. [34]. For this phantom, the image is discretized on a
128 × 128 pixel array, and the gray values are thresholded
and set to the values corresponding to one of the three tissue
types. Constructing the phantom this way leads to a GMI
which is somewhat sparse, as seen in Figure 1. The total
number of pixel values in the phantom is about three times
larger than the number of nonzeros in the GMI, and we can
expect that exploiting GMI sparsity will allow for accurate
image reconstruction from reduced data sampling, using GMI
sparsity exploiting algorithms. The described data and system
model will be used in Sec. V to demonstrate the theoretical

1Two ways to implement the use of only FOV pixels are: (1) redefine the
projection and gradient matrices as X ′ = XM , X ′T = MXT , ∇ ′ = ∇M , and
∇
′T
=M∇T , whereM is a diagonal matrix that masks the rectangular pixel

array to zero outside the FOV, or (2) mask the image iterates fn directly with
M in which case condition 3 is slightly modified: νM∇T Ez+MXT y = 0.
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FIGURE 1. (Left) Discrete phantom modeled after a breast CT application
shown in the gray-scale window [0.174 cm−1, 0.253 cm−1]. (Right)
Gradient magnitude image (GMI) of the phantom shown in the gray scale
window [0.0 cm−1, 0.1 cm−1]. The units of the GMI are also cm−1,
because the numerical implementation of ∇ involves only the differences
between neighboring pixels without dividing by the physical pixel
dimension. The phantom array is composed of 12,892 pixel values, and
there are 4,053 non-zero values in the GMI.

reduction in sampling enabled by constrained TpVminimiza-
tion. But first, having specified the CT system and test object,
we address the choice of ν and λ and illustrate single runs of
Algorithm 2 in detail.

A. DETERMINING ν AND λ

As shown in Eq. (17), the two linear transforms ∇ and X
are combined into the transform K with the combination
parameter ν. Different values of ν do not affect the solution of
the optimization problems considered here, but it can affect
the value of ‖K‖2 and consequently the step length and
convergence rate of the CP algorithms. If the system config-
uration is fixed, then it is worthwhile to perform a parameter
sweep over ν to find the value which leads to the fastest
convergence rate. But for our purpose, where we are varying
the configuration, such a parameter study is not beneficial.
It is important, however, to standardize this parameter,
because altering properties of the systemmodel can implicitly
yield quite different effective values of ν. The reason for this
is that the spectrum of X varies substantially depending on
the size of the data vector and image array, and the physical
units of projection and image gradient values are different. To
standardize ν, we define:

νcrit ≡ ‖X‖2/‖∇‖2. (25)

The critical value of ν, νcrit, is chosen so that ‖X‖2 is equal
to ν‖∇‖2. Note that altering units on one of the transforms is
automatically compensated with a different value of νcrit. For
the present investigations ν = νcrit unless stated otherwise.
The role of λ is more important than that of ν for the

reweighting algorithms, because adjusting λ both affects con-
vergence speed and enables control over the stability of the
reweighted constrained TpV minimization. In order to sepa-
rate these two roles of λ, we illustrate its effect on the convex
case p = 1, and a nonconvex example with p = 0.5. In the
convex p = 1 case stability of the algorithm is not an issue
because there is no reweighting as the weights in Algorithm 2
evaluate to unity.

For this illustration, an ideal data simulation is specified
where the number of views are too few for X to have a left
inverse. The number of views is set to 25, a value which will
turn out to be too few for convex TV minimization, but suffi-
cient for nonconvex TpV minimization. The simulation data
are consistent in that no noise is included and the projector
for the data matches that of the algorithm. Accordingly, we
select ε = 0 for the test runs.
A Run of Constrained TV Minimization, the p = 1

Case: Figure 2 plots the various convergence metrics and
the image RMSE for 1,000 iterations of Algorithm 2 with
p = 1 and ε = 0. Note that the value of η plays no role for
p = 1, because the exponent in the expression of the weights
is p− 1 and accordingly the weights will all be unity in
this case regardless of the value of η. Individual runs for
λ = 10−4, 10−3, and 10−2 are shown.We discuss the conver-
gence criteria from top to bottom.

FIGURE 2. Convergence plots for image reconstruction from noiseless
data containing 25 projections using Algorithm 2 with three different
values of λ. For these results, we set p = 1.0 which yields convex
constrained TV minimization and set ε = 0. The top three plots are used to
evaluate convergence of the algorithm, and the middle value λ = 10−3

shows the fastest convergence rate. Note that for this convex case
Algorithm 2 is proved to converge for any value of λ. The bottom plot
indicates the discrepancy from the test phantom. The image RMSE is
normalized by dividing the actual RMSE values in cm−1 by 0.194 cm−1,
the linear attenuation coefficient of the background fat tissue. That this
image RMSE does not tend to zero while the convergence criteria do
results from the fact that too few projections are available for accurate
reconstruction by constrained TV minimization. Another indication for
having too few views is that the solution TV is less than the test
phantom TV.

The top panel of Figure 2 indicates the value of cPD
multiplied by the iteration number. This plot is shown this
way because cPD can be either negative or positive as it
approaches zero, and multiplication by the iteration number
helps to indicate the empirical convergence rate of this metric
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for different values of λ. From this sub-figure we see that
the values of λ = 10−4, and 10−3 show empirical con-
vergence faster than the reciprocal of the iteration number
while cPD corresponding to λ = 10−2 shows a convergence
rate near the reciprocal of the iteration number. The second
panel of Figure 2 indicates the data RMSE, which tends to
zero because the data are ideal. The third panel shows the
constraint on the dual variables from Eq. (22) by plotting the
left hand side of this equation, and this quantity also tends to
zero. In each of these convergence plots we obtain the fastest
rate with λ = 10−3, among the three values shown. The
image RMSE shown in the bottom panel is not a convergence
metric because it says nothing about whether or not the image
estimate is a solution to Eq. (4), but this metric is clearly of
theoretical interest because it is an indicator of the success of
the image reconstruction. For 25 views and p = 1, we see that
the image RMSE is tending to a non-zero value and that the
number of views is insufficient for exact image recovery.

FIGURE 3. Same as Figure 2 except p = 0.5 yielding a nonconvex
constrained TpV minimization problem. For p < 1, selecting λ too large
can lead to unstable behavior seen in the λ = 10−2 case as convergence
metrics do not decay with iteration number. The fat normalized image
RMSE plot is interesting in that the curve corresponding to λ = 10−3

shows a rapid drop at 500 iterations and correspondingly we see in
Figure 4 that this run accurately recovers the phantom within the 1,000
iterations.

ARun of Constrained TpVMinimization, the p = 0.5Case:
For this p = 0.5 case all conditions are kept the same as the
previous p = 1.0 case except for the p value, and we point out
that the value of η = 0.194 × 10−2 cm−1 now plays a role,
η here is selected to be 1% of the background fat attenuation
coefficient. The corresponding convergence plots are shown
in Figure 3, and similar convergence rates to the p = 1.0
case are seen with a couple of notable exceptions. First, the
λ = 10−2 case yields unstable iteration as indicated by a

steady, if slow, increase in cPD and a level dependence of
the data RMSE and dual constraint. Second, the convergence
rates, according to the convergence criteria, seem to be similar
between λ = 10−4 and 10−3, yet the image RMSE for
λ = 10−3 shows much lower values and a rapid drop at 500
iterations.
The corresponding images at iteration 1,000 along with

the TV weights are shown in Figure 4. The image estimates
corroborate the image RMSE plot from Figure 3 showing
accurate recovery for λ = 10−3 alone at 1,000 iterations.
We reiterate that the reason for image estimate inaccuracy
is different for λ = 10−2 and 10−4. For the former case,
the reweighting is unstable and the test phantom will not be
recovered at any iteration number, while for the latter case, the
reweighting is stable but more iterations are needed. Indeed,
for this particular case, we have continued the iteration and
find that the test phantom is accurately recovered at 2,500
iterations for λ = 10−4.

FIGURE 4. Top row shows images at iteration 1,000 obtained for various
values of λ using Algorithm 2 for p = 0.5. It is clear that the phantom is
recovered visually at this iteration number for λ = 10−3. Shown in the
bottom row are the computed weighting images at iteration 1,000. For the
recovered case of λ = 10−3 the weight image is 1.0 at all pixels where the
GMI is zero.

As an aid to determining optimal values of λ, we have
found it useful to monitor the change in the weighting func-
tion:

1w = ‖wn+1 − wn‖2, (26)

and partial step lengths:

1d = ‖XT (yn+1 − yn)‖2, (27)

1h = ‖ν∇T (zn+1 − zn)‖2. (28)

The use of1w is straightforward as it is reasonable to expect
that the weighting function should converge to a fixed weight
if the reweighting procedure is stable. As seen in the top panel
of Figure 5, 1w decreases to the lowest value for λ = 10−3.
For λ = 10−2, 1w does not decay, which is consistent with
instability of the reweighting, and for λ = 10−4, 1w does
show steady decay but just not as rapid as that of λ = 10−3.
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FIGURE 5. As an aid to selecting λ it is useful to plot the step lengths 1d
and 1h, defined in the text, as a function of iteration number. If
1d � 1h, λ is too low yielding slow convergence. If 1d ≈ 1h, λ is near
the optimal value for algorithm convergence rate. If 1d � 1h, λ is too
large and the algorithm behavior is likely unstable for p < 1. The change
in the weighting image, 1w shown at top, is also a useful indicator for
convergence of the reweighting algorithm.

It is also useful to examine the magnitude of the separate
terms in the image update at line 12 of Algorithm 2. The
quantity1d indicates the change in the image estimate due to
data fidelity, and 1h represents the change in the image due
to the weighted TV minimization. Empirically, we find the
best convergence behavior when 1h is of similar magnitude
to 1d and λ is an effective control parameter for controlling
the relative sizes of these step lengths. For the convex case of
p = 1.0, we find that1h and1d are still useful for selecting
λ, but clearly 1w is not because there is no reweighting
involved.

V. PHANTOM RECOVERY WITH SPARSE-VIEW
SAMPLING
The isolated algorithm tests for 25 view projection data indi-
cate the possibility for accurate image reconstruction from
fewer views for nonconvex TpV minimization, at p = 0.5,
than convex TVminimization. In this section, we explore this
possibility more thoroughly, varying the number of views and
value of p. In order to perform this parameter survey there
are three technical issues to address: (1) the study design and
stopping rule, (2) how to obtain results for p = 2.0, and (3)
how to handle the algorithm parameter λ.
Study Design: The phantom recovery study employs ideal

projection data so that only the issue of sampling sufficiency
comes into question. In principle, the data error parameter ε
could be set to zero and image RMSE computed as a function

of number of views and value of p. Doing so, however, causes
problems in comparing results between different parameter
values, because we cannot hope to solve the optimization
problem with ε = 0 accurately. Instead, we employ the study
design from Ref. [5] and choose a small but nonzero ε. We
select ε so that the relative data RMSE ε′ defined

ε′ ≡
ε

max(g)
√
size(g)

is 10−5. During the iteration we use a stringent stopping rule
and require that

0.999× 10−5 ≤
‖X fn − g‖2

max(g)
√
size(g)

≤ 1.001× 10−5, (29)

for 100 consecutive iterations.
Algorithm for TpV Minimization With p = 2.0: When

p = 2.0, TpV becomes the standard quadratic roughness
metric, and the corresponding optimization problem is

f◦ = argmin
f

{
λ

ν2
‖ν∇f‖22 + δB2(ε)(X f− g)

}
, (30)

where the denominator in the first term is ν2 in order to make
the optimization problem independent of ν. Note that both
isotropic and anisotropic TpV are the same when p = 2.0.
Because the objective function is quadratic, reweighting is not
necessary, and there are many algorithm choices available.
In Ref. [5], the Lagrangian form of Eq. (30) is solved using
the conjugate gradients algorithm adjusting the Lagrange
multiplier so that the desired ε is obtained. For this work,
we derive a different instance of the CP algorithm to handle
the quadratic penalty. To obtain the pseudocode, we modify
Algorithm 2 by removing the reweighting, i.e. w ← 1, and
replacing line 11 with

Ezn+1← Ez′n/(1+ σν
2/(2λ)).

This modification directly solves the constrained quadratic
roughness problem.
Automatic Setting of the Algorithm Parameter λ: As noted

in Sec. IV-A, there is trial and error involved in selecting
the optimal value of λ for fastest algorithm convergence.
While this issue is manageable for a fixed configuration,
it complicates surveys over configuration parameters, such
as the number of views, because the optimal λ is likely
different for each configuration. Furthermore, a bad choice
of λ leading to instability of the reweighting causes the
algorithm to never terminate by the specified stopping rule.
In order to complete the parameter survey without interven-
tion, we allow λ to vary with iteration number according to
the following formula:

λn← λ02−blog2 nc, (31)

yielding the sequence

λn = λ0

{
1,

1
2
,
1
2
,
1
4
,
1
4
,
1
4
,
1
4
,
1
8
, . . .

}
. (32)

By having a decaying schedule for λ, we are assured that
at some finite iteration number the reweighting algorithm
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becomes stable and dwelling on fixed values yields behav-
ior similar to the basic algorithm within the plateaus of λn.
Opening this possibility of variable λn raises the question of
other decay schedules or adaptive control, but such studies are
beyond the scope of this article.

For the present results where p is varied in [0.1, 2.0] and the
number of views range from 18 to 80, we find the sequence
of λn in Eq. (31) sufficient. Furthermore, with λ0 set to 1, the
algorithm automatically converges to a solution satisfying the
stopping rule specified in Eq. (29) for all numbers of views
and values of p in the scope of the study. The smallest and
largest number of iterations required are 4,331 and 33,920,
respectively. Even though we found it sufficient to set λ0 = 1,
we introduce this parameter in case there are other conceiv-
able tomographic system configurations that call for larger λ.

A. TEST PHANTOM RECOVERY RESULTS
The phantom recovery results for both isotropic and
anisotropic TpV minimization are summarized in Figure 6.
For reference, we include the p = 2.0 case, which does not
exploit GMI sparsity. The image RMSE is reported as a frac-
tion of the background fat attenuation. In the plots the image
RMSE can be small, but it cannot be numerically zero because
the data error tolerance parameter ε is not zero. Nevertheless
some parameter choices lead to small image RMSE values,
and for this work we say that the image is accurately recov-
ered if the image RMSE is less than 10−3, or in other words
0.1% of fat attenuation. By comparison, the contrast between
fibroglandular and fat is 20%. Because image reconstruction
by constrained TpV minimization exploits GMI sparsity, it is
interesting to compare number of samples m = size(g) for
accurate image recovery to the number of GMI nonzeros.

Accurate recovery for the p = 2.0 case, which is the same
for both isotropic and anisotropic TpV, occurs at 80 views –
a number which can be interpreted as full sampling for the
problem. At this number of views, the number of samples
is m = 20,480 which is about 67% more than the number
of pixels in the image array. That such an overdetermined
configuration is needed for accurate image reconstruction for
p = 2 is a consequence of the condition number of X [5].

For p ≤ 1, both isotropic and anisotropic TpV min-
imization are exploiting GMI sparsity for accurate image
reconstruction and it is clear from both graphs that sub-
stantial reduction in the number of samples is permitted by
this strategy. Starting with isotropic TpV, we observe that
for the convex case, p = 1, accurate image reconstruction
occurs at 35 views where m = 8,960 which is less than the
number of image pixels n = 12,892 and is a little more
than twice the phantom GMI sparsity 4,053. Reducing p to
p < 1, leads to nonconvex TpV minimization but also to
more effective exploitation of GMI sparsity. As seen in the
top graph of Figure 6, even introducing a little nonconvexity
as in the p = 0.9 case yields a dramatic drop in the num-
ber of views as we obtain accurate image reconstruction at
30 views, where m = 7,680. For the present simulation, it
appears that this strategy saturates at p = 0.5, where accurate

FIGURE 6. Image recovery plots for both isotropic and anisotropic TpV
minimization subject to the data error constraint ε′ = 10−5. The
constraint parameter on the data RMSE is related to the `2 data error
tolerance by: ε′ = ε/(max(g)

√
m), where m = size(g) is the total number of

measurements.

image reconstruction occurs at 22 views and even going to
p = 0.1 does not alter the necessary number of projections.
Although, we do note that p = 0.1 does yield slightly smaller
image RMSE than p = 0.5, indicating a possible increased
robustness to some forms of data inconsistency. At 22 views,
the number of samples is quite low as m = 5,632, which is
only 39% greater than the number of GMI nonzeros.

Comparing anisotropic TpV with the isotropic case, we
observe that even greater sampling reduction is seen as
accurate image reconstruction is observed at lower num-
bers of views for p ≤ 1. For p = 0.1 and 0.5, accurate
image reconstruction is obtained at 20 views, corresponding
to m = 5,120 – only 26% greater than the number of GMI
nonzeros. One might argue that the GMI sparsity might not
provide the correct reference for anisotropic TpV and instead
sparsity in the phantom gradient itself should be the correct
quantity of comparison. But we point out that the components
of the phantom gradient are not independent, and the GMI
sparsity provides a better estimate of the number of underly-
ing independent parameters for the phantom gradient.

VI. IMAGE RECONSTRUCTION WITH NOISY PROJECTION
DATA
The previous sets of results demonstrate the theoretical moti-
vation of constrained TpV minimization for image recon-
struction in CT. To consider use of the above algorithms on
clinical data, it is important to understand the algorithms’
response to inconsistency with the employed data model
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in Eq. (2). Response to data inconsistency is important to
assess, because it provides a sense of algorithm robustness
and because algorithm implementation choices, equivalent
under ideal data conditions, may not be equivalent in the
presence of data inconsistency. The data model used in the
present formulation of constrained TpV minimization is sim-
plistic in that it ignores important physical factors such as
the polychromaticity of the X-ray beam, X-ray scatter, partial
volume averaging, and noise. While it may be possible to
include some of these physical factors into the constrained
TpV minimization for the purpose of potential image quality
gain, such an effort is beyond the scope of this article. Instead,
in this section we present reconstructed images from simu-
lated data including one of the most important sources of data
inconsistency for the breast CT application, namely noise.
Later, in Sec. VII, we present reconstructed images from an
actual breast CT scan data set, which naturally includes all
the physical factors implicitly.

In this section, the simulated projection data are generated
from a data model where the system size is scaled up and
noise is included at a level typical of breast CT. The breast
CT model is challenging because the prototype systems are
designed to function at very low X-ray intensities so that the
exposure to the subject is equivalent to two-view full-field
digital mammography [35].

The image array is taken here to be the inscribed circle
of a 512 × 512 pixel array with the square pixels having
width 0.35 mm. The scan configuration is again circular fan-
beam with the same geometry as described in Sec. IV, but the
number of projections is 200 and the detector now consists
of 1024 bins of width 0.36 mm. Noise is generated using a
Poisson model with mean equal to the computed mean of the
number of transmitted photons at each detector bin, where the
integrated incident flux at each bin, per projection, is 66,000
photons. For the present simulations, the breast phantom is
also modified in order to avoid isolated pixels of fibroglandu-
lar tissue. The phantom is generated, as before, with a power
law noise distribution, but this image is smoothed by a Gaus-
sian with 4 pixel full-width-half-maximum (FWHM) prior to
binning into fat and fibroglandular tissues. No microcalcifi-
cations are modeled in the phantom. The new phantom and
fan-beam FBP reconstructed images are shown in Figure 7.

FIGURE 7. A breast CT simulation using linear attenuation coefficients for
a 50 keV mono-energetic X-ray beam. The noise level is typical for
prototype breast CT scanners. Shown are FBP reconstructions with a ramp
filter and the same image after smoothing by a Gaussian of FWHM of
0.8 pixels. The FBP images serve to indicate visually the noise level
inherent in the data.

The purpose of the present simulations is to illustrate in
detail how realistic and challenging levels of data inconsis-
tency impact the TpV motivated reweighting algorithm. The
number of projections, being selected as 200, is fewer than
the 500 views acquired in typical breast CT prototypes. For
200 projections the total number of samples is 200× 1024 =
204,800, and the number of pixels is 205,892. While this
system is undersampled, it is more than the number required
by constrained TpV minimization for accurate image recon-
struction from noiseless data at any value of p ≤ 1. In this
way we isolate the issue of noise response, separating it from
projection angular undersampling.
The results for image reconstruction by constrained TpV

minimization for nonconvex p = 0.5 and 0.8 are compared
with convex p = 1.0 and 2.0 in Figure 8. One of the
convenient features of employing a hard data-error constraint
is that the rows of the image array have identical data fidelity,
allowing us to focus only on the impact of p. We point out
that the p = 2.0 case is not GMI sparsity-exploiting, and as
a consequence the corresponding images potentially suffer
from both noise and undersampling artifacts.

FIGURE 8. Reconstructed ROIs for p = 0.5, 0.8, 1.0, and 2.0 for columns 1,
2, 3, and 4, respectively. The data error constraint parameter ε is set so as
to correspond to a data RMSE of 0.015, 0.0145, 0.014, 0.012, and 0.01 for
rows 1, 2, 3, 4, and 5, respectively. Shown in the array of images are a
blow up ROI of the upper left side of the image so that small details can
be seen clearly.

The array of images illustrates an important feature of the
use of nonconvex TpV. With the underlying object model
being complex, yet piecewise constant, the TpV quasinorm
reduces the speckle noise in regions of uniform attenuation
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coefficient relative to p = 1.0 and 2.0. In terms of image
RMSE relative to the truth, the panel with the lowest error
appears in the second row and second column, corresponding
to p = 0.8 and ε′ = 0.0145; we point out, however, that
image RMSE is not always the most appropriate measure
of image quality and that image quality evaluation should
take into account the imaging task [36]. Nevertheless the
noise suppressing properties of TpV shows promise and may
prove useful to image analysis algorithms such as those for
segmentation.

Scrutinizing the nonconvex images in Figure 8, there is
a potential difficulty for the breast CT application. As ε′

increases, the speckle noise is reduced but there also appear
isolated pixels with high gray values which could potentially
bemistaken formicrocalcifications. In practice, these isolated
peaks can be differentiated from actual structure because the
latter generally involve groups of pixels. Nevertheless these
specks can be distracting, and we discuss their origin and how
to avoid these artifacts.

In Figure 9, we focus on the panel that corresponds to p =
0.5 and ε′ = 0.0145. On the left most column the same ROI
shown in Figure 8 is shown again along with the converged
weight imagew. Theweight image is unity in uniform regions
and small at pixels belonging to the edges of tissue structures;
in this way noise in the uniform regions can be heavily
smoothed away without blurring the edges. In the ROI there
are a few residual specks due to data noise and we can see that
these specks correspond to specks of low weighting in w and
these pixels are being mistaken for edge pixels of true struc-
ture. If such specks interfere with the function of the imaging
system as they would, for example, in the breast CT applica-
tion, there are measures which can be taken to avoid them.

FIGURE 9. Focusing on the case of p = 0.5 and ε set so that the data
RMSE is 0.0145, we illustrate the reconstructed ROI dependence on the
parameter η in the top row. Shown in the bottom row is the
corresponding impact on the weighting image.

Within the framework of the `1 reweighting algorithm, one
important option is to vary η. The value of η used here is 1%of
the background fat attenuation value, and it is much smaller
than the contrast between fat and fibroglandular tissue. By
increasing η, the speck artifacts can be removed while still

maintaining some of the enhanced edge-preserving feature
of the TpV reweighting scheme. The effect of increasing η
is shown in the middle and right columns of Figure 9. As η
increases specks are removed but the weighting at edge pixels
also increases.
Another approach is to realize that the purpose of the `1

reweighting algorithm is to study image recovery under ideal
data conditions, where it is important to be able to recover
the phantom to arbitrarily high accuracy. For noisy data it
may be advantageous to employ quadratic reweighting, which
provides a different response in the image to data noise.

A. TpV MINIMIZATION BY QUADRATIC REWEIGHTING
The original nonconvex TpV minimization problem from
Eq. (4) can also be addressed by use of quadratic reweighting
as illustrated in Appendix VIII-A. To implement quadratic
reweighting, the convex weighted `1-based optimization
problem in Eq. (10) is replaced by the following convex
weighted quadratic optimization problem

f◦ = argmin
f

{
λ

ν2

∥∥ν√w |∇f|∥∥22 + δB2(ε)(X f− g)
}
, (33)

which modifies Eq. (30) by including a weighting factor
in the quadratic roughness penalty. The corresponding dual
maximization problem is

(y◦, Ez◦)T = argmax
(y,Ez)T

{
−ε‖y‖2 − yT g −

ν2

4λ

∥∥|Ez|/√w∥∥22
−δ0(−ν∇T Ez− XT y)

}
. (34)

and accordingly

cPDquad =
λ

ν2

∥∥ν√w |∇f|∥∥22+ε‖y‖2 + yT g

+
ν2

4λ

∥∥|Ez|/√w∥∥22 . (35)

The pseudocode for TpV minimization by quadratic
reweighting is given in Algorithm 4. The difference between
this algorithm and Algorithm 2 appears in line 9, where the
exponent of the weights expression is changed from p− 1 to
p − 2, and line 11, where the form of the update step for the
dual gradient variable is altered.
The quadratic reweighting algorithm has a different

response to noise and other inconsistency mainly because of
the parameter η. The weighted image roughness term with
finite η is smooth, whereas the same term for `1-reweighting
is nonsmooth even when η > 0. To see the qualitative
difference between these algorithms, Figure 10 shows ROIs
for these algorithms and the same parameters p = 0.8 and
ε′ = 0.0145. For both ROIs η = 0.194 × 10−2 cm−1,
which is 1% of the fat attenuation. The quality of the noise is
markedly different with the quadratic reweighting exchanging
the sparse specks with more blobby variations which would
not be mistaken for microcalcifications.
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FIGURE 10. Focusing on the case of p = 0.8 and ε′ = 0.0145, we illustrate
the reconstructed ROI for (left) `1 reweighting compared with (right)
quadratic reweighting. The parameter η = 0.194× 10−2 or 1% of the fat
attenuation. Shown in the bottom row is the corresponding weighting
image.

Algorithm 4 Pseudocode for N Steps of the CP Algorithm
Instance for Quadratic Reweighted Constrained TpV
Minimization

1: INPUT: data g, data-error tolerance ε, exponent p, and
smoothing parameter η

2: INPUT: algorithm parameters ν, λ
3: L ← ‖(X , ν∇)‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n←

0
4: initialize f0, y0, and Ez0 to zero vectors
5: f̄0← f0
6: repeat
7: y′n← yn + σ (X f̄n − g)
8: yn+1← max(‖y′n‖2 − σε, 0)

y′n
‖y′n‖2

9: w←
(√

η2 +
∣∣∇ f̄n∣∣2/η)p−2

10: Ez′n = Ezn + σν∇ f̄n
11: Ezn+1← Ez′n/(1+ σν

2/(2wλ))
12: fn+1← fn − τ (XT yn+1 + ν∇T Ezn+1)
13: f̄n+1← fn+1 + θ (fn+1 − fn)
14: n← n+ 1
15: until n ≥ N
16: OUTPUT: fN
17: OUTPUT: w, yN , and EzN for evaluating cPDquad and

conditions 3.

VII. APPLICATION TO CLINICAL BREAST CT DATA
While the simulations of Sec. VI illustrate the properties
of the proposed IIR algorithm on a realistic simulation of
breast CT, the data model used does not contain all the
inconsistencies present in an actual scanner. Thus, we apply

the algorithm to a clinical breast CT data set. The purpose
of doing so is to first demonstrate that use of nonconvex
TpV minimization can yield useful images under actual clin-
ical conditions, and that the nonconvexity of the problem
formulation does not lead to strange image artifacts. The sec-
ond goal is to survey image properties for different values of
p and data-error fidelity parameter ε. To this end we perform
reconstructions on a single data set, displaying the same slice.
We make no attempt to find optimal p and ε, nor to claim
that the present algorithm is better than other image recon-
struction algorithms. Ultimately, evaluation of the algorithm
needs to be tied together with acquisition optimization. As the
present algorithm appears to be robust against angular under-
sampling, it is possible that the breast CT acquisition could be
altered to include fewer projections in a step-and-shoot mode,
allowing for greater X-ray intensity for each projection, while
maintaining the total dose of 2 mammographic projections.
The prototype breast CT scanner at UC Davis is described

in Refs. [37] and [38]. The data set consists of 500 projection
views acquired on a 768×1024 flat-panel detector with pixel
size of (0.388 mm)2. The volume reconstruction is performed
on a 700×700×350 image array with cubic voxels of dimen-
sion (0.194 mm)3.
The particular version of TpV minimization is quadratic

reweighting, shown in Algorithm 4, with η = 0.194 ×
10−2 cm−1, the same value as the simulation. For quadratic
reweighting, the p = 2 case does not need to be dealt with
separately as is the case for `1 reweighting. Setting p = 2 in
Algorithm 4 sets the weights w to one. For each reconstruc-
tion, the TpV minimization algorithm is run for 1000 itera-
tions in order to obtain converged volumes, but we note that
in practice this may be too high a computational burden and
that it is likely not necessary to obtain accurate convergence
for TpVminimization to yield clinically useful volumes [24].

FIGURE 11. (Left) A slice from a volume reconstructed from breast CT
data by TpV minimization, using quadratic reweighting. The parameters
yielding this image are p = 0.8 and relative data RMSE ε′ = 0.0115. (Right)
The corresponding slice image generated by the Feldkamp-Davis-Kress
(FDK) algorithm. The display gray scale window is [0.164,0.263] cm−1.

Breast CT volumes are reconstructed for a range of param-
eters: 0.5 ≤ p ≤ 2.0, and relative data-error RMSE 0.011 ≤
ε′ ≤ 0.012. For reference to the standard image reconstruc-
tion algorithm, we show one of the TpVminimization images
in comparison with image reconstruction by the Feldkamp-
Davis-Kress (FDK) algorithm in Figure 11. The selected
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TpV minimization image for the comparison is obtained for
p = 0.8 and ε′ = 0.0115. Given that the number of projec-
tions is 500, we do not expect large differences between FDK
and IIR algorithms, and we observe in Figure 11 that the two
images show similar structures with the TpV minimization
image showing, visually, a lower noise level. That the two
images have similar structure content provides a challenging
check on the TpV minimization IIR algorithm.

FIGURE 12. Slice images obtained with TpV minimization from breast CT
data for (left column) p = 0.5 and (right column) p = 0.8. The relative
data-error RMSE increases from the bottom row to top row with values
ε′ = 0.011, 0.0115, 0.01175, and 0.012. The display gray scale window is
[0.164,0.263] cm−1.

To appreciate the impact of varying p and ε′, we show
arrays of images of the same full slice in Figures 12 and 13,
and ROIs in Figure 14. In the full slice images we observe
little difference for the tight data-error constraint of ε′ =
0.011, which is understandable because the view sampling

FIGURE 13. Same as Figure 12 except that the left and right columns
show images for p = 1.0 and p = 2.0, respectively.

rate is high and the set of feasible images satisfying the data-
error constraint is relatively small. There is, however, a small
but visually noticeable change in the quality of the noise as
p varies. As the data-error constraint is relaxed, we observe
that the smaller values of p become regularized more rapidly
than larger p. The regularization for nonconvex TpV is not
uniform. As ε′ increases, noise on the soft tissue is reduced
substantially while the high contrast microcalcifications are
preserved with little blurring.
To better visualize the impact of the p and ε′ on the

microcalcifications and to observe more local texture changes
in the soft tissue, we show an ROI array in Figure 14. The
GMI sparsity promoting values of p, p ≤ 1.0 all show rapid
regularization of the soft tissue with increasing ε′, while the
texture change for p = 2.0, is much more gradual. For the
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FIGURE 14. Expanded ROIs of the images shown in Figures 12 and 13. The
ROI corresponds to the left-center part of the image containing the
microcalcifications. The gray scale window is expanded to
[0.164,0.303] cm−1 in order to accommodate the higher attenuation
values of the microcalcifications. The columns correspond to p = 0.5, 0.8,
1.0, and 2.0 from left to right. And the rows correspond to ε′ = 0.011,
0.0115, 0.01175, and 0.012 from bottom to top.

higher contrast microcalcifications, the visual dependence
with increasing ε′ is quite different, depending on p. For
p = 0.5, we note little change in the sharpness of the
microcalcifications. Rather, the calcifications disappear as ε′

increases with smaller calcifications disappearing at lower ε′.
At the other extreme, p = 2.0, the microcalcifications exhibit
the more traditional trend of becomingmore blurry, albeit that
this trend is not very strong over the shown range of ε′. The
intermediate values of p show trends which are a combination
of the rapid reduction in contrast and standard blurring.

With these preliminary results, we cannot yet make a rec-
ommendation for an optimal image reconstruction algorithm
for the breast CT system. The results instead are intended to
demonstrate the effect of the parameters p and ε′. Moreover
the proper choice of algorithm depends on the scanner config-
uration, visual task, and type of observer (human or machine).
We do expect, however, that use of nonconvex TpVminimiza-
tion will facilitate scanning configurations with a lower view
angle sampling rate, which could impact the optimal balance
between number of views and X-ray beam intensity.

VIII. CONCLUSION
This work develops accurate reweighting IIR algorithms for
application to CT that are used to investigate sparse data
image reconstructionwith nonconvex TpVminimization. The
algorithms are efficient enough for research purposes in that
accurate solution is obtained within hundreds to thousands of
iterations.

Employing `1-reweighting for both isotropic and
anisotropic TpVminimization, we observe substantial reduc-
tion in the necessary number of projections for accurate
recovery of the test phantom. In fact, the number of mea-
surements needed for p = 0.5 is a small fraction larger than
the number of nonzero elements of the test phantom’s GMI.
These experiments do not necessarily generalize to a rule
relating number of samples to GMI sparsity, but the results are
nonetheless striking especially considering that the phantom
has no particular symmetry and has the complexity similar to
what might be found for fibroglandular tissue in breast CT.
It may not be practical to reduce the number of views to the
limit of ideal image recovery, but it is important to identify
this limit. With this knowledge there is the option to operate
at a number of views slightly greater than the recovery limit,
where there are still fewer projections than what would be
needed for convex TVminimization or algorithms that do not
exploit GMI sparsity.
The response to noise present in a realistic breast CT

simulation is also tested along with application to an actual
clinical breast CT data set. The results show that the reweight-
ing algorithms provide images that may be clinically use-
ful. The fact that the IIR algorithms employing nonconvex
TpV allows for accurate image recovery with very sparse
projection data could prove interesting for fixed dose trade off
studies. Namely, the operating point in the balance between
number of projections and exposure per projection may be
shifted toward fewer projections with the use of nonconvex
TpV minimization.

APPENDIX
A. ILLUSTRATION OF REWEIGHTING FOR NONCONVEX
OPTIMIZATION
For the purpose of this article being self-contained, we illus-
trate here a simple one dimensional example of the use of
reweighting to solve a nonconvex optimization. So that there
is some resemblance to the optimization problems discussed
in the text, we select a constrained `p-minimization problem
as an example

x◦ = argmin
x

φ(x) = argmin
x

{
|x|p + δP(x − 1)

}
, (36)

where the set P stands for all nonnegative real numbers and
the corresponding indicator function encodes the constraint
x ≥ 1. The objective function of this nonconvexminimization
problem is represented by the solid black curves of Figures 15
and 16.
The use of reweighting here involves making an initial

estimate xest for x. This estimate is then used to replace the
nonconvex objective function with a convex function taking
on the same value at xest. In the context of `1-reweighting
a weighted `1-norm replaces the `p term and the weighting
factor is used to match the convex and nonconvex objectives
at xest. In this case, the weighting factor is

w = |xest|p/|xest| = |xest|(p−1). (37)
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FIGURE 15. Illustration of one iteration of `1-reweighting for solving the
nonconvex optimization Eq. (36). The dashed black curve is the `p
quasinorm for some p with 0 < p ≤ 1. The solid black curve is the
complete objective of Eq. (36). The solution estimate xi is indicated by the
solid blue circle in the top graph. The intermediate convex weighted `1
minimization is indicated by the solid red curve, where the weight is
selected so that the red curve intersects the solid blue circle. The estimate
xi+1, indicated by the shaded blue circle in the top graph and the solid
circle in the bottom graph, is generated by a single iteration of the
Chambolle-Pock algorithm, which takes a step toward the solution. The
bottom graph illustrates how the weight is adjusted so that the surrogate
weighted `1 term intersects the solid blue circle corresponding xi+1.

FIGURE 16. Same as Figure 15 accept that the figure illustrates quadratic
reweighting.

The intermediate convex optimization acting as a surrogate
for Eq. (36) is

x◦ = argmin
x

φ(x) = argmin
x
{w|x| + δP(x − 1)} , (38)

which can be solved by a host of convex optimization
algorithms such as the Chambolle-Pock algorithm used in
the text. There is some freedom in designing the reweight-
ing algorithm, reflecting how accurate the intermediate opti-
mization Eq. (38) is solved. For the algorithms in the text
only one iteration of the solver for the intermediate problem
is taken. The result is then assigned to xest, which is in
turn used to compute new weights. An illustration of this
one-intermediate-step `1-reweighting algorithm is shown in
Figure 15.
For quadratic reweighting the weights and intermediate

convex optimization problem are

w = |xest|p/|xest|2 = |xest|(p−2), (39)

and

x◦ = argmin
x

φ(x) = argmin
x

{
w|x|2 + δP(x − 1)

}
, (40)

respectively. The corresponding one-intermediate-step
quadratic reweighting algorithm is shown in Figure 16.
The 1D nonconvex problem, Eq. (36), discussed here is

used for illustration purposes. But there are peculiarities of
this low dimensional example. For example, it is clear from
both Figures 15 and 16 that the solution of Eq. (36) coincides
with the solutions of both theweighted `1 and quadratic surro-
gate convex optimization problems. This will not be the case
for the multidimensional optimization problems considered
in the text. Also, for the multidimensional case it is important
to guard against potential division by zero in computing the
weights. For the present one dimensional problem this danger
seems remote. Nevertheless a possible corresponding weight
for `1-reweighting is

w =
√
η2 + |xest|2

(p−1)
, (41)

where η is a small nonnegative real number. And similarly for
quadratic reweighting

w =
√
η2 + |xest|2

(p−2)
. (42)

The following sections show derivations for G∗, F∗,
proxτ [G], and proxσ [F

∗] from Sec. III-A.

B. DERIVATION OF G∗ AND proxτ [G]
As G(f) = 0, it is easy to show that

G∗(f) = δ0(f),

(see for example Eq. (18) of Ref. [30] and subsequent discus-
sion). It is also easy to show that

proxτ [G](f) = f.

C. DERIVATION OF F ∗

This computation is more involved, and we split this up into
two, defining

F1(y) = δB2(ε)(y− g),

F2(Ez) =
λ

ν

∥∥(w|Ez|)∥∥1. (43)
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Starting with F∗1 ,

F∗1 (y) = max
y′

{
yT y′ − F1(y′)

}
(44)

= max
y′

{
yT y′ − δB2(ε)(y

′
− g)

}
; (45)

substituting y′′ = y′ − g, we obtain

F∗1 (y) = yT g+max
y′′

{
yT y′′ − δB2(ε)(y

′′)
}
, (46)

y′′ = εy/‖y‖2, and (47)

F∗1 (y) = yT g+ ε‖y‖2. (48)

The maximizer, y′′, at Eq. (47) is derived by noting that the
objective in Eq. (46) is maximized when y′′ ∝ y and the
magnitude of y′′ is limited to ε by the indicator function. The
next term F∗2 is

F∗2 (Ez) = max
Ez′

{
EzT Ez′ − F2(Ez′)

}
(49)

= max
Ez′

{
EzT Ez′ −

λ

ν

∥∥(w|Ez′|)∥∥1}. (50)

Now we substitute the polar decompositions Ez = zẑ and Ez′ =
z′ẑ′, where z, z′ are non-negative scalar images and ẑ, ẑ′ are
spatial unit-vector images. Since w and z are non-negative,
we obtain

F∗2 (Ez) = max
z′∈[0,∞)N

{
zT z′ −

λ

ν

∥∥(wz′)∥∥1} (51)

= max
z′∈[0,∞)N

{
zT z′ −

λ

ν
wT z′

}
(52)

= δE∞(λw/ν)
(
|Ez|
)
. (53)

In going from Eq. (50) to Eq. (51), we note that the second
term in the objective does not depend on ẑ′ and, fixing z′ and
allowing ẑ′ to vary, the objective function is maximized when
the spatial-unit-vectors in ẑ′ point in the same direction as ẑ,
i.e. ẑ′ = ẑ. The indicator function at the last line comes about
from considering two cases regarding the coefficient of z′ in
Eq. (52): if all components of z− λw/ν are non-positive the
objective function is maximized at z′ = 0 where its value is
zero; otherwise if one component of z− λw/ν is positive the
objective function can be made arbitrarily large. Equivalently,
the coefficients of z/(λw/ν) can be compared to 1: if the
maximum coefficient, i.e. ‖z/(λw/ν)‖∞, is less than 1 then
the maximization problem yields 0; otherwise, it yields∞.
Combining the terms,

F∗(y, Ez) = yT g+ ε‖y‖2 + δE∞(λw/ν)
(
|Ez|
)
. (54)

D. DERIVATION OF proxσ [F ∗](y, Ez)
Next we compute proxσ [F

∗

1 ](y):

proxσ [F
∗

1 ](y) = argmin
y′

{
y′T g+ε‖y′‖2+

1
2σ
‖y− y′‖22

}
(55)

= argmin
y′

{
ε‖y′‖2+

1
2σ
‖y′ − y+σg‖22

}
, (56)

by completing the square and ignoring terms independent
of y′. From the symmetry of the objective function in Eq. (56),
the minimizer lies on the segment between y′ = 0 and
y′ = y − σg, so we can convert to a scalar minimization
problem over non-negative y′ as follows:

proxσ [F
∗

1 ](y) =
y− σg
‖y− σg‖2

(57)

× argmin
y′∈[0,∞)

{
εy′ +

1
2σ

(y′ − ‖y− σg‖2)2
}
(58)

= max(‖y− σg‖2 − σε, 0)
y− σg
‖y− σg‖2

. (59)

Now we compute proxσ [F
∗

2 ](Ez):

proxσ [F
∗

2 ](Ez) = argmin
Ez′

{
δE∞(λw/ν)

(
|Ez′|
)
+

1
2σ
‖Ez− Ez′‖22

}
(60)

= ẑ argmin
z′

{
δE∞(λw/ν)

(
z′
)
+

1
2σ
‖z− z′‖22

}
,

(61)

by making the same polar decomposition substitutions as in
Eq. (51), because the indicator term does not depend on ẑ′

and the quadratic term is minimized when ẑ′ = ẑ for fixed z′.
The objective function of Eq. (61) is separable and the result
of the minimization is a component-wise thresholding of z
by the maximum value of the corresponding component of
λw/ν:

proxσ [F
∗

2 ](Ez) = ẑmin(λw/ν, z) (62)

= Ez (λw/ν)/max(λw/ν, z). (63)

The form of the prox in Eq. (63) is equivalent to that of
Eq. (62), but it is computationally more convenient because
the computation of ẑ in Eq. (62) needs to avoid potential
division by zero. The denominator of Eq. (63), on the other
hand, is strictly positive.
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