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ABSTRACT

The aryl hydrocarbon receptor (AHR) is an orphan nuclear receptor with a primary function of mediating 
xenobiotic metabolism through transcriptional activation of Phase I and Phase II drug-metabolizing enzymes. 
Although no high-affinity physiological activators of AHR have been discovered, the endogenous signaling of 
the AHR pathway is believed to play an important role in the development and function of the cardiovascular 
system, based on the observations on ahr gene-deficient mice. The AHR knockout mice develop cardiac 
hypertrophy, abnormal vascular structure in multiple organs and altered blood pressure depending on their 
host environment. In this review, the endogenous role of AHR in cardiovascular physiology, including heart 
function, vascular development and blood pressure regulation has been summarized and discussed. 
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INTRODUCTION

The aryl hydrocarbon receptor (AHR) is a transcription 
factor that belongs to the basic helix-loop-helix /PER-
ARNT-SIM family of  DNA binding proteins. There 
are two major categories of  environmental compounds 
that activate AHR signaling: halogenated aromatic 
hydrocarbons (HAH), such as 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) and polycyclic aromatic hydrocarbons 
(PAH), such as benzo(a)pyrene. Unliganded AHR forms a 
complex including two copies of  90kD a heat shock protein 
(HSP90), one X-associated protein (XAP), and one p23 
molecular chaperone protein in the cytoplasm.[1-4] After 
being activated by its ligands, cytoplasmic AHR translocates 
into the nucleus, disassociates from the chaperone complex, 
dimerizes with the aryl hydrocarbon receptor nuclear 

translocator (ARNT) and transactivates target genes 
through binding to dioxin response elements (DRE) in 
promoter regions. AHR target genes include Phase I and 
Phase II metabolic enzymes, such as cytochrome P450 1A1 
(CYP1A1), cytochrome P450 1B1 (CYP1B1), NAD(P)
H: Quinone oxidoreductase I (NQO1) and aldehyde 
dehydrogenase 3 (ALHD3A1) [Figure 1]. The induction of  
xenobiotic metabolizing enzymes following AHR activation 
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Figure 1: Aryl hydrocarbon receptor signaling pathway
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is considered, at least in part, an adaptive response of  
the organism to its environment, which could decrease 
the potential toxicity of  foreign chemicals. On the other 
hand, activation of  AHR also mediates the toxicity of  its 
environmental ligands.

The AHR molecule varies significantly across species in 
mediating TCDD toxicity,[5] as well as in molecular weight 
by almost 30kD, which is primarily due to the different 
positions of  the translational termination codon.[6] Four 
murine AHR alleles, AHRb-1, AHRb-2, AHRb-3 and AHRd, 
have been found and cloned from different inbred and 
wild mouse strains.[6-9] The AHRd receptor has a lower 
ligand-binding affinity compared to the AHRb-1 and AHRb-2 
alleles.[9] The AHRb-1 allele encodes a protein of  805 amino 
acids, the AHRb-2 and AHRd alleles encode proteins of  848 
amino acids, and the AHRb-3 allele encodes a protein of  883 
amino acids. All proteins of  the four alleles contain a basic 
helix-loop-helix motif  (bHLH), PER-ARNT-SIM (PAS) 
domain and a transactivation domain (TAD), and their 
varied amino acids exist at the carboxyl end.[6] [Figure 2]. 
Human AHR is identical to mouse AHR at N-terminus 
and has 60% identity with mouse AHR at C-terminus.[6] An 
Ala375→Val375 polymorphism is responsible for the reduced 
ligand-binding affinity of  the AHRd receptor compared 
with the AHRb-2 receptor in both rodent and human.[9,10]

Through evolution of  multicellular organisms, the function 
of  AHR in environmental adaption has also been put to 
use in important physiological processes. AHR mRNA 
is expressed in multiple human tissues, with the highest 
expression in the placenta, relatively high expression in the 
lung, heart, pancreas and liver, and lowest expression in 
the kidney, brain and skeletal muscle.[11] Its mRNA has also 
been detected in multiple vascular beds in human, including 
pulmonary microvasclature, aortic arch and umbilical 
vein.[12,13] In the absence of  exogenous ligands, the intrinsic 
activity of  AHR signaling is subject to regulation by either 
endogenous ligands, including 2-(1’H-indole-3’-carbonyl)-
thiazole- 4-carboxylic acid methyl ester, arachidonic acid 
metabolites, such as prostaglandinG2 and lipoxin4A, and 
heme metabolites, such as bilirubin; or nonligand activators, 
such as shear stress, cAMP and modified low-density 
lipoprotein (LDL).[14-22] Although none of  these factors 
have been proved as high-affinity physiological activators 
of  AHR, the endogenous function of  AHR signaling, 
including heart function, vascular development and blood 

pressure regulation, has been characterized using ahr gene-
deficient mice. Due to the nature of  AHR, a mediator of  
xenobiotics and a potential target in genetic modification 
of  cardiovascular function, in this review, the function of  
this receptor in the cardiovascular system is summarized 
and discussed, which may shed light on the development 
of  a new therapeutic methodology in cardiovascular disease 
prevention and treatment.

ARYL HYDROCARBON RECEPTOR IN HEART 
FUNCTION 

In the 1990s, AHR-deficient mice were developed 
independently in three labs, by either deleting exon 1[23,24] or 
exon 2[25] of  the gene. All three AHR-null mice had a mixed 
C57BL/6 ×129 background and displayed a slower growth 
rate within the first few weeks after birth, TCDD resistance, 
failure of  xenobiotic CYP1A1 and CYP1A2 induction, 
maintained but decreased fertility and liver pathology. 

The function of  endogenous AHR signaling in heart 
development and physiology remained contradictory. AHR-
deficient mice develop cardiac hypertrophy and fibrosis in 
adulthood with a sophisticated mechanism.[26-28] Early 
characterization of  the enlarged heart in AHR-null mice 
suggested that enhanced vascular endothelial growth factor 
(VEGF) expression may contribute to the hypertrophy 
phenotype.[27] In 2003, Vasquez et al., reported increased 
size of  cardiomyocytes and an anatomic remodeling 
without typical features of  molecular remodeling, which 
was not consistent with hypertrophic growth secondary to 
pressure or volume overload.[28] This suggested an intrinsic 
role of  AHR in cardiomyocyte size control. In the same 
year, Lund et al., indicated that cardiac hypertrophy in 
AHR-null mice was associated with high systemic arterial 
blood pressure as well as increased circulating angiotensin 
II (Ang II) and plasma endothelin-1 (ET-1) level.[29] This 
cardiac hypertrophic phenotype was primarily mediated 
by elevated circulating ET-1, thus treatment with BQ-123, 
an ETA receptor antagonist, significantly attenuated the 
phenotype as well as the mRNA expression of  cardiac 
hypertrophy markers, atrial natriuretic factor (ANF) and 
β-myosin heavy chain (β-MHC).[30] Cardiac fibrosis were 
observed by both groups in AHR-null mice, suggesting 
a functional remodeling of  the heart. A further study on 
altitude acclimated low blood pressure AHR knockout 
mice revealed that the hypertrophied heart is more likely 
a compensatory physiological effect to increase cardiac 
output in an attempt to increase blood pressure.[31] This 
is consistent with the absence of  pathological cardiac 
hypertrophy markers reported by Vasquez et al.[28] A 

Figure 2: Aryl hydrocarbon receptor structure
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recent study on AHR-null mice also indicated cardiac 
hypertrophy and fibrosis, which might involve Vav3, an 
activator of  Rho/Rac GTPases, regulated by AHR.[32] The 
authors also demonstrated a thickening of  arterial media 
wall and increased number of  vascular smooth muscle 
cells in arterial walls. All the research data above, although 
inconsistently, suggest that local AHR signaling contributes 
to the development of  cardiac hypertrophy and fibrosis 
that reflects a cardiac functional remodeling.

ARYL HYDROCARBON RECEPTOR IN VASCULAR 
DEVELOPMENT 

The role of  endogenous AHR in vascular development 
is also uncovered from the research on AHR knockout 
mice, which exhibit a spectrum of  hepatic defects, 
including portal fibrosis and a smaller liver. The mechanism 
underlying the liver defect seems due to fetal hepatic 
necrosis caused by compromised perfusion,[33,34] and 
partially resulted from a patent ductus venosus in 
adulthood, which is mediated by loss of  AHR in endothelial 
cells specifically.[34-36] Abnormal vascular structures have 
also been reported in the liver, kidney and hyaloid of  AHR 
knockout mice.[35] A further investigation showed that the 
mice carrying the hypomorphic AHR allele also develop 
patent ductus venosus, which could be rescued by TCDD 
treatment.[34] In addition, nuclear translocation and DNA 
binding abilities of  AHR are both required in the closure 
of  ductus venosus, suggesting a transactivation mechanism 
in this particular endogenous AHR function.[37,38] Taken 
together, these two models suggest that the endogenous 
and exogenous ligand-activated AHR signaling may share 
the same signal transduction mechanism in mediating 
vascular development.

ARYL HYDROCARBON RECEPTOR IN BLOOD 
PRESSURE REGULATION

The role of  the AHR agonist, TCDD, in inducing high 
blood pressure has been demonstrated in both epidemiology 
studies and research using mouse models, in which AHR-
mediated cytochrome P450 overexpression may be 
involved.[39-43] Due to the similarity between endogenous 
and exogenous AHR signaling, it is not surprising that 
endogenous AHR also contributes to blood pressure 
regulation in addition to the cardiovascular development 
mentioned above. Anesthetized AHR-null mice were first 
found hypotensive in the absence of  a heart rate difference 
at eight months of  age.[28] The authors also reported a 
decreased cardiac output caused by diminished stroke 
volume in four-month-old AHR knockout mice.[28] This 

finding suggested a role of  AHR in causing hypotension by 
decreasing cardiac function. Later in the same year, Lund 
et al., reported high blood pressure in conscious AHR-null 
mice, associated with elevated circulating Ang II and ET-1 
levels.[29] In this study, angiotensin converting enzyme 
blockade by captopril attenuated, but did not normalize 
elevated arterial blood pressure. Subsequently, ET-1 was 
identified as the primary factor causing high arterial blood 
pressure in those AHR-null mice.[30] Treatment with BQ-
123, an ETA receptor blocker, dramatically attenuated mean 
arterial blood pressure as well as plasma Ang II levels in 
AHR-null mice, suggesting increased Ang II as a secondary 
effect of  ET-1 elevation. Another group also reported 
elevated arterial blood pressure in AHR-null mice, which 
was normalized by captopril treatment.[44] Their model 
also suggested an increase of  vascular α-1D adrenoceptor 
expression that was involved in the hypertensive phenotype. 
Interestingly, both groups reported hypertension in AHR-
null mice located at mild high altitude (Albuquerque NM, 
1620m; Mexico City, 2240m). A further investigation of  
blood pressure in AHR-null mice indicated that loss of  
endogenous AHR signaling in mice led to hypotension at 
sea level and hypertension at mild high altitude, which was 
caused by different atmospheric oxygen levels.[12]

A recent study performed by the group in Albuquerque 
comprehensively investigated the role of  AHR in blood 
pressure regulation using AHR heterozygous and null 
mice.[31] Their up-to-date data indicated a very interesting 
phenotype of  AHR-null mice. After living for a few years 
at high altitude, the AHR null mice have a hypotensive 
phenotype, which mimics the blood pressure phenotype 
observed at sea level. Additionally, the former proposed 
mediators of  high blood pressure, including high circulating 
Ang II and ET-1 levels, no longer occur in these animals. 
This suggests that the AHR-null mice in Albuquerque have 
physiologically adapted to the altitude and exhibit a blood 
pressure phenotype consistent with sea level animals. The 
hypotensive AHR-null mice exhibit a significantly higher 
level of  endothelial nitric oxide synthase (eNOS) and 
enhanced vascular nitric oxide (NO) production compared 
to both wild-type and AHR heterozygous mice, which both 
have normal blood pressure. However, this is not likely the 
cause of  hypotension in AHR-null mice, since Nω-nitro-
L-arginine (LNNA), a non-selective nitric oxide synthase 
(NOS) blocker, failed to normalize the blood pressure. 
Moreover, neither prazosin, an alpha1 adrenoceptor 
antagonist, nor hexamethonium, a ganglionic blocker 
treatment, causes any differences in the blood pressure 
change among AHR wild-type, heterozygous and null 
mice, suggesting an intact sympathetic activity in the blood 
pressure regulation of  AHR-null mice. However, a research 
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group in Spain, Salamanca (802 m) compared AHR-null 
and Vav3-null mice, which developed similar cardiovascular 
remodeling and blood pressure, and suggested that the 
hypertension of  AHR-null mice is mediated by Vav3 
through a sympathoexcitation mechanism.[32] Although 
the role of  AHR in blood pressure regulation remains to 
be elucidated, there is no doubt that AHR could serve as 
a target in the treatment of  high blood pressure and other 
NO-dependent vascular diseases.

CONCLUSIONS

Most cardiovascular diseases are attributed to long term, 
repeated functional interruption and deposition of  harmful 
factors in the cardiovascular system. The role of  AHR in 
mediating xenobiotics-induced vascular damage has been 
well documented. However, the research results on the role 
of  endogenous AHR in vascular homeostasis and blood 
pressure regulation still remain contradictory. From all the 
research on ahr gene-deficient mice, there is no doubt that 
AHR is one of  the most important factors in maintaining 
blood pressure stability in those animals. The mechanism 
of  more than 90% of  the cases of  human hypertension is 
unknown and ahr gene polymorphism has been detected 
in humans.[45] Therefore epidemiology research to correlate 
ahr gene polymorphism, altitude of  residence and blood 
pressure phenotype will provide valuable insight into the 
role of  AHR in human blood pressure control. On the 
other hand, endothelium-derived nitric oxide production is 
a critical prognostic parameter in vascular function. Further 
understanding of  the role of  AHR in NO generation in 
vasculature endothelium and vascular remodeling will also 
contribute to the prevention of  vascular diseases, such 
as atherosclerosis. The nature of  cardiovascular diseases 
suggests a multifactorial etiology and a long-lasting disease 
development process. The endogenous AHR signaling 
represents a very promising target for cardiovascular 
disease prevention and treatment due to its role in heart 
and vascular physiology, blood pressure regulation and 
vascular NO generation. Thus, the AHR function in the 
cardiovascular system requires careful and comprehensive 
investigation with employment of  true littermate animals 
with a pure genetic background and well-controlled animal 
husbandry environment.
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