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Osteoporosis is a life threatening disease which commonly affects women mostly after their menopause. It primarily causes mild bone
fractures, which on advanced stage leads to the death of an individual. The diagnosis of osteoporosis is done based on bone mineral
density (BMD) values obtained through various clinical methods experimented from various skeletal regions. The main objective of the
authors’ work is to develop a hybrid classifier model that discriminates the osteoporotic patient from healthy person, based on BMD
values. In this Letter, the authors propose the monarch butterfly optimisation-based artificial neural network classifier which helps in
earlier diagnosis and prevention of osteoporosis. The experiments were conducted using 10-fold cross-validation method for two datasets
lumbar spine and femoral neck. The results were compared with other similar hybrid approaches. The proposed method resulted with the
accuracy, specificity and sensitivity of 97.9%± 0.14, 98.33%± 0.03 and 95.24%± 0.08, respectively, for lumbar spine dataset and
99.3%± 0.16%, 99.2%±0.13 and 100, respectively, for femoral neck dataset. Further, its performance is compared using receiver
operating characteristics analysis and Wilcoxon signed-rank test. The results proved that the proposed classifier is efficient and it
outperformed the other approaches in all the cases.
1. Introduction: Osteoporosis is a silent, chronic and common
metabolic bone disease characterised by low bone mass due to
the loss of bone tissues. This leads to the micro-architectural
deterioration of bone tissues with the increased risk of bone
fragility and bone fractures mainly at spine and femur area. It
also reduces the patient’s height [1, 2]. It should be properly
diagnosed at the earliest stage, so that a proper treatment can be
given to prevent serious condition. Dual-energy X-ray
Absorptiometry (DEXA) is the famous technique for measuring
bone mineral density (BMD) values that is used to confirm a
diagnosis of osteoporosis. The measurements are commonly done
at lumbar spine, femoral neck and hip area. BMD testing is a
vital component in the diagnosis, prediction and management of
osteoporosis. A real BMD is expressed in absolute terms of
grams of mineral per square centimetre scanned (g/cm2) and as a
relationship to two norms the patient’s T-score and Z-score
provided by DEXA. T-score is the BMD value compared with
that of young healthy adults of the same age who are at their
BMD. World Health Organization (WHO) criteria defined for
osteoporosis based on BMD measurements by DEXA, as T-score
≥–1 to be normal, T-score between –1 and –2.5 as low bone
mass (osteopenia) and T-score ≤–2.5 as osteoporosis [3]. The
difference between the patient’s score and the norm is expressed
in standard deviation above or below the mean. It also provides
the patient’s Z-score, which reflects a value compared with that
of person matched for age and sex. The low BMD values can
also be identified at dental region with a mandibular cortical
width derived from digital dental panoramic radiographs (DPRs).
This inexpensive method also helps in the identification of
osteoporosis [4–6]. Mostly, women between 45 and 90 years of
age are easily prone to osteoporosis.

The remaining of this letter is organised as follows: Section 2
outlines the related work carried out in the literature, the details
of the methods used are briefly discussed in Section 3, its simulation
results are explained in Section 4, and Section 5 concludes the
proposed work.

2. Related work in the literature: The related works carried out in
the literature are discussed henceforth. The ability of radial basis
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support vector machine (RB-SVM) for the osteoporotic risk
detection using digital hip radiographs of 50 subjects are
evaluated [7]. The hybrid genetic swarm fuzzy (HGSF) classifier
to diagnose females with osteoporosis using DPRs of Korean
women was developed in [8]. The input attributes are partitioned
to generate an initial membership function and a rule set. Further,
classification and optimisation are performed using fuzzy
inference system and genetic swarm algorithm, respectively in
[8]. The regression-based SVM developed in [9] predicts the
BMD values based on the factors determined from the dietary
and lifestyle habits of 305 women by a survey conducted on the
same. The output is fed into the regression trees to identify
the factors that have a significant bearing on BMD to prevent
osteoporosis. The classifiers such as RB-SVM and k-nearest
neighbours (kNNs) in [10] are created by combining several
features that are extracted from 200 micro-CT images using
micro-CT software and volumetric topological analysis is used
for osteoporosis diagnosis. The automatic approach by combining
histogram-based automatic clustering algorithm (HAC) with
RB-SVM presented in [11] screens osteoporosis in
postmenopausal Japanese women. The SVM classifier presented
in [12] classifies osteoporotic data based on the features extracted
from X-ray images using a fractional Brownian motion model. In
[13], the three classification algorithms namely multilayer
feed-forward neural network (MFFN), Naïve Bayes, and logistic
regression (LR) with and without wrapper-based feature selection
approach based on genetic factors are compared for predicting
osteoporosis in Taiwanese women.

Several meta-heuristic algorithms such as the ant colony opti-
misation (ACO) [14], artificial bee colony (ABC) algorithm [15],
biogeography-based optimisation (BBO) [16], differential evolu-
tion (DE) [17], and the stud genetic algorithm (SGA) [18] are
also used to train artificial neural network (ANN). It is also found
that these hybrid algorithms gave good results for other specific
applications in which they were employed but were not previously
used in osteoporosis related work. In this work, a recently devised
meta-heuristic algorithm called monarch butterfly optimisation
(MBO) [19] is selected among many heuristic algorithms to opti-
mise the weights and biases for training ANN with the purpose
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of classifying osteoporotic data from healthy ones. The simple and
robust nature of the algorithm with the ability to deal with the trade-
off between exploration and exploitation process inspired us to use
this for solving our problem. Many meta-heuristic algorithms may
sometimes get trapped in local minima [20] and give only feasible
values instead of optimal values. Sometimes may fail to produce
optimal values with high-dimensional data and also slow down
the convergence of the algorithm yielding less convergence rate.
In some cases, the generalisation ability of these algorithms is
also not appreciable. Our algorithm overcomes these issues. Only
a very few osteoporotic related works are carried out in the past.
The main objective of our work is to build a robust classifier
which gives very accurate decision in the early detection of osteo-
porosis. This helps in giving necessary treatment in order to prevent
the serious conditions caused at the advanced stage.

3. Methods: The overall approach is represented using a flow
diagram in Fig. 1.

3.1. Artificial neural network: The simple ANN is a three-layered
architecture described as; the first layer is the input layer, a
middle hidden layer and the output layer at last. It is massive,
parallel and strongly connected network architecture. Back
propagation network (BPN) algorithm is mostly used to train
MLP. It uses a gradient descent approach to minimise the errors
produced during training [21]. The architecture of ANN with
three layers is shown in Fig. 2.
The steps for training ANN are gave below:

1: Initialise the synaptic weights and biases with random values.
2: Load the training data.
For the jth sample,
3: The net input at the hidden layer is calculated as

netjh =
∑N
n=1

xnw1h,n + b1h, h = 1, . . . , H (1)
Fig. 1 Flow diagram of MBO-ANN

Fig. 2 Three-layered ANN architecture
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where w1h, n is the weight between input neuron ‘n’ and hidden
neuron ‘h’, N and H are the sizes of input and hidden layers, re-
spectively, and b1h is the bias value of hidden neuron ‘h’. The
hidden layer output is calculated as

Oj
h = sigmoid(netjh) =

1

1+ e(−netj
h
)

(2)

4: Calculation of net input using at output layer is done as

netjm =
∑H
h=1

Oj
hw2m,j + b2m, m = 1, . . . , M (3)

where w2m, h is the weight between hidden neuron ‘h’ and output
neuron ‘m’, b2m is the bias value of output neuron ‘m’. M is the
number of output nodes. The network output is calculated below:

yjm = f (netjm) (4)

5: The difference between the target output and network output
gives the error value, which is calculated using the following
equation:

Ej =
∑M
m=1

(Tj
m − yjm)

2
(5)

where Tj
m and yjm are the target output and network output,

respectively.
6: The weight and bias values are updated.
7: Repeat from steps 2 to 6, for all training data till the error
is minimised, which indicates the completion of the training
process.

The final set of weights and biases at the end of the training
is used to classify any unseen data. It is observed that optimum
weights and biases are the primary parameters needed for
training ANN.
3.2. MBO algorithm: It is a population-based algorithm devised
from the inspiration of migration behaviour of the monarch
butterflies between land1 and land2 based on the seasons. The
total population of butterflies, NP is divided into two based on
their fitness. The number of monarch butterflies in land1 and
land2 are calculated as subpopulation1 (NP1) = ceil (p*NP) (NP1)
and subpopulation2 (NP2) =NP−NP1, respectively, where ‘p’ is
the migration ratio. The positions of monarch butterfly
individuals are updated using migration operator (MO) and
butterfly adjusting operator (BAO).
3.2.1 Migration operator: The offspring are generated (position
updating) in subpopulation1 by MO and adjusted based on ‘p’,
the ratio of monarch butterflies in land1. The position of each
butterfly ‘m’ from subpopulation1 is based on that of individuals
from subpopulation1 or subpopulation2. This is formulated as
follows:

zt+1
m,j = ztr2,j if r , p

ztr2,j otherwise

{
(6)

where zt+1
m,j is the jth element of zm at generation t + 1, t is the current

generation. r1 and r2 are the monarch butterflies randomly selected
from subpopulation1 and subpopulation2, respectively. r= rand*peri,
where rand is the random number between [0, 1] and peri is the
migration period.
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Table 1 Details of the input attributes in osteoporotic dataset (lumbar
spine and femoral neck)

Attribute number Attribute name Attribute description

1 age age of the patient
2 height height of the patient
3 weight weight of the patient
4 BMI body mass index
5 C.Width cortical bone width or thickness
6 C.FD cortical bone fractal dimension
7 Tr.thick trabecular bone thickness
8 Tr.FD trabecular bone fractal dimension
9 Tr.Numb trabecular number
10 Tr.separa trabecular separation
3.2.1 Butterfly adjusting operator: The offspring of subpopulation2
is produced by BAO. The position of each butterfly individual is
given as

zt+1
q,k =

ztbest,k if rand ≤ p

ztr2,k if rand . p and rand ≤ BAR

zt+1
q,k + a∗(dxk − 0.5), if rand . p, BAR

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(7)

where ztbest,k denotes the kth element of global best individual
among the whole population, r3 is the randomly selected monarch
butterfly from subpopulation2, rand is the random number gener-
ated between [0, 1], BAR is the butterfly adjusting ratio, dz is the
walk step of butterfly ‘q’ calculated using Levy flight as
dz=Levy (ztq) and α= (Smax/t

2) is the weighting factor, where
Smax is the maximum walk step.

Finally, the newly generated butterfly with best fitness is replaced
with its parent and moved to the next generation; else it is discarded
to keep the population size as same.

3.3. Proposed MBO-ANN approach
3.3.1 Encoding of weights and biases: Each monarch butterfly ri
from the population of size NP is encoded as a D-dimensional
vector given below:

ri = W1, B1, W2, B2{ }, i = 1, . . . , NP (8)

where W1 = {w111, w112, . . . , w1HN} is the weight vector repre-
senting the synaptic weights between input and hidden layers,
W2 = {w211, w212, . . . , w2MN} is the weight vector containing
synaptic weights between hidden and output layers,
B1 = {b11, b12, . . . , b1H} and B2 = {b21, b22, . . . , b2M} are
the bias vectors of hidden layer and output layer neurons, respect-
ively. These weight and biases constitutes the elements of a butter-
fly which represents its position. The butterfly vector length ‘D’ is
calculated as

D = (N∗H)+ (H∗M )+ H +M (9)

where N, H andM are the number of input neurons, hidden neurons
and output neurons, respectively.

3.3.2 Fitness function formulation: The MSE for one training
sample is calculated using (5). The performance of ANN is based
on the entire training data of size S. Hence the fitness function,
F of MBO is the average MSE of the entire training samples,
which is formulated as

Minimise F =
∑s

j=1

Ej

j
(10)

The minimum MSE is considered as fitness value.

3.3.3 MBO-ANN implementation: Initially, the weights and biases
for ANN are initialised with the random values and the fitness is
calculated. In the next generation, weights and biases for ANN
training are updated with the best position of the butterfly with
best fitness value, calculated by MBO. The average MSE is calcu-
lated by the ANN. Thus the MBO algorithm calculates the best
butterfly in the forward path for training ANN and receives the
average MSE in the reverse path. This process is iteratively done
till the minimum average MSE is achieved or the maximum gener-
ation is reached. Finally, after the training process, a set of optimal
weight and bias values are given by the proposed MBO-ANN clas-
sifier. It is used to discriminate any unknown data as osteoporotic or
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non-osteoporotic. The MBO-ANN promises for the faster conver-
gence with good convergence rate as most butterflies produce
same fitness values with best global optimum values.

4. Simulation results: The proposed model is developed using
MATLAB R2015b in the Intel core i5 processor with the speed
of 2.7 GHz and 4 GB RAM. In this section, the details of the
simulation results produced by MBO-ANN for the classification
of two osteoporotic datasets are discussed. The experiments are
conducted using the 10-fold cross-validation method. The
performance is validated based on the classifiers learning ability
and generalisation ability for the two datasets. The classifier is
further statistically evaluated using receiver operating
characteristics (ROC) analysis and Wilcoxon signed-rank test. To
provide a meaningful result, the performance of the proposed
MBO-ANN classifier is compared with that of five similar hybrid
ANNs such as ACO-ANN, ABC-ANN, BBO-ANN, DE-ANN
and SGA-ANN. For the purpose of comparison, these five
algorithms are developed from the scratch with the relevant
parameters based on optimisation algorithms [14–18].

4.1. Osteoporotic dataset: The datasets from the literature [8] are
used for classification. Each dataset consists of 141 records, each
containing 10 input attributes (first four attributes represents the
patient’s demographics and remaining six are the attributes of
mandibular cortical bone and trabecular bone derived from the
digital DPR of the patients) and one output attribute which
denotes class labels. This value is based on the BMD values of
the lumbar spine (L2–L4) (dataset1) and the femoral neck
(dataset2). Based on some standard values for bone density, if the
patient’s BMD is within some range it would be healthy
(non-osteoporotic), then the class label assigned as 1 else the
class label assigned is 0 (osteoporotic). In the lumbar spine (LS)
dataset, 21 patients are found to be osteoporotic and 120 as
non-osteoporotic. Whereas in the femoral neck (FN) dataset, 20
patients are found to be osteoporotic and 121 as non-osteoporotic.
Table 1 gives the details of the attributes.

4.2. Network setting: As it is widely accepted that the ANN with
three layers is sufficient to approximate most of the functions, it
is selected. The input layer size (N) and output layer size (M ) is
set to 10 and 1, respectively, based on the structure of the dataset.
A less number of hidden neurons lower the function
approximation and the more neurons cause over fitting with
increased computation time. To avoid these issues, the number of
hidden neurons is carefully selected among the three different
values 7, 10 and 21 derived from the rules 0.75 ×N, N and
2 ×N+ 1, respectively, based on Kolmogorov’s theorem and the
suggestions given in [22, 23]. Experimentally, it is found that the
network with 7 hidden neurons performed well with the datasets.
Hence, the ANN architecture is fixed as 10-7-1. The sigmoidal
Healthcare Technology Letters, 2018, Vol. 5, Iss. 2, pp. 70–75
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function is selected to act as the activation function in both hidden
layer and output layer. To obtain the optimal weights and biases, the
MBO parameters are set based on [19], as Smax = 1.0, peri = 1.2(as
12 months in a year), BAR= 5/12, p= 5/12, NP = 30, hence NP1
and NP2 are 13 and 17, respectively, and maximum
generation = 100. At first, the MBO-ANN model is trained as
discussed in Section 4, with the optimal values and then its
performance is evaluated.
4.3. Learning ability: The main goal of the learning process is to
find the optimal set of weights and biases on performing the
mapping between input and output to gain good accuracy. The
learning ability of the MBO-ANN for LS and FN datasets are
discussed based on its convergence behaviour during its training.
It is visually shown using Figs. 3 and 4, plotted with the MSE
values obtained in different generations. It is observed from both
the figures that the performance curve of MBO-ANN steeps
down quickly to reach the minimum MSE value within 20
generations. It gradually converges to the fitness value of 0.001
for LS and FN datasets. The best fitness value of 0.00073 and
0.00068 is returned by MBO-ANN after all iterations. This
obtained low value gives evidence that the global search is
performed by MBO-ANN to yield the best optimum training
parameters. BBO-ANN is found to be competitive with
Fig. 3 Convergence curves of algorithms for LS dataset

Fig. 4 Convergence curves of algorithms for FN dataset
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MBO-ANN as it produces MSE of 0.002 which is significantly a
closer value. ACO-ANN performed moderately. However, the
other algorithms such as ABC-ANN, SGA-ANN and DE-ANN
get trapped in local minima and shows premature convergence.
This shows that MBO-ANN has good learning ability for the two
datasets when compared with other approaches.

4.4. Generalisation ability: The generalisation ability of
MBO-ANN classifier for the two datasets is evaluated using
10-fold cross-validation. For this, each dataset is divided into ten
equal subsets. Then nine subsets are used to train the classifier,
while the remaining one subset is used for testing. This process is
repeated for ten times such that each subset is given a chance for
testing and the classifier performance is noted. The performance
parameters are estimated by averaging the ten appropriate values
yielded by the classifier. The experiments are conducted for all
the approaches using 10-fold cross-validation method with ten
independent trials with the purpose to reduce the influence of
randomness.

The performance parameters such as average fitness values
(mean), standard deviation of fitness values (Std), best fitness
value (best), average of correctly classified data in percentage
(Cc), average of incorrectly classified data in percentage (Inc) and
average computation time in seconds (Ct), from all the trials are cal-
culated. The performance of MBO-ANN is compared with other
classifiers using these parameters and it is reported in Table 2.
The results indicate that the MBO-ANN classifier yielded a good
classification accuracy of 97.9 and 99.3% for LS and FN datasets,
respectively. This is comparatively higher than other approaches.
BBO-ANN is found to be competitive with MBO-ANN as it
yields the accuracy of 95 and 96.5% for LS and FN datasets, re-
spectively, which is significantly closer to MBO-ANN accuracy.

Among all the approaches it is noted that the computation time of
MBO-ANN is 36.09/36.13 s and SGA-ANN is only 32.79/32.71 s,
respectively, for the lumbar spine and femoral neck datasets, but it
is found that the accuracy of SGA-ANN is only 88.7 and 85.8% for
lumbar spine and femoral neck datasets, respectively. In the medical
domain, it is expected that the diagnostic accuracy of the disease
should be high even if it takes a little more time for providing the
proper treatment given to the patients. It is observed that
ABC-ANN and DE-ANN have similar performance but better
than SGA-ANN.

4.5. ROC analysis: The statistical evaluation of the test results is
done based on ROC curve. It is a plot of all the sensitivity/
(1−specificity) value pairs got by varying the decision threshold
over its entire range of the test carried out. It depicts the trade-off
between hit rates and false-alarm rates of the classifier. It is
repeated with all the classifiers for both the datasets. The area
under curve (AUC) is calculated and the classifiers are ranked
with these values. The results are reported as AUC (rank) format
in Table 3. The last row shows the average rank (Avg. rank)
obtained by the classifiers. It is also observed from the table that
the maximum AUC values obtained using MBO-ANN are 0.989
and 0.996 for LS and FN datasets, respectively. MBO-ANN
ranks first among all the approaches. The average and standard
deviation of specificity/sensitivity of the MBO-ANN are
calculated as 98.33%± 0.03/95.24%± 0.08 and 99.2%± 0.13/100
for LS and FN datasets, respectively. This shows that the
classifier is good and accurate in discriminating the data samples
into osteoporotic and non-osteoporotic.

4.6. Wilcoxon signed-rank test: The algorithms may perform
differently in different runs. To examine whether MBO-ANN
presents a significant improvement over other hybrids, the
non-parametric two-tailed Wilcoxon signed-rank test [24] is
employed at a significance level of 5%, (α= 0.05). A pairwise
comparison is made between MBO-ANN and other approaches
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Table 2 Summary of performance comparison for osteoporotic datasets on 10-fold cross-validation

Approach Data Mean Std Best Cc Inc Ct

MBO-ANN LS 0.00132 0.00021 0.00073 97.9 2.1 36.09
FN 0.00105 0.00019 0.00068 99.3 0.7 36.13

ACO-ANN LS 0.01438 0.0.0073 0.01218 92.2 7.8 36.68
FN 0.01791 0.00574 0.00975 92.9 7.1 36.80

ABC-ANN LS 0.14112 0.01297 0.02752 90.8 9.2 37.38
FN 0.08602 0.01002 0.02147 87.23 12.77 36.17

BBO-ANN LS 0.00280 0.00126 0.00183 95 5 40.15
FN 0.00254 0.00092 0.00217 96.5 3.5 41.04

DE-ANN LS 0.10189 0.14021 0.07231 90.1 9.9 42.20
FN 0.09271 0.09120 0.09221 88.65 11.35 42.91

SGA-ANN LS 0.04183 0.01496 0.11918 88.7 11.3 32.79
FN 0.03872 0.19002 0.11149 85.8 14.2 32.71

Table 3 Results of ROC analysis

Data MBO-ANN ACO-ANN ABC-ANN BBO-ANN DE- ANN SGA-ANN

LS 0.989(1) 0.926(3) 0.912(4) 0.965(2) 0.906(5) 0.897(6)
FN 0.996(1) 0.931(3) 0.887(5) 0.972(2) 0.891(4) 0.866(6)
avg. rank 1 3 4.5 2 4.5 6

Table 4 Results of Wilcoxon signed-rank test at α= 0.05

Comparison R+ R− Z-value p-value Null hypothesis

MBO-ANN versus ACO-ANN 204 6 −3.695 0.00022 rejected
MBO-ANN versus ABC-ANN 207 3 −3.807 0.00014 rejected
MBO-ANN versus BBO-ANN 174 36 −2.576 0.00988 rejected
MBO-ANN versus DE-ANN 204 6 −3.695 0.00022 rejected
MBO-ANN versus SGA-ANN 207 3 −3.807 0.00014 rejected

Table 5 Comparison with other works in the literature on osteoporosis classification

Work carried Approach Performance

[7] RB-SVM+hip radiographs 90% Acc, 90% Sn, 87% Sp
[8] HGSF classifier +DPRs of lumbar spine 96.01% Acc, 95.3% Sn, 94.7% Sp

HGSF classifier +DPRs of femoral neck 98.9% Acc, 99.1% Sn, 98.4% Sp
[9] regression SVM+ factors from dietary and lifestyle habits values not mentioned
[10] RB-SVM+kNN+micro-CT images values not mentioned
[11] HAC algorithm+RB- SVM+DPRs of lumbar spine 93% Acc, 95.8% Sn, 86.6% Sp

HAC algorithm+RB-SVM+DPRs of femoral neck 89% Acc, 96% Sn, 84% Sp
[12] SVM+X-ray images 95% Acc, Sn and Sp not mentioned
[13] MFFN+WFS Acc not mentioned, 57.9% Sn, 68.9% Sp

Naïve Bayes +WFS Acc not mentioned, 0% Sn, 62% Sp
LR+WFS Acc not mentioned, 40.7% Sn, 62.3% Sp

our proposed method MBO-ANN+DPRs of lumbar spine 97.9% Acc, 95.2% Sn, 98.3% Sp
MBO-ANN+DPRs of femoral neck 99.3% Acc, 100% Sn, 99.2% Sp
for the two datasets based on accuracy in different runs. The null
hypothesis (H0) and alternate hypothesis (H1) are set as H0:
There is no significance difference occurred in performance
between two algorithms and H1: There is a significant difference
occurred between in performance two algorithms. The results of
the Wilcoxon signed-rank test are given in Table 4.

The difference in their accuracy is ranked as, R+ is the sum of
ranks where MBO-ANN outperforms the other approach and R−

is the sum of rank for the second algorithm taken in that compari-
son. In all the cases, it is found that p-value <α and Z-value <−1.96
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for the rejection of the null hypothesis at the significance level of
0.05. The results provide strong evidence in the favour of
MBO-ANN for its efficiency.

Further, Table 5 gives the comparison of our work with others in
the literature that is based on the accuracy (Acc), specificity (Sp)
and sensitivity (Sn).

5. Conclusion: In this Letter, the recently devised MBO algorithm
is used to optimise the weights and biases for training the ANN.
This MBO-ANN classifier is used to classify two real world
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osteoporotic datasets namely LS and FN datasets, from healthy
ones. The experiments were conducted using the 10-fold
cross-validation method. The proposed classifier performance is
analysed based on its learning ability and generalisation ability.
Further, the statistical analysis was performed using ROC
analysis and Wilcoxon signed-rank test to justify the performance
of the proposed classifier. The results were compared with other
approaches in the literature and other similar ANN hybrids.
The accuracy, specificity, sensitivity values are given by
MBO-ANN are 97.9%± 0.14, 98.33%± 0.03, 95.24%± 0.08 and
99.3%± 0.16%, 99.2%±0.13, 100 for LS and FN datasets,
respectively. These estimated values of MBO-ANN are relatively
found to be higher than other approaches. The MBO-ANN is
ranked first among other hybrids based on AUC comparison. It is
evidently found that MBO-ANN outperforms all other approaches
to the discrimination of osteoporotic samples from healthy ones.
It also reveals that MBO has made a better trade-off between
exploration and exploitation process leading to global search in
the way of finding optimal values to train ANN. It would have to
be considered that MBO-ANN is suitable for very high
dimensional medical data classification. In future, it is planned to
focus on problems related to the medical domain.
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