
Together with the Fusarium graminearum species 
complex, F. culmorum is a major member of the caus-
al agents of Fusarium head blight on cereals such as 
wheat, barley and corn. It causes significant yield and 
quality losses and results in the contamination of grain 
with mycotoxins that are harmful to humans and 
animals. In Korea, F. culmorum is listed as a quaran-
tine fungal species since it has yet to be found in the 
country. In this paper, we report that two isolates (J1 
and J2) of F. culmorum were collected from the air 
at a rice paddy field in Korea. Species identification 
was confirmed by phylogenetic analysis using multi-
locus sequence data derived from five genes encoding 
translation elongation factor, histone H3, phosphate 
permease, a reductase, and an ammonia ligase and 
by morphological comparison with reference strains. 
Both diagnostic PCR and chemical analysis confirmed 
that these F. culmorum isolates had the capacity to 
produce nivalenol, the trichothecene mycotoxin, in 
rice substrate. In addition, both isolates were patho-
genic on wheat heads and corn stalks. This is the first 
report on the occurrence of F. culmorum in Korea.
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Fusarium culmorum is a soil-borne ascomycetous fungus 
distributed in cooler temperate zones, including northern, 
central, and Western Europe, Canada, Western Asia, North 
Africa, and Australia (Demeke et al., 2005; Iwama et al., 
2007; Obanor et al., 2010; Parry et al., 1995; Stepień et 
al., 2008; Yli-Mattila, 2010). It is a causal agent of seri-
ous diseases, such as crown rot, ear rot, foot rot, and head 
blight in cereals (e.g., wheat, barley, and corn) (Obanor 
et al., 2010; Scherm et al., 2013; Wagacha and Muthomi, 
2007). It is also known to be one of the two main patho-
gens causing Fusarium head blight (FHB) on wheat and 
barley, along with the F. graminearum species complex 
(Fg complex) (Goswami and Kistler, 2004; Hogg et al., 
2010; Miedaner et al., 2008; Scherm et al., 2013; Waga-
cha and Muthomi, 2007). Recently, the composition of 
both Fusarium species has changed in Europe and Austra-
lia, probably due to climate change (Jennings et al., 2004; 
Miedaner et al., 2008; Obanor et al., 2010; Scherm et al., 
2013; Waalwijk et al., 2003; West et al., 2012). F. culmo-
rum can survive in the soil and infect the roots of cereal 
plants; its asexual spores (conidia) can also infect plants 
through the florets. In addition to causing plant diseases, 
F. culmorum produces several mycotoxins on infected ce-
reals, such as trichothecenes and zearalenone, which are 
harmful to humans and animals; the trichothecenes can be 
divided into two chemotypes (deoxynivalenol, DON; ni-
valenol, NIV), as in the Fg complex (Bakan et al., 2001; 
Demeke et al., 2005; Nielsen et al., 2012; Pasquali et al., 
2010; Scherm et al., 2013). Unlike the Fg complex, F. 
culmorum is not able to undergo sexual reproduction for 
the production of sexual progeny (Kerényi et al., 2004; 
Mishra et al., 2003; Obanor et al., 2010), and is not rec-
ognized as a species complex since its global populations 
lack a strong lineage structure despite their geographic 
separation (Obanor et al., 2010). In Korea, F. culmorum 
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is listed as a fungal quarantine pest since it has not been 
found in the country (Animal, Plant and Fisheries Quar-
antine and Inspection Agency, 2013). In this study, we 
identified two isolates of putative F. culmorum, which 
were isolated from the air at a rice paddy field in Korea, 
by both morphological and molecular comparisons to ref-
erence strains of F. culmorum, and assessed their potential 
pathogenicity and mycotoxin production. This is the first 
report of the occurrence of F. culmorum in Korea.

Materials and Methods 

Fungal sampling and culture. Airborne Fusarium spe-
cies were collected as previously described (Jung et al., 
2013). Ninety-millimeter Petri dishes of pentachloroni-
trobenzene (PCNB) agar medium (1.5% peptone, 0.1% 
KH2PO4, 0.05% MgSO4·7H2O, 0.075% PCNB, 2% agar) 
supplemented with kanamycin (75 μg/ml) were exposed 
at a farm road next to a rice paddy field located in Gigok-
ri, Dogo-myeon, Asan, Chungnam Province, Korea on 
April 4, 2015, which was not close to corn-growing fields 
and has not been used for wheat cultivation. Three PCNB 
plates were left open on a 1-m-high stand for 30 minutes 
at three different locations approximately 100 m apart 
from each other. The plates were then incubated at 25oC 
for three days, and the fungal colonies were sub-cultured 
onto fresh potato dextrose agar (PDA; Difco Laborato-
ries, Detroit, MI, USA). Each Fusarium isolate was puri-
fied through single-spore isolation. Reference strains of 
Fusarium were obtained from the Centraalbureau voor 
Schimmelcultures (Utrecht, the Netherlands). Several 
species belonging to the Fg complex such as F. gra-
minearum, F. aisaticum, F. botthii, F. vorosii, and F. fujik-
uroi used in this study were previously described (Kim et 
al., 2015), or obtained from our fungal collection. Fungal 
strains from 25% glycerol stock cultures stored at −80oC 
were maintained on PDA. To analyze colony morphology 
and hyphal growth, the Fusarium strains were grown in 
either PDA or complete medium (CM; Leslie and Sum-
merell, 2006) at 25oC. To observe conidial morphology, 
agar blocks of the fungal hyphae were inoculated on 
carnation leaf agar (CLA) medium prepared as described 
previously, and incubated for two weeks under black light 
(Leslie and Summerell, 2006). For genomic DNA extrac-
tion, the Fusarium species were grown in 50 ml of CM 
broth at 25oC for four days with shaking (150 rpm). For 
trichothecene production, agar blocks from CM culture of 
the F. culmorum isolates were inoculated into 40 g of au-
toclaved rice in a 500-ml Erlenmeyer flask and incubated 
for three weeks. Fungal genomic DNA was extracted by a 
quick method as described previously (Chi et al., 2009).

PCR amplification and phylogenetic analysis. For 
identification of the species of F. culmorum isolates and 
their phylogenetic relationships with other F. culmorum 
strains worldwide, partial nucleotide sequences of the five 
genes frequently used as DNA markers (those for transla-
tion elongation factor 1-alpha [TEF1, ~680 bp], histone 
H3 [H3, ~450 bp], phosphate permease [PHO, ~850 bp], 
reductase-like gene [RED, ~820 bp], and ammonia li-
gase [URA, ~570 bp]) were amplified from the collected 
Fusarium isolates as previously described (O’Donnell et 
al., 2000). For trichothecene chemotype determination, 
the TRI7 and TRI13 genes were amplified as previously 
described (Lee et al., 2001). For mating-type determina-
tion, two primer sets, which were derived from F. gra-
minearum and specific to the MAT1-1 or MAT1-2 locus, 
were used. All of the PCR primers (Table 1) (Chandler 
et al., 2003; O’Donnell et al., 2000) used in this study 
were synthesized by Cosmo Genetech (Seoul, Korea). 
Each reaction tube contained 50 ng of template DNA, 
1 × PCR buffer, dNTPs at 0.2 mM each, primers at 10 
μM, and 1.25 U ExTaq polymerase (Takara Biomedicals, 
Shiga, Japan) in 50-μl reaction volumes. PCR products 
of the DNA marker genes for phylogenetic analysis were 
sequenced directly after purification with a PCR clean-up 
system (Promega, Madison, WI, USA). For phylogenetic 
analysis, the nucleotide sequences for each marker gene 
from the Korean isolates were combined and aligned with 
those of the reference strains retrieved from GenBank 
(O’Donnell et al., 2000) using ClustalW (Thompson et 
al., 1994). A total of 2,751 nucleotides from all five genes, 
or 2,212 nucleotides from three genes (PHO, RED, and 
TEF1), were used in maximum likelihood (ML) analyses 
using MEGA ver. 4.02 (Center of Evolutionary Functional 
Genomics Biodesign Institute, Arizona State University, 
Tempe, AZ, USA). The robustness of the ML trees (MLTs) 
was determined using the full heuristic search option for 
1,000 bootstrap replications. The DNA sequences of the 
genes newly obtained from Korean F. culmorum isolates 
and two reference strains were deposited in GenBank 
(http://www.ncbi.nlm.nih.gov/) under the accession num-
bers listed in Table 2.

Mycotoxin analysis and pathogenicity test. Quantita-
tive determination of trichothecenes produced in the rice 
substrates was achieved by LC-MS/MS analysis. A ho-
mogenized rice sample (1 g) was extracted with 4 ml of 
acetonitrile:water (50:50) containing 0.1% formic acid 
and 1 g of sodium chloride. After filtering through a spin-
X micro-centrifuge 0.2 μm filter (Sigma-Aldrich, Seoul, 
Korea), the supernatant was injected into the LC-MS/MS 
system consisting of an LC-10ADvp (Shimadzu, Kyoto, 
Japan) pump system with an API 2000 triple quadrupole 
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mass spectrometer (AB SCIEX, Foster City, CA, USA) 
equipped with an ESI source. The Agilent ZORBAX 
ODS C18 column (4.6 × 25 cm, 5 μm particle size) was 
used for this work. The identification of precursor and 
product ions in positive mode was performed in selected 
reaction monitoring mode.

To test pathogenicity on wheat heads, a central spike-
let of wheat was inoculated during mid-anthesis with a 
suspension of the fungal conidia at 105/ml, obtained from 
a three-day-old CMC culture as described previously 
(Han et al., 2007; Lee et al., 2009). To test pathogenicity 
of stalk rot on corn, plants grown in pots for two months 
were inoculated by injecting 10 μl of the suspension of 
fungal conidia (at 105/ml) using a micropipette tip at the 
second internode. Two weeks after inoculation, the corn 
stalks were cut longitudinally to identify stalk discolor-
ation.

Results and Discussion

Morphological comparison. Two Korean isolates of F. 
culmorum (designated J1 and J2) were morphologically 
identified based on cultures grown on PDA and CLA. 
The J1 and J2 isolates exhibited colony features on PDA 
similar to those from the reference strains of F. culmorum 
(NRRL11427 and NRRL14983) and F. graminearum 
(PH-1 and Z3643): fast-growing, whitish, aerial hyphae 
with red pigmentation on the reverse plate on PDA and 
abundant macroconidia but no microconidia. However, 
the macroconidia of J1 and J2 formed on CLA showed 
morphological features typical of F. culmorum: slightly 
curved, rather short, thick-walled three- to four-septate, 
mostly measuring 32–35 × 4–5 μm, rounded and blunt-
shaped apical cells lacking distinctive foot-shaped basal 
cells. The lengths and widths of macroconidia in J1 and 
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Table 1. Primers used in this study

Target gene Name Sequence (5’-3’) Reference

Phosphate permease (PHO) PHO1
PHO6

ATCTTCTGGCGTGTTATCATG
GATGTGGTTGTAAGCAAAGCCC

O’Donnell et al., 2000

Histone H3 (H3) H3F1
H3R1

TGGCAAGGCCCCTCGCAAGC
TTGGACTGGATRGTAACACGC

O’Donnell et al., 2000

Putative reductase (RED) RED1d
RED2

TCTCAGAAAGACGCATATATG
CGTAACTGCGTCATTCGGC

O’Donnell et al., 2000

Ammonia ligase (URA) URA11
URA16

GAGTATGCCCGCAACGTCATG
AATTATCTCATCGAGACATCC

O’Donnell et al., 2000

Translation elongation factor-1α 
(TEF1)

EF1
EF2

ATGGGTAAGGA(A/G)GACAAGAC
GGA(G/A)GTACCAGT(G/C)ATCATG

O’Donnell et al., 2000

TRI101 FculTri101 nF/p1
FculTri101 nR/p1

ACCCAAAGCCTGTAATTATG
CCAAAGTCGTACTCCCATAA

Unpublished

TRI7 Tri7 F
Tri7 R

TGCGTGGCAATATCTTCTTCTA
TGTGGAAGCCGCAGA

Chandler et al., 2003

TRI13 Tri13 F
Tri13 R

CATCATGAGACTTGTKCRAGTTTGGG
TTGAAAGCTCCAATGTCGTG

Chandler et al., 2003

MAT1-1-1 MAT1-1 F
MAT1-1 R

CTGGAAGAACTGGGCATCGTAA
GATATTCTTGTGGCTGGCTACTTT

This study

MAT1-2-1 MAT2-1 F
MAT2-1 R

AACACTTACAGCATCATCAGGGCACTCC
ATCACCCAGGCACTCGACGTGTGCTTT

This study

MAT1-2-1 MAT2-1 F
MAT2-1 R

AACACTTACAGCATCATCAGGGCACTCC
ATCACCCAGGCACTCGACGTGTGCTTT

This study

Table 2. GenBank accession numbers of the genes sequenced in this study

Isolate H3 TEF1 PHO RED URA

J1 KU198290 KU198294 KU198298 KU198302 KU198306
J2 KU198293 KU198295 KU198299 KU198303 KU198307
NRRL 14983 KU198292 KU198296 KU198300 KU198304 KU198308
NRRL 11427 KU198291 KU198297 KU198301 KU198305 KU198309
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J2 were highly similar to those from NRRL11427 and 
NRRL14983, but they were clearly shorter and larger, 
respectively, than those from Z3643 and PH-1 (Fig. 1). In 
addition, thick-walled oval to globose chlamydospores, 
which is the other key character for identifying F. culmo-
rum, were formed in both hyphae and macroconidia on 
CLA (data not shown). Based on the culture morphology, 
F. culmorum has been frequently confused with F. sam-
bucinum and F. cerealis (synonym F. crookwellense), but 
the relatively high growth rate and the notched basal cell 
shape of conidia in J1 and J2 clearly rule out this possibil-
ity (Leslie and Summerell, 2006).

Phylogenetic analysis. The multilocus sequence (MLS) 
dataset from the five combined genes included 16 taxa 
and comprised 2,751 nucleotides. The MLT showed 
a topology that clearly separated F. culmorum and its 
closely related species, such as F. cerealis, F. pseudogra-
minearum, and the members of the Fg complex, into four 
well-supported species clades (Fig. 2). In particular, the 
J1 and J2 isolates grouped with the F. culmorum refer-
ence strains (NRRL3288, NRRL14983, NRRL25475, 
and NRRL11427) in a strongly supported clade (bootstrap 
[BS] 100%); all of the examined reference strains of F. 
cerealis, which is a species frequently confused with F. 

culmorum based on its morphology, were placed in the 
other strongly supported clade (BS 100%). In addition, 
this MLS phylogeny clearly differentiated all of the exam-
ined isolates of the Fg complex into their respective phy-
logenetic subclades within the complex clade, with strong 
support (BS 72–100%) (Fig. 2). To assess the evolution-
ary relationship between the Korean F. culmorum isolates 
and global F. culmorum populations, ML analysis was 
performed using three combined genes (PHO, RED, and 
TEF1) derived from the previously characterized F. cul-
morum isolates present worldwide (Obanor et al., 2010). 
This three-gene dataset included 42 F. culmorum isolates 
mainly from Australia, Russia, Germany, Turkey, Tunisia, 
and Syria, and comprised 2,212 nucleotides. The MLT 
showed four clearly separated Fusarium species clades 
(F. culmorum, F. cerealis, F. pseudograminearum, and F. 
graminearum) (Fig. 3). For both J1 and J2 isolates, there 
was significant support for their placement in a subclade 
within the F. culmorum clade (BS 60%), which consisted 
mainly of isolates from Australia. In addition to this sub-
clade, two more subclades were found among the global 
F. culmorum populations, one with BS 94% and the other 
with BS 62%. However, their phylogenetic positions were 
not significantly correlated with their geographic origins, 
as previously suggested (Obanor et al., 2010). To deter-
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mine the similarity of J1 and J2 with Asian F. culmorum 
isolates, an MLT was constructed using only a single gene 
(TEF1), since no additional sequence information was 
available from the Asian isolates (Fig. 4). The topology of 
the MLT constructed using the TEF1 sequence was simi-
lar to that using the combined genes, and revealed that the 
J1 and J2 isolates formed a distinct subclade along with a 
Japanese isolate (MAFF 236454) (with BS 63%) within 
the F. culmorum clade, being significantly separated from 
its closely related species (F. graminearum, F. cerealis, 
and F. sambucinum). This indicates that the Korean F. 
culmorum isolates may have an evolutionary relationship 
with this Japanese isolate, but the similarity to the other 
Asian isolates (from China) is unclear (Fig. 4).

Diagnostic PCRs. For determination of the species, mat-

ing type, and trichothecene chemotype of the J1 and J2 
isolates, we performed diagnostic PCR using the specific 
primer sets listed in Table 1 (Fig. 5). An F. culmorum-
specific primer set, derived from the nucleotide sequences 
of the TRI101 gene (unpublished data), successfully am-
plified an 820-bp fragment from the J1 and J2 isolates, as 
well as two F. culmorum reference strains (NRRL14983 
and NRRL11427), but not from the representative strains 
of three species within the Fg complex and those from 
F. cerealis, F. sambucinum, and the distantly related F. 
fujikuroi (Fig. 5). The PCR with the mating-type locus-
specific primer sets amplified diagnostic fragments for 
MAT1-2, but not MAT1-1, from both J1 and J2, indicat-
ing that these isolates carried only the MAT1-2 locus; 
the two F. culmorum reference strains, NRRL14983 and 
NRRL11427, were identified as MAT1-1 and MAT1-2, 
respectively (Fig. 6). The primer sets derived from TRI13 
and TRI7, responsible for the DON/NIV chemotypes, 
amplified specific fragments from J1 and J2, which were 
identical to those from the NIV-producing F. asiaticum 
SCKO4 strain, suggesting that both J1 and J2 have the 
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potential to synthesize NIV (Fig. 7).

Mycotoxin analysis and pathogenicity test. LC-MS/MS 
analysis clearly confirmed the ability of both J1 and J2 
isolates to produce NIV on rice substrate, at 1,062.4 μg/g 
for J1 and 678.4 μg/g for J2; DON production was not 
detected. However, the other two F. culmorum reference 
strains produced no detectable levels of NIV on rice. By 
comparison to previous reports of relatively high NIV 
production by several Fusarium isolates in cereal cultures, 
the NIV levels produced by both F. culmorum J1 and J2 
isolates are at least two to three-fold higher (Gang et al., 
1998; Muthomi et al., 2000). It was reported that several 
European F. culmorum isolates produced NIV at rela-
tively high levels, up to 220.6 μg/g on cracked corn (by a 
German isolate; Muthomi et al., 2000) or up to 381.0 μg/

g on rye grain (by a Dutch isolate; Gang et al., 1998). In 
addition, a Korean isolate of F. graminearum from barley 
(now re-identifiable as F. asiaticum), which is a closely 
related species to F. culmorum, exhibited a similar level 
of NIV production (416 μg/g) on a rice substrate (Kim et 
al., 1993). It was suggested that the wide distribution of 
F. graminearum (probably F. asiaticum) NIV chemotypes 
capable of producing high levels of NIV in rice paddy 
fields in Korea (Kim et al., 1993), where barley is culti-
vated in double-cropping systems, supports a close asso-
ciation of NIV-producing F. asiaticum isolates with rice-
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4, NRRL11427; 5, Fusarium graminearum Z3643; 6, F. gra-
minearum PH-1. Note that two F. graminearum strains carried 
both MAT1-1 and MAT1-2 loci since they are self-fertile (homo-
thallic). Size markers (in kb) are indicated on the left of the gel.
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growing environments (Lee et al., 2009). In this respect, 
it is likely that the NIV-producing F. culmorum isolates 
presented in this study also have a close association with 
rice.

Pathogenicity tests revealed that both J1 and J2 were 
pathogenic, but showed different levels of virulence on 
several hosts. When J1 was inoculated onto wheat heads, 
typical head blight symptoms developed, while J2 caused 
no apparent symptoms (Fig. 8). However, both isolates 
caused typical stalk rot symptoms in corn; the necrotic 
regions caused by J1 seemed to be larger than those by J2 
(Fig. 8).

Significance of the occurrence of F. culmorum in Ko-
rea. The species identification of the J1 and J2 isolates 
were clearly confirmed by several approaches in this 
study: morphological comparison, phylogenetic analysis, 
and diagnostic PCR. This is thus the first report on the oc-
currence of F. culmorum in Korea. In addition, it should 
be noted that the occurrence of F. culmorum in the air has 
not been described previously. Although these Korean 
isolates were obtained from the air at a rice paddy field, 
not from a plant source, with a low frequency (found only 
once during a one-year survey), their capacities to cause 
disease symptoms and to produce NIV mycotoxin suggest 
the possibility of FHB on cereals caused by F. culmorum 
in Korea. Furthermore, their site of isolation (a rice paddy 
field), phylogenetic similarity to a Japanese F. culmorum 
isolate, and in vitro ability to produce NIV at relatively 
high levels may indicate that they have somehow been 
associated or adapted with rice in Korea, as the NIV-
producing member (F. asiaticum) of the Fg complex is a 
major FHB pathogen (Lee et al., 2009). However, it is un-
clear where these airborne F. culmorum came from; it is 
likely that they originated from the fungal biomass associ-

ated with plant debris and/or in the soil since F. culmorum 
can survive in soil. To resolve this issue, it will be neces-
sary to confirm the infection or contamination of rice and 
other cereals with F. culmorum in Korea, followed by a 
population study using more isolates from Korean F. cul-
morum populations.
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