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Abstract
Measurements of blood oxygenation level dependent (BOLD) signals have produced some

surprising observations. One is that their amplitude is proportional to the entire activity in a

region of interest and not just the fluctuations in this activity. Another is that during sleep and

anesthesia the average BOLD correlations between regions of interest decline as the activ-

ity declines. Mechanistic explanations of these phenomena are described here using a cor-

tical network model consisting of modules with excitatory and inhibitory neurons, taken as

regions of cortical interest, each receiving excitatory inputs from outside the network, taken

as subcortical driving inputs in addition to extrinsic (intermodular) connections, such as pro-

vided by associational fibers. The model shows that the standard deviation of the firing rate

is proportional to the mean frequency of the firing when the extrinsic connections are

decreased, so that the mean BOLD signal is proportional to both as is observed experimen-

tally. The model also shows that if these extrinsic connections are decreased or the fre-

quency of firing reaching the network from the subcortical driving inputs is decreased, or

both decline, there is a decrease in the mean firing rate in the modules accompanied by

decreases in the mean BOLD correlations between the modules, consistent with the

observed changes during NREM sleep and under anesthesia. Finally, the model explains

why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical

input, gives rises to responses throughout the cortex as observed, with these responses

mediated by the extrinsic (intermodular) connections.

Introduction
The cortical metabolic rate of glucose oxidation (CMRglc(ox)) gives a good measure of the aver-
age synaptic and firing activity in a region of cortex [1], although it is unclear that this can be
used as a surrogate for the resting-state blood oxygenation level dependent (BOLD) signal mea-
sured with fMRI, as is often taken to be the case [2, 3]. This is because the fMRI signal provides
a measure of the fluctuations about the average firing rate in a region of cortex, not the absolute
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size of the frequency [4]. Nevertheless, it has been shown that the average amplitude of the rest-
ing-state CMRglc(ox) in a cortical area is proportional to the average resting-state BOLD there
[3], in studies in which the global signal has not been regressed out. This observation implies
that fluctuations in the firing rate in a region of interest are proportional to the average firing
rate. We have found that this is so in our cortical model, thus providing the opportunity to
determine how it might arise.

Correlations of BOLD signals between brain areas of subjects in the resting-state have been
taken to characterize resting-state functional networks [5], with the correlations probably
mediated in many cases by synapses formed by associational fiber axons [6, 7]. During sleep
and anesthesia some of these correlations are lost, possibly due to changes in synaptic transmis-
sion mediated by these fibers or, as shown here, to changes in the input to the cortex from sub-
cortical regions [8, 9]. As there is concomitantly a significant decrease in CMRglc(ox) and hence
the average firing rate in these areas [1], the question arises as to whether the decrease in
CMRglc(ox) is due to a loss in average firing rate contingent on the loss of correlations mediated
by synapses formed by the associational fibers or to the input firing from subcortical regions?
The cortical model presented here shows quantitatively how the decline in either the efficacy of
the associational fiber synapses and/or the subcortical input changes the firing rates in cortical
regions.

Given that the associational fibers connect widely separated cortical regions it might be
anticipated that if a region receives a transient input from subcortical regions, such as the thala-
mus, this will be widely distributed in some form to other regions across the cortex, and this
has been shown to be the case [10]. Our cortical model shows that different shaped transient
BOLD signals occur in different modules following a transient box-car BOLD signal intro-
duced into one module, and that these transients are the same as those observed across the cor-
tex [10].

Large scale networks of cortico-cortical anatomical connectivity have been used to analyze
resting-state cortical activity [11–14] although phenomenological models of lower complexity
are very useful in order to reveal important mechanisms responsible for the dynamics of corti-
cal activity [11]. We have used such phenomenological models [15], described in the Methods
and illustrated in Fig 1, in order to illuminate the mechanisms relating BOLD activity to the
underlying firing rate in the different experiments outlined above.

Materials and Methods

Definitions
‘Associational fiber connections’ are extrinsic to the modules: axons making synaptic connec-
tions between one part of the cortex and another, considered as regions of interest (ROI).

‘Correlation of the BOLD signals’: correlation between the time course of BOLD signals in
one ROI with that in another ROI.

‘Global signal’: the average BOLD signal across all ROI.
‘Structural connection’: a synapse.
‘Synaptic efficacy’: the probability of synaptic transmission.

Cortical models
The network models we have used in this work have been described in detail in our recent
publications [6, 15] and are only briefly described here. Modules in the networks, represent-
ing cortical areas, possess relatively large numbers of excitatory and inhibitory neurons (75%
of the former and 25% of the latter, in agreement with observations of [16]) with recurrent
synaptic connections. The time evolution of the network is computed by treating each
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Fig 1. Shown are twomodules (regions of interest, ROI1 and ROI2), represented by ellipses containing pools of excitatory neurons (red triangles)
and inhibitory neurons (green circles), synaptically connected within and between pools (black arrows). The extrinsic (associational) axons between
ROI1 and ROI2 originate and end on single neurons and are either excitatory to excitatory (red arrows) or excitatory to inhibitory (green arrows). The
subcortical inputs are also excitatory; computationally, this input is represented by a Poisson train of firings, the strength and frequency of which can be
varied. (B), extrinsic (intermodular, associational) connections in an 8 modular network (NI). The bold line within each module indicates separation of
excitatory and inhibitory neurons within the module with all extrinsic fibers between the modules forming excitatory synapses, primarily on excitatory neurons
within the modules but not exclusively so. (C), extrinsic (intermodular, associational) connections in a 7 modular network (NII). The connectivity due to the
associational axons follows the criteria described in A above. NII can be taken to represent the Default Mode Network (DMN). In this case the modules may
be identified as follows: 1, right lateral temporal cortex; 2, right inferior parietal lobule; 3, left inferior parietal lobule; 4, posterior cingulate cortex; 5, dorsal
medial prefrontal cortex; 6, ventral medial prefrontal cortex; 7, left lateral temporal cortex. The number and diversity of the associational fibers were chosen
so as to reflect the reported weight of such connections between the modules of the DMN (see [49], their Fig 8 and associated Table; also Fig 4A and 4C in
[50]. (After Fig 1 in (15) with permission.)

doi:10.1371/journal.pone.0144796.g001
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neuron as an integrate-and-fire unit that sums inputs and generates an output firing when a
threshold is reached (for details of the model, see (6). The ratio of excitatory to inhibitory
connections to the excitatory neurons is 0.36. The inhibitory connections on the soma are
very powerful in determining the initiation of firing and propagation from the soma, so we
settled for an inhibitory to excitatory ratio of 0.36 on average. The strengths of these connec-
tions provided an excitatory to inhibitory ratio of strengths of 0.33 which may be compared
with that reported in the literature of 0.5 [17] to 1.0 [18]. It should be noted that no attempt
has been made in this work to reproduce the wide range of intermodular neuronal types and
their connectivity that might lead to more appropriate patterns of firing than that observed
in the present and previous modeling studies [6, 15]. The overall extent of intramodular con-
nections, their absolute strengths and the total number of neurons per module were selected,
given the above restrictions, so that the firing rates of isolated modules were neither continu-
ous nor collapsed to zero.

The neurons in the network also receive an external background input of uncorrelated Pois-
son firing trains, like those that cortical neurons receive from subcortical regions such as the
intralaminar nuclei of the thalamus, together with intermodular excitatory synaptic connec-
tions (compare with the network in [12]; see also [6]. The firing rate was transformed to BOLD
signals using the model in [19] as used in [20] (see below). This model is currently used in all
theoretical exercises involving determinations of the BOLD signal in relation to firings [12, 21],
and there is good experimental evidence indicating a close correlation between these (see for
example [22]).

The patterns of firing in the cortex are very irregular [23–25], with some showing bursts fol-
lowed by relatively silent periods of about 0.5s [26] and this is observed in the present simula-
tions. The patterns of firing are determined by the intrinsic properties of modular networks.
Both the amplitude and frequency of the BOLD signals arising from the patterns of network
firings, following application of the Friston equations [19], is similar to that identified experi-
mentally (see Fig 2B in [27]) and in other cortical network simulations (see Fig 6 in [21]) in the
literature.

Single modules and systems of modules
The formalism for the network in a single isolated module, follows that of [6, 15], which in
turn was based on [28] and [29]. The time evolution of the network is initiated by trains of
independent but identically distributed Poisson inputs applied to each neuron. The complete
system of modules consists of identical modules that are interconnected by a limited number
of synaptic connections originating from single excitatory neurons and ending on either excit-
atory or inhibitory neurons, both connected neurons being randomly selected from the appro-
priate pool. For Network I with 8 modules the intermodal connections were generated
randomly (Fig 1B), whereas for Network II with 7 modules the connections are based on data
as given at the end of the legend to Fig 1 (Fig 1C). Simulation runs were generally of 300s dura-
tion, using a time step of 0.01ms and data sampling every 100ms. In the cases where extra stim-
ulation was applied to a module, this was turned on at 25ms and then alternated 20s on and
20s off until the end of the run.

BOLD signal
The BOLD signal is calculated from the neuronal activity using equations 3 and 4 of [19]; see
also [21], equations 36–40. The equations developed by Friston and co-workers [19, 30] com-
bine the Balloon-Windkessel model [31, 32] with a model of how synaptic activity causes
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changes in regional blood flow. The equations are, for a single neural region (module)

_s ¼ z� κs� γðf� 1Þ

_f ¼ s

τ _ν ¼ f� ν1=α

τ _q ¼ f½1� ð1� ρÞ1=f�=ρ� qν1=α=ν

where _s ¼ ds=dt, etc. The input to these equations is z, a measure of neuronal activity taken as
proportional to the neuronal firing rate. s is a vasodilatory signal related to the blood inflow, f.
ν is the blood volume, q the deoxyhemoglobin content and ρ the resting oxygen extraction frac-
tion. The BOLD signal is given by

y ¼ V0½7%ð1� qÞ þ 2ð1� q=νÞ þ ð2%� 0:2Þð1� νÞ�
where V0 = 0.02 is the resting blood volume fraction. The other parameters have values κ = 0.65,
γ = 0.41, τ = 0.98, α = 0.32, ρ = 0.34. A full discussion of these equations, their derivation and jus-
tification, can be found in Friston et al., [19, 30]. In our modeling the neuronal activity, z, that is
the input to these equations, is obtained by multiplying the neuron firing rate (in Hz) by 0.01.

Sampling was carried out every 100ms over the 300s time series, with 50 samples averaged
in general giving a bin of 5s and therefore 60 points on which to calculate the standard devia-
tion (S.D.). This bin size was chosen as appropriate given the time course of a BOLD signal. In
the case of the BOLD signal this S.D. gives the total BOLD fluctuations over the duration of
simulation specified of the total signal, without prior regression of any global variation across
the modules. Here the S.D. provides a summary of variability or power over all frequencies,
particularly those in the low frequency range (i.e., above a period of five seconds).

Results

Cortical networks
Our networks consist of different numbers of modules, with each containing a hundred neurons,
75% excitatory and 25% inhibitory, having different extents of synaptic connections. Associational
fiber connections occur between the modules with their own synaptic weights (for more details of
this connectivity see Methods). Synaptic connections of neurons within any module may also orig-
inate from subcortical sources completely external to the network. In addition, another input to
the network may make synaptic connections in relation to the synapses formed by the intermodu-
lar associational fiber connections whose efficacy they modify; these may originate for instance
from subcortical regions such as the intralaminar thalamus. In order to simplify this network for
computational purposes, the inputs external to the networks have been grouped and the synaptic
efficacy of the intermodular associational synaptic connections changed according to requirements
rather than arising from the intrinsic workings of the subcortical module in Fig 1A.

The projections within these modular networks are illustrated here by two networks with
different levels of intermodular connectivity, designated network I (NI) and network II (NII),
given in Fig 1B and 1C respectively, from which the external modules have been removed for
clarity (for a more detailed description of these networks see [15]. NI consists of 8 modules
(one in isolation for comparison with the rest), with each of these receiving between a single
associational input from another module (modules 2 and 8), or inputs from 2 to 3 modules
(module 6), with most (63%) of these inputs synapsing on excitatory neurons within modules,
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the rest on inhibitory neurons (Fig 1B). In contrast to NI, NII (Fig 1C) consists of 7 modules,
all of which receive 2 to 8 associational fibers forming synapses onto excitatory neurons and
from 0 to 2 associational fiber synapses onto inhibitory neurons. NI and NII have been chosen
from a large number of modular networks we have investigated, as they best illustrate princi-
ples that emerge from this study of small networks.

Changes in the extrinsic (intermodular, associational) synaptic
connections lead to changes in BOLD signals in modules throughout the
network that are proportional to the firing rate in the modules
BOLD signals that measure fluctuations in the resting-state firing rate in a region of cortex have
to be reconciled with the observation that the BOLD is also proportional to the average firing
rate or CMRglc(ox) [3]. The S.D. of the firing rate in any module in NI and NII (Fig 1) is found to
be highly correlated with the firing rate fluctuations (Fig 2A). This is true of both NI (correlation
coefficient 0.99) and NII (correlation coefficient 0.98), independent of the extent of extrinsic
(associational) synaptic connectivity between the modules in each of the networks. As the experi-
mentally measured BOLD signal is taken to be proportional to the fluctuations in the firing rate,
for example fast synchronous activity in the high frequency range [33] or particular patterns of
bursting or transitions between up and down states, it was necessary to confirm that this is the
case in the networks under consideration. Fig 2B shows that it is approximately the case, with a
correlation coefficient of 0.82 relating BOLD amplitude, computed over 60 five second windows,
to the S.D. of the firing rate for NII modules. However, as the S.D. is linearly related to the firing
rate in these networks (Fig 2A) it follows from Fig 2B that the BOLD amplitude should be line-
arly related to the firing rate, and this is shown to be the case (Fig 2C) with correlation coefficient
0.66. This implies that the BOLD signal as normally determined provides a relative measure not
only of the firing rate fluctuations but also of the average firing rate, as has been shown experi-
mentally to be the case (Fig 2D). The gradient of the regression lines relating experimentally
determined BOLD amplitude to CMRglc(ox) is 0.04 (Fig 2D), compared with the theoretical gradi-
ent of 0.06 (Fig 2C). These relations are likely due to the nature of the on-going bursts of firing
activity in the modules (examples of which are shown in the Supplementary Information in [15].
In this case, the observed relations between the mean and S.D. of firing activity arises as a conse-
quence of this pattern of activity. The S.D. provides a summary of variability or power over all
frequencies, particularly those in the low frequency range (i.e., above a period of five seconds).

The dependence of the BOLD amplitude on firing rate can be scaled down to much lower
mean frequencies, as it is likely, although uncertain, that the firing rate in humans are substan-
tially less than 10Hz. This scaling down of the frequency to much lower firing rates is accompa-
nied by a scaling down of the S.D. of the frequencies (Fig 3A and 3B). The results of Fig 3 were
obtained by changing the firing input to the network, taken to originate from subcortical areas,
and not by varying the extrinsic (associational) synaptic connectivity as for the results in Fig 2.
Thus the linear relation between the BOLD signal on the one hand and both the S.D. and firing
rate on the other is not dependent on how these are varied by modifying the network, at least
not for the range of values given in the cases considered.

Loss of BOLD correlations between modules, mediated by the extrinsic
(intermodular, associational) connections, is achievable with a decrease
of firing rate within modules
Correlated BOLD activity between regions of cortex can be modeled by networks such as NI
and NII (Fig 1B and 1C). The network NII can be used to model the correlations observed
between different regions of interest in the cortex, both in awake and in Non Rapid Eye
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Fig 2. (A), correlation between the standard deviation (S.D.) of the firing rate and the mean firing rate in the modules of NI (upper panel) and NII
(lower panel). These frequencies and their S.D.s were determined both for the networks given in the Fig 1B and 1C as well as for these with a
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Movement (NREM) sleep as well as following anesthesia [15]. The loss of correlated activity
between certain regions of the cortex in sleep and anesthesia is accompanied by CMRglc(ox)

decreases of about 40% in these regions [1], implying a 40% decrease in firing rate in these
regions, given the strong linear relation between firing rate and CMRglc(ox) [1]. The question
arises as to whether there is a causal relation between the loss of BOLD correlations between
regions and the decrease in firing rate in these regions?

The mean firing rate in the modules following changes in the average coupling strength
between the modules or changes in the frequency from the subcortical input are given in Fig
4A. The mean BOLD correlation changes, for changes in coupling or external input frequency,
are given in Fig 4B. These results allow graphs to be drawn for the relation between mean fre-
quency and mean BOLD correlations for the situation where these parameters change as a

variety of different extrinsic (intermodular) connection weights. (B), correlation between the amplitude of the RMS BOLD signals and the S.D. of
the frequency of firing rates giving rise to the BOLD signals for NII in the resting state. The BOLD evaluations and the S.D.s of the frequencies
were determined for NII as for the networks in (A); correlation coefficient 0.82. (C), correlation between the amplitude of the RMS BOLD signals and
the mean frequency of firing rates giving rise to the BOLD signals for NII in the resting state. The BOLD evaluations and the firing rate frequencies
were determined as for the networks in (A). The gradient of the regression line is 0.06 with correlation coefficient 0.66. (D), correlation between the
experimental ‘resting state fMRI amplitude’ (BOLD amplitude) and the CMRglc(ox) in the resting state in different brain regions of humans. The
gradient of the regression line is 0.04, with correlation coefficient 0.98. Values are from Table 1 in [3].

doi:10.1371/journal.pone.0144796.g002

Fig 3. The BOLD amplitude is linearly related to both the mean firing rates and their S.D. down to
frequencies in the range of those observed in the cortex of primates. Dependence of the BOLD
amplitude on the S.D. of the firing rate (A) and of the mean firing rate (B) when this was reduced by
decreasing the subcortical input to the modules until the mean frequency was less than 1.25Hz while keeping
the extrinsic (intermodular) connection weights constant. The linear relation between the BOLD amplitude on
the one hand and both the mean firing rate (B) and the S.D. of this (A) on the other is maintained as the
frequency is reduced.

doi:10.1371/journal.pone.0144796.g003
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consequence of changes in the subcortical input frequency (Fig 4C) or changes in the coupling
strength (Fig 4D). The linear gradient of the former is much steeper than that of the latter
(54Hz compared with 29Hz), so that much greater changes in the mean firing rate are associ-
ated with changes in the mean BOLD correlation following a change in the subcortical input,
than with a change in the coupling strength. In the model a 35% decrease in the firing rate, of
the kind observed in some parts of the cortex during NREM sleep, can be obtained together
with changes in mean BOLD correlations comparable to those observed [9], with a change in
the subcortical input. For example, a 35% drop in the firing rate in the modules accompanies a
28% drop in the BOLD correlations following a drop in the subcortical frequency. This may be

Fig 4. The relation between the mean firing rate in modules of NII (Fig 1C) and the mean BOLD correlations between the modules as either the
coupling strength betweenmodules or their subcortical input frequency are changed or both are changed at the same time. The changes in
average firing rate (A), and the average BOLD correlations between modules (B), are shown for changes in the subcortical input frequency and coupling
strength. The changes in the average firing rate versus changes in BOLD correlations when these are altered by changing only (C) the subcortical input
frequency (25 Hz to 35 Hz) at constant connection strength (0.45) or (D) the connection strength (0.2 to 0.5) at a constant input frequency (35 Hz) are given
by the graphs. The gradient in C is 54 Hz and that in D is 29 Hz (linear regression lines drawn, with in (C) y = 54x – 1.9 and in (D) y = 29x + 8). In E the
changes in the average firing rate versus changes in BOLD correlations are given when these are altered by changing both the subcortical input frequency
and the coupling strength simultaneously, a linear relation between these being assumed. The gradient of the line in E is 41 Hz (y = 41x + 1).

doi:10.1371/journal.pone.0144796.g004
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compared with the observed changes in the average correlations in the sensorimotor network
from the awake state to deep NREM sleep of 25% (Fig 1A in [34]). On the other hand, changes
in the coupling strength required to produce an average 35% reduction in firing rate in the
modules are associated with very large percentage changes in mean BOLD correlation, of the
order of 70%, that are not observed ([9]; [34]). While this argues for changes in the subcortical
input frequency input providing the most likely basis for the changes in firing rate and BOLD
correlations observed under a variety of experimental conditions, such as during NREM sleep,
it certainly does not preclude a judicious mixture of both changes in extrinsic (associational)
fiber coupling and subcortical input frequency. We have therefore looked at cases in which
both the subcortical input and the coupling strength are changed simultaneously. Fig 4E gives
the relation between the firing rate and the BOLD correlations for the case when the subcortical
input frequency and coupling strength are linearly related, so that the coupling goes from
strengths of 0.2 to 0.5 as the subcortical input frequency goes from 25Hz to 35 Hz. In this case,
as anticipated, the gradient relating frequency to BOLD correlations is intermediate, 41Hz, to
that of the other two gradients (compare Fig 4E with Fig 4C and 4D).

Extrinsic (intermodular, associational) connections mediate transient
changes in BOLD signals throughout the network following a transient
change introduced into a single module
We determined if the modules responded to transient increases in firing input from an external
source, representing subcortical inputs. To this end, each of the modules in NI was given in
turn an extra transient average input for 20s and the BOLD response in each of the modules
throughout the network measured (see Fig 5A). Following transient increases in modules 4, 5,
6 and 7, respectively, BOLD transients could be observed, mostly of the boxcar shape, in mod-
ules 4, 5 and 6. However, responses in all the modules throughout the network could be identi-
fied with sufficient amplification (Fig 5B). Many of these modules gave BOLD responses that
had very different shapes to the boxcar variety: for example those in modules 2 and 7, which
receive extrinsic (associational) synaptic connections that primarily synapse on inhibitory neu-
rons within the modules. The distribution of the BOLD transient shapes and sizes is very simi-
lar to that observed experimentally where responses with the shapes given in Fig 5B are
identified over widely spaced regions of the cortex after suitable averaging to improve the sig-
nal-to-noise ratio [10].

Discussion

BOLD signals are proportional to both the mean and S.D. of the firing
rate in the resting state
The subcortical input to each neuron in the network of modules gives rise to bursts of firings in
the modules (see Supplementary Information in [15]), that have similar characteristics to those
of ‘up-states’ recorded in neocortex [35, 36]. Indeed it is known that a spontaneous up-state in
one module can initiate bursts in other modules [37, 38]. This average frequency increases with
an increase in the frequency of the subcortical input for each module, whether or not it is
embedded in a network of modules [15]. As a consequence of this pattern of activity the stan-
dard deviation of the firing rate is proportional to the average firing rate (see Fig 2A). This
arises as follows: let the firing rate within a burst be bHz and let ℓ s be the length of the burst.
To a good approximation, we can take b and ℓ to be constants. If p is the probability of a burst
occurring in any given interval, then the number of bursts X occurring in n intervals each of

length ℓ is binomially distributed with mean np and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

. It follows
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that the overall firing rate Xb/n is also binomially distributed with mean µ = pbHz and stan-

dard deviation s ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� pÞ=ðpnÞp

Hz. Note that as well as showing that the standard devia-
tion σ is proportional to the firing rate µ, this also shows that σ decreases as the inverse of the
square root of the length of the time window nℓ s used in analyzing the simulation data. In the
present work sixty windows of 5 s were used in the calculations.

Loss of average resting-state firing rate over modules during sleep and
anesthesia associated with loss of BOLD
During NREM sleep there is a fall in BOLD correlations between many areas of cortex although
there are some increases in others [39, 40]. The greatest decline, of over 70%, occurs between
the medial prefrontal cortex and the posterior cingulate cortex and also between the medial
prefrontal cortex and the right inferior parietal lobule (see Table 2 in [41] and also [42]). This
reflects the fact that NREM sleep is accompanied by fewer long-range effective associational
connections with increased ‘cliqueness’ of local connections (that is there is a clustering of local
‘sub-modules’) [39, 40, 43]. Given the loss of these BOLD correlations there should be a

Fig 5. (A) The transient BOLD signal in eachmodule in NI (columns numbered 1 to 8) following successive 20s increases in the subcortical input
to modules 4 to 7 (rows numbered 4 to 7), causing increased firing in these modules. The input was simulated by increasing the subcortical input
for 20s periods. (B) gives the same results as in (A) except that individual transients are amplified sufficiently to observe them in each of the 8
modules. This figure should be compared with that of Fig 4C in [10] in which similar experimental transients were observed over the cortex in a simple
psychological test.

doi:10.1371/journal.pone.0144796.g005
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significant decrease in firing rate in individual modules according to our model, reflected by a
decrease in CMRglc(ox) in the modules, and this is observed [1]. This global drop in firing rate,
accompanied by a decrease in BOLD correlations, can be most easily accommodated in the
present model by a decrease in the firing rate of subcortical inputs to the modules rather than
by changes in the connective strength between them, although both might be involved with the
former having a much greater impact on the changes in firing rate in the modules and the asso-
ciated changes in BOLD correlations. Furthermore the possibility of an increase in the sponta-
neous down-states in the individual modules, caused by local changes in the efficacies of the
intrinsic intramodular synapses during NREM sleep or anesthesia, cannot be discounted.

It is of considerable interest that during quiet wakefulness transcranial magnetic stimulation
(TMS) of the premotor area leads to an initial electrical response there, followed by a sequence
of waves that propagate to other areas of the cortex with which the premotor area has long
associational connections. This is in contrast to NREM sleep when the electrical response at
the premotor site of stimulation is strong but does not propagate to other sites at all [41, 42].
These observations are consistent with the idea that the principal decrease in firing rate and
BOLD correlations under these conditions is due to a decrease in the efficacy of associational
synaptic connections that block the propagation of the cortical waves [44].

Propofol anesthesia also reduces BOLD correlations [45, 46]. For example, the BOLD corre-
lations of the medial prefrontal cortex are reduced from 0.6 to 0.1 and those of the posterior
cingulate cortex from 0.6 to 0.3 under propofol. This is in contrast to the auditory and visual
resting-state networks where the BOLD correlations are minimally altered [8, 45, 46]. These
decreases in BOLD correlations are accompanied by decreases in CMRglc(ox) of about 50% to
60% in different areas of cortex [47], as expected from the relation between decreases in the fir-
ing rate in different modules and their loss of BOLD correlations (see Fig 4A and 4B).

Another interesting aspect of the effects of changing the resting-state activity in sensory
areas with an anesthetic is that a transient input from the thalamus gives rise to a more spatially
confined BOLD change in sensory cortex, although the BOLD signal is much enhanced in
amplitude [48]. This is to be expected from the model if an effect of the anesthetic is to decrease
the associational fiber connectivity, for in this case some cortical areas (or modules) are isolated
from others giving then a spatially confined BOLD signal. Furthermore, since the area (or
module), as a consequence of being isolated, has a low level of resting-state firing activity then
it will give rise to a much larger BOLD signal in response to a given transient subcortical (tha-
lamic) signal (Fig 4 in [15]).
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