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Lactobacilli are among the most studied bacteria in the microbiome of the orodigestive

and genitourinary tracts. As probiotics, lactobacilli may provide various benefits to the

host. These benefits include regulating the composition of the resident microbiota,

preventing – or even potentially reverting- a dysbiotic state. Candida albicans is an

opportunistic pathogen that can influence and be influenced by other members of the

mucosal microbiota and, under immune-compromising conditions, can cause disease.

Lactobacillus and Candida species can colonize the same mucosal sites; however,

certain Lactobacillus species display antifungal activities that can contribute to low

Candida burdens and prevent fungal infection. Lactobacilli can produce metabolites with

direct anticandidal function or enhance the host defensemechanisms against fungi. Most

of the Lactobacillus spp. anticandidal mechanisms of action remain underexplored. This

work aims to comprehensively review and provide an update on the current knowledge

regarding these anticandidal mechanisms.
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INTRODUCTION

According to a Human Microbiome Project definition –initially proposed by Lederberg and
McCray in 2001 [1], the term microbiota comprises the communities of symbiotic and pathogenic
microbes hosted by multicellular eukaryotic organisms –including humans- [2]. An individual
may host trillions of these microorganisms –mostly bacteria- with whom they interact physically,
chemically, and biologically. The interactions between the host and its associated microbiota as a
whole are complex, dynamic, and mostly unknown. Understanding what a “healthy microbiome”
is, its composition, and its impact on host health has been a challenge for decades [3]; however,
the significant role indigenous microbiota play on the health of the host is well-established [4, 5].
Health-associatedmicrobiota and theirmetabolic productsmay play a role in treating or preventing
infections. For example, probiotics –live microorganisms-, paraprobiotics –non-viable microbial
cells-, and post-biotics –soluble factors produced by bacteria are currently used in food products to
promote health.

Around 98% of the microbial constituents of the oral and gastrointestinal (GI) tract of healthy
humans fall within four predominant bacterial phyla: Firmicutes, Bacteroidetes, Actinobacteria,
and Proteobacteria [3, 6]. The role of bacteria in maintaining oral health has been studied
extensively; in contrast, fungal microbiota –comprising members of the mycobiome- remain
mostly unexplored [7, 8]. Microbial composition and diversity in the oral cavity and GI tract have
also been studied extensively. Environmental filtering and competitive exclusion shape microbial
composition, favoring the presence of taxa distantly related to each other, resulting in a greater
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diversity –at the species level- among healthy hosts. In contrast,
closely related taxa are favorably selected within an individual
host [9]. Additional factors that shape microbiota diversity are
host genetic variation, age, diet, and the ecological local microbial
environment, among others [5, 10, 11]. Althoughmicrobiotamay
change over time, any major disruption that significantly alters
the microbiota can lead to severe health consequences [12, 13].

Disruption of the health-associated microbiota contributing
to infectious and non-communicable systemic diseases is known
as dysbiosis. A dysbiotic state may result as a consequence of
medical therapies such as antibiotics [14], cancer chemotherapy
[15], metabolic disorders such as obesity [16], or infection
with pathogenic fungi [17], bacteria [18], or viruses [19]. A
dysbiotic state may aggravate inflammatory disorders such as
inflammatory bowel disease, asthma, neurodegenerative diseases,
and immunopathology [12, 20, 21]. Dysbiosis is also associated
with the pathogenesis of metabolic disorders, such as obesity,
insulin resistance, and dyslipidemia [22]. Moreover, under a
dysbiotic scenario, some pathobionts (commensals that can turn
into opportunistic pathogens) may form synergistic interactions
with each other, leading to severe infections. Recently, Bertolini
et al. showed that oral bacterial pathobionts facilitate fungal
infection by increasing the expression of virulence genes in
C. albicans or disrupting the mucosal barrier via proteolytic
enzymes [23]. Hong et al. suggested oral microbiota disruption
is associated with oral mucositis, exacerbating epithelial injury in
cancer patients receiving cytotoxic chemotherapy [15].

In this paper, we provide a comprehensive review of
the current understanding of the role of lactobacilli in
maintaining mucosal homeostasis, with particular emphasis on
their interactions with Candida species and mucosal candidiasis.
All PubMed available information was analyzed and discussed
under their respective thematic sections. We particularly focused
on studies that described a mechanism of action, including in
vitro, ex vivo, in vivo, and clinical trials.

CANDIDA AND LACTOBACILLUS

INFLUENCE ON HOST HEALTH AND
RESIDENT MUCOSAL MICROBIOTA

Candidiasis and Dysbiosis
Candida albicans is a polymorphic yeast from the Candidaceae
family. This yeast is a part of the skin, vaginal, oral,
and gastrointestinal microbiota in most healthy humans
[24]. Candida albicans has been traditionally defined as an
opportunistic pathogen, and more recently as a pathobiont.
Candida causes damage to the host under certain conditions,
resulting in local (skin, mucosa) or systemic (blood, urinary,
nervous system) candidiasis. The ability of C. albicans to
transition between different morphological forms is a crucial
factor formucosal virulence [25, 26].Candida albicans is themost
common opportunistic fungal pathogen and the leading cause
of death in fungal diseases [27]. Additionally, drug-resistant C.
albicans strains and other Candida species such as C. auris,
C. glabrata, and C. parapsilosis, are listed by the CDC as a
serious threat to human health, as they are challenging to treat.

Moreover, many non-albicans species are challenging to detect
and identify [28, 29]. Candida species can form biofilms both
on tissues and abiotic surfaces, increasing their survival under
harsh environments and their resistance to antifungal drugs and
disinfectants [30, 31].

Several reports show that mucosal candidiasis occurs at
higher rates in immunocompromised patients [32, 33] as a
consequence of the interplay between a defective innate or
adaptive immunity and fungal virulence factors [18, 34, 35].
Candidiasis may influence and be influenced by members of the
mucosal microbiome [36]. For example, a synergistic interaction
between C. albicans and mitis group streptococci which was first
identified experimentally [13, 37], may have clinical implications
on Autosomal-Dominant Hyper IgE Syndrome patients, who
are susceptible to this oral infection [21]. An example of
Candida influencing members of the bacterial microbiome is the
interaction between C. albicans and Staphylococcus aureus, which
promotes bacterial colonization and systemic dissemination
[38]. Additionally, Candida may alter the reestablishment of
resident bacterial communities after broad-spectrum antibiotic
treatment. Candida albicans alters the proportion and genus
diversity within the main bacterial families (Lachnospiraceae,
Ruminococcaceae, Rikenellaceae, and Porphyromonadaceae) in
the mouse gut, favoring the overgrowth of Enterococcus and
Streptococcus species while preventing the reestablishment of
Lactobacillus and Oscillibacter [39, 40]. This disturbance in
post-antibiotic communities may contribute to fungal infection
since both enterococci and streptococci have been implicated
in fungal pathogenic synergy [13, 17]. On the other hand,
several bacterial members of the healthymicrobiota display direct
anticandidal properties or promote host anticandidal responses.
Such bacterial species with broad influence on bacterial and
fungal members of the microbiome are Lactobacillus spp., which
may prevent dysbiosis and associated diseases, as described in the
following sections.

Basic Physiology and Current Taxonomy of
the Genus Lactobacillus
Lactobacillus spp. belong to the family Lactobacillaceae, a taxon
of Gram-positive, rod-shaped bacteria whosemain endmetabolic
product is lactic acid. Lactobacilli are facultative-anaerobic, non-
motile, catalase-negative, psychrophilic microorganisms that
do not form spores. Since their discovery more than 100
years ago, research regarding their evolution, natural history,
and organization of the groups within the genus is under
constant change. A decade ago, Singh et al. described the
challenges regarding establishing the taxonomy within the genus
Lactobacillus due to differences in the 16S rRNA gene, resulting
in taxonomic uncertainty even in the four main groups –L.
acidophilus, L. casei, L. plantarum, and L. delbrueckii- and their
members [41]. Recently, an update by Duar et al. examined
the phylogenetic, genomic, and metabolic information available
to resolve the natural history of the genus, resulting in a new
organization of the groups within the genus Lactobacillus, such
as the L. reuteri group and moving the L. acidophilus group
within the L. delbrueckii group [42]. Zheng et al. examined the
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physiology, ecology, core phylogeny, and sequence comparisons
of 16S rRNA gene and clade-specific genes. This study resulted in
the organization of the genus Lactobacillus into 26 phylogenetic
groups, including creating new genera, which remain closely
related to the genus Lactobacillus [43]. The classification by
Zheng et al. has been adopted in the List of Prokaryotic names
with Standing in Nomenclature (LPSN), resulting in significant
changes, as follows [43, 44]: Lactobacillus casei group is now
the genus Lacticaseibacillus (including L. casei, L. paracasei,
and L. rhamnosus), Lactobacillus plantarum is now the genus
Lactiplantibacillus (including L. plantarum, L. paraplantarum,
and L. pentosus species.), and L. reuteri group is now the genus
Limosilactobacillus (including species such as L. reuteri, and L.
vaginalis). Lactobacillus delbrueckii group remains within the
genus Lactobacillus (including species such as L. acidophilus, L.
crispatus, L. gasseri, L. jensenii, L. johnsonii, and the L. delbrueckii
subspecies such as L. delbrueckii ssp. bulgaricus and L. delbrueckii
ssp. lactis). Due to the difficulty of differentiating between closely
related Lactobacillus species (even with molecular techniques)
and the proximity of lactobacilli to other genera, the term
“Lactobacillus Genus Complex” describe lactobacilli and closely
related taxa, such as a newly created genus from former
Lactobacillus species, Leuconostococcaceae, and Pediococcus [42,
43, 45]. For this review, the species which were formerlymembers
of the genus Lactobacillus and now belong to closely-related
new genera –i.e., Lacticaseibacillus and Lactiplantibacillus- will
be considered as members of the genus Lactobacillus. As the
taxonomy of the Lactobacillus genus complex becomes more
accurate, the identification of common biological traits within
species of the same group –i.e., metabolite production, pili-like
structures, etc.- is expanded, leading to a better understanding
of the interactions with other members of the microbiota and
the host.

Role of Lactobacilli in the Protection of
Mucosal Barriers
Lactobacilli colonize diverse plants and animals, including
humans [42], and have co-evolved with their hosts, becoming
a stable member of the resident microbiota [46, 47]. Some
lactobacilli display a pilus-like structure [48], which may
be associated with probiotic properties. The pilus-associated
proteins have only been studied in bacteria from the L.
casei group [49–51], mainly in L. rhamnosus GG (LGG)
[52]. This pilus-like structure facilitates binding to the mucus
associated with mucosal epithelia [53] and plays a role
in immunomodulation by reducing the expression of pro-
inflammatory molecules (i.e., IL-6, TLR3) [54]. A recent review
described the role of L. rhamnosus GG (LGG) in protecting
the mucosal barrier, the effect of their metabolites on host
cells, and their role on type 1 immune-responsiveness [55]. Like
C. albicans, lactobacilli colonize mucosal tissues of the oral,
gastrointestinal, and genitourinary tracts. As lactobacilli have
been studied for decades, there is mounting evidence showing
that they regulate metabolic processes of the host and other
microorganisms and influence the host microbiota composition
[56–58]. The FDA and the NIH ascertain that lactobacilli

are GRAS (Generally Recognized As Safe) microorganisms
associated with health and nutritional benefits [59, 60].
Lactobacilli are currently used in various food products and
in treating gastrointestinal (GI) and non-GI medical conditions
[61]. Among the different clinically relevant properties found
in lactobacilli, their broad antimicrobial activity has attracted
particular interest.

Effects of Lactobacillus-Based Therapies
on Human Disease
Recent multiple clinical studies, including double-blind,
randomized placebo-controlled studies, confirm lactobacilli
used as probiotics reduce infections in patients, with no serious
adverse events [62–64]. Skrzydło-Radomańska et al. reported
that adult Irritable Bowel Syndrome (IBS) patients treated with
a probiotic combination –from the species Lactobacillus and
Bifidobacterium- may show reduced symptoms throughout
8-week treatment [65]. Yoon et al. showed that consumption of
fermented milk containing a combination of L. paracasei and the
plant Glycyrrhiza glabra reduced Helicobacter pylori numbers,
inflammation, and gastrointestinal symptoms –indigestion,
diarrhea, and abdominal pain- in infected patients [66]. Acute
uncomplicated diverticulitis patients treated with a combination
of L. reuteri and an antibiotic therapy showed reduced abdominal
pain and inflammatory markers. Treated patients spent fewer
hours of hospitalization than the placebo [67]. These studies also
conclude that no serious adverse events have been observed in
patients treated with lactobacilli.

Moreover, recent meta-analyses and systematic reviews
conclude that evidence regarding the effectiveness of lactobacilli
and other probiotics in combating infectious diseases in vivo is
robust [68–74]. Several meta-analyses have shown that certain
Lactobacillus species effectively reduce the burden of bacterial
infections in patients, such as those from Helicobacter pylori [62,
75] or Clostridium difficile [63]. Ng et al. concluded that current
data demonstrate that lactobacilli effectively combat urinary tract
infections in females [64]. A recent meta-analysis by Szajewska
et al. concluded that LGG reduces the duration of diarrhea and
hospitalization in acute gastroenteritis pediatric patients [68].
Another meta-analysis by Gao et al. suggested that Lactobacillus
spp can be a beneficial adjunct to non-surgical treatment of dental
or peri-implant-associated inflammation initiated by bacterial
biofilms [69]. Similarly, a systematic review suggested that
lactobacilli –primarily L. rhamnosus GR-1 and L. reuteri- are
beneficial in preventing and even treating recurrent urogenital
infections, such as bacterial vaginosis [70]. Overall, despite the
fact that some studies report no effect, comprehensive pooled
data support the effectiveness of Lactobacillus-based probiotic
therapies in bacterial infections.

There has been significant interest in using lactobacilli
to combat candida infections. Earlier systematic reviews of
older reports suggested that data regarding the antifungal
activity of lactobacilli were inconsistent and inconclusive [70,
71], proposing that more research was needed due to the
significance of the topic. As more studies have been conducted,
there is more evidence supporting the anticandidal properties
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of lactobacilli. A clinical study showed that consumption of
milk supplemented with L. rhamnosus reduced the severity of
Candida-associated denture stomatitis in institutionalized elders
by decreasing the prevalence of C. albicans [72]. Another clinical
study showed that patients with the Familial Mediterranean
Fever genetic disease displayed lower C. albicans burdens
after treatment with Lactobacillus acidophilus [73]. A clinical
study on very-low-birth-weight (VLBW) infants showed that
Candida colonization was reduced by a prophylactic L. reuteri
supplementation, which was as effective as the antifungal nystatin
treatment and safer, as VLBW patients showed lower feeding
intolerance and hospitalization time [74]. Women diagnosed
with vulvovaginal candidiasis showed reduced vaginal discomfort
and healthier vaginal pH after treatment with conventional
treatment supplemented with L. plantarum [76].

Thus, there is a wide range of potential clinical applications
of Lactobacillus-based therapies, even though currently their
incorporation in clinical practice is at best limited. As lactobacilli
and their metabolites display broad antimicrobial activity
extending to bacteria and fungi, understanding their mechanisms
of action is essential. Yet, most of the research thus far focused
on antibacterial functions, leaving the antifungal mechanisms
understudied. In the following sections, we review current
knowledge regarding (1) the anticandidal mode of action
of lactobacilli-derived metabolites; and (2) the interactions
within the Lactobacillus-Candida-Host framework that prevent
Candida infections.

ANTICANDIDAL PROPERTIES OF
LACTOBACILLI

Candida spp. infections are an increasing concern as drug-
resistant strains are rising while the effectiveness of conventional
antifungal therapies is diminishing. Consequently, innovative
alternatives for preventing and treating Candida-related diseases
have been explored, such as drug-repurposing [77], development
of new molecules [78], nanotechnology [31, 79], and using
other microorganisms as probiotics [80]. Lactobacillus species
display promising anticandidal activity, yet knowledge on their
modes of action is still scarce. The current knowledge regarding
these anticandidal mechanisms is comprehensively reviewed and
critically appraised in this review. We categorize the lactobacilli-
mediated anti-Candida activity into direct and indirect. Direct
anticandidal activity is primarily caused by bacterial metabolites
that kill or inhibit the growth of yeast cells or prevent attachment,
dimorphic transition, and biofilm formation. Indirect activity
mechanisms rely on Lactobacillus-host interactions, as they
involve modulation of immune processes or epithelial responses
that preventCandida growth onmucosal surfaces and protect the
integrity of the mucosal barrier.

Candida and lactobacilli can colonize the same host sites,
including the oral, pharyngeal, intestinal, and vaginal mucosae,
since they are capable of adapting to a wide variety of
environments, likely due to their genomic plasticity [81].
However, mucosal colonization in higher abundance by these
organisms may be promoted by distinct nutrient profiles, oxygen

tension, temperature, pH, and binding to site-specific mucins
or epithelial receptors in each site. For example, lactobacilli are
the dominant taxa in the healthy vaginal mucosa, characterized
by acidic pH and low oxygen content, since they are aciduric
facultative anaerobic organisms. In contrast, C. albicans colonize
this site asymptomatically in low numbers, only in about 20%
of healthy women [82]. In this site, alkalization may lead to
dysbiosis, reducing Lactobacillus abundance and overgrowth of
Candida, resulting in candidiasis [83]. In addition to acidic
pH and low oxygen tension, a key ecological determinant for
the sustained colonization of lactobacilli is retentive areas such
as crypts and rugal folds in the stomach and carious lesions
in the oral cavity [84]. Although C. albicans has a broad
tolerance to pH and can grow well as planktonic yeast cells, their
ability to transition to the hyphal phase and adhere to mucosal
sites is impaired in acidic pH [85]. Thus, pH acidification by
Lactobacillus-produced lactate limits the ability of fungi to cause
disease in such mucosal sites. Below we provide a comprehensive
analysis of a wide variety of mechanisms employed by lactobacilli
which can limit Candida overgrowth on mucosal surfaces.

Direct Antifungal Activity
Lactobacilli produce a variety of active compounds (primary
and secondary metabolites) that exhibit broad antimicrobial
activity (Figure 1). A number of these metabolites are also
effective against C. albicans. The most studied metabolites
are bacteriocins [86] and bacteriocin-like peptides [87], cyclic
dipeptides [88], proteinaceous compounds [89], enzymes [90],
fatty acids [91], biosurfactants [92, 93], and other organic
compounds such as reuterin [94], 3-Phenyllactatic acid [88], and
LBP102, derived from L. plantarum NTU 102 [95]. Lactobacilli
also produce inorganic compounds, such as hydrogen peroxide
[96], leading to oxidative stress and genotoxicity in higher
amounts. These compounds display broad antimicrobial activity
against bacteria and fungi [97–100]. Current knowledge on
specific Lactobacillus-produced metabolites and their respective
anticandidal mechanisms is summarized in Table 1. In Figure 1,
the main anticandidal mechanisms of action exerted by
Lactobacillus products are graphically shown. Several species
produce diverse metabolites that alter the physiology of the
fungus by inducing oxidative stress and ATP depletion leading to
cytotoxicity or growth inhibition. Other metabolites compromise
the structural integrity of the fungal cell leading to alterations
in cell morphology, membrane permeability, and death, while
biosurfactants prevent adhesion to mucosal surfaces, as seen in
Figure 1.

Bacteriocins and Bacteriocin-Like Substances
Bacteriocins are antimicrobial peptides, or peptide complexes,
categorized into three major classes according to their synthesis
and chemical structure [108, 109]. Bacteriocin-like substances
(BLS) share traits similar to bacteriocins but do not entirely
fit the typical criteria. Several reports suggest that putative
lactobacilli-produced bacteriocins and BLS from cell culture
supernatants exert anticandidal activity [110, 111]. However,
only a handful of reports have studied the susceptibility of
Candida to purified and biochemically characterized BLS and
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FIGURE 1 | Direct antifungal modes of action. Lactobacillus species produce diverse metabolites including bacteriocins, enzymes (chitinases), hydrogen peroxide,

fatty and other organic acids, as well as proteinaceous molecules (reuterin), that exert direct anticandidal activity via different mechanisms of action. Some metabolites

alter the physiology of the fungus by inducing oxidative stress or by ATP depletion leading to cytotoxicity or growth inhibition. Other metabolites compromise the

structural integrity of the fungal cell leading to alterations in cell morphology, membrane permeability, and death, while biosurfactants prevent adhesion to mucosal

surfaces.

bacteriocins [86, 87, 112, 113]. The anticandidal mechanisms of
action from lactobacilli-produced bacteriocins are practically
unknown. The two-peptide plantaricin (a class IIb bacteriocin
from L. plantarum) is the only purified bacteriocin whose
effect on C. albicans physiology and morphology has been
described. Plantaricin kills C. albicans by disrupting the cell
membrane integrity due to depolarization and leakage of essential
ions. Plantaricin also increases ROS production, inducing
apoptosis [101]. The anticandidal activity of bacteriocins
from bacteria other than lactobacilli –i.e., Lactococcus (nisin),
Streptococcus (bacteriocin C3603), Enterococcus (bacteriocin Bac-
GM17), among others- has also been studied by different
groups [114–118].

Weak Organic Acids: Acetic, Lactic, Benzoic, and

Sorbic Acids
Benzoic acid has antifungal activity caused by the disruption
of glucose fermentation in yeast due to: (1) accumulation of
hexose monophosphates; (2) decrease in intermediates beyond
the phosphofructokinase cycle; and (3) pH-dependent enzymatic
inhibition of phosphofructokinase and hexokinase, leading to
subsequent inhibition of glycolysis that causes energy loss (ATP
depletion). Other organic acids, such as sorbic acid and acetic
acid, also inhibit the anaerobic fermentation on yeast and

may share the same mechanism of action observed in benzoic
acid [102]. The antifungal activity of benzoic acid is pH-
dependent, as the undissociated acid (pKa = 4.2) is active only
in acidic pH [119]. Low pH enables free diffusion of benzoic
acid across the plasma membrane into the fungal cell [103],
leading to intracellular acidification. This acidification causes
turgor pressure increase, oxidative stress, and depletion of diverse
molecules, including RNA [104]. Cottier et al. reported that
acetic and butyric acids (and possibly other WOAs) reduce the
C. albicans growth rate and change the expression of specific
proteins like the putative glucose transporter Hgt16 protein and
the predicted membrane transporter Orf19.7566, which mediate
the fungistatic effects [120].

Fatty Acids
These acids disrupt the fungal membrane and the ultrastructural
organization of the cell [105], resulting in growth inhibition
of C. albicans. Specifically, fatty acids: (1) partition the lipid
bilayers of cell membranes, resulting in loss of integrity and an
increased fluidity and permeability, leading to an uncontrolled
release of intracellular electrolytes and proteins [99]; (2) inhibit
the production of ergosterol –an essential component of fungal
cell membranes-, affecting the cell membrane integrity [107];
(3) compromise the structure of cell membranes due to their
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TABLE 1 | Known anticandidal mechanisms of action from lactobacilli metabolites.

Lactobacillus

species

Anticandidal

metabolites

Mechanisms of action References

L. plantarum Bacteriocins. Plantaricin (class I) (1) forms pores in the cell membrane that

increase its permeability, (2) alter the yeast cell morphology.

[101]

L. acidophilus

L. plantarum

Weak organic acids:

acetic, lactic, benzoic,

and sorbic

Benzoic acid hinders glucose fermentation. pH-dependent

enzymatic inhibition restricts yeast growth, inhibiting glycolysis and

causing ATP depletion. Other organic acids share a similar

mechanism as benzoic acid.

[102]

At low pH, the uncharged and undissociated state freely diffuses

across the plasma membrane into the cell.

[103]

Increased turgor pressure and oxidative stress, depletion of

ribosomal RNA, and other relevant cofactors.

[104]

L. plantarum Fatty acids (FA) Short

and long chain

3-Hydroxy Fatty Acids

Cell membrane disruption; alteration of internal ultrastructure of

the yeast cell. The shape and size of the cell wall remain unaltered.

[105]

Partition of the lipid bilayers of cell membranes, resulting in (1) loss

of membrane integrity, (2) increased membrane fluidity and

permeability, uncontrollably releasing intracellular compounds.

[99]

Detergent-like properties disrupt the cell membrane structure,

increasing its permeability.

[106]

Inhibition of ergosterol production, affecting the cell membrane,

leading to cell death

[107]

L. reuteri Reuterin Reuterin’s aldehyde group interacts with thiol groups of diverse

molecules, causing oxidative stress.

[94]

L. fermentum

L. casei

Biosurfactants Exert anti-adhesive activity and induce detachment of already

adherent Candida cells.

[93]

detergent-like properties [106]. Crowley et al. suggested that
chain length may play an essential role in antifungal action, with
long-chain fatty acids having the highest antifungal activity [99];
however, other studies show no apparent correlation between
chain length and antifungal activity [105, 121].

Other Metabolites

Reuterin
Reuterin (3-hydroxypropionaldehyde acid) is a glycerol-
derivative that displays fungicidal activity toward different
Candida species [122]. The highly-reactive aldehyde group of
reuterin may interact with thiol groups of small molecules and
proteins, causing oxidative stress that results in growth inhibition
[94]. Not surprisingly, reuterin increases the expression of OxyR,
a transcriptional regulator that induces upregulation of oxidative
stress genes.

Biosurfactants
Biosurfactants are compounds that contain both hydrophilic and
hydrophobic moieties that reduce surface tension. Biosurfactants
both hinder the ability of C. albicans to adhere to abiotic surfaces
and tissues and display direct anticandidal activity. Although the
modes of action of biosurfactants are still unknown, adherence
reduction may be caused by changes in the cell wall charge,
rendering the cell incapable of overcoming its electrostatic
repulsion barrier with the substrate [123]. In addition to reducing
adhesion, glycolipopeptide biosurfactants from L. pentosus exert
direct anticandidal activity [124].

Enzymes
L. johnsonii produces enzymes with a chitinase-like activity,
degrading the fungal cell wall of C. glabrata via enzymatic
hydrolysis, leading to fungal growth inhibition [90].

Molecules From the Cell Surface
In addition to soluble metabolites, surface molecules from the
cell wall have been identified to display anticandidal activity;
however, their modes of action are still unknown. LGG cell wall-
associated exopolysaccharides (EPS) reduce C. albicans hyphal
transition and adhesion to epithelial cells [125].

Indirect Antifungal Activity:
Lactobacillus-Host-Candida
Interaction-Based Mechanisms
In vivo studies in animal models –particularly in mice- show that
lactobacilli can reduce Candida burdens and reverse dysbiosis.
Candida-induced stomach lesions, gastric inflammation, and
dysbiosis in murine models are attenuated by several species,
i.e., L. rhamnosus [126], L. gasseri, L. helveticus [127], and
L. pentosus [128], among others. Lactobacilli may also act as
prophylactic agents. Immunosuppressed mice that ingested L.
rhamnosus 14 days before inoculation with Candida showed a
significant reduction in C. albicans numbers and inflammation
[129]. Another in vivo study showed that L. crispatus and
L. fermentum supernatants reduce Candida burdens in a
vulvovaginal candidiasis murine model [130].
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Lactobacilli-host-fungal interactions that control Candida
infections mainly result from competition in binding to mucus
membrane glycoconjugates; strengthening the mucosal barrier
through induction of mucins and positive regulation of tight
junction proteins; triggering a protective immune response; and
biotransformation of host metabolites into active anticandidal
compounds, as shown in Figure 2.

Biological Competition
Lactobacilli can reduce Candida colonization via competition,
exclusion, and displacement mechanisms. Lactobacilli interact
with GI tract mucus layer glycoconjugates to adhere avidly to
the gut mucosa despite the constant changes in the intestinal
environment [131]. Lactobacillus species adhere to epithelium
resulting in reduced fungal adhesion and the ability to form
mucosal biofilms [128, 132–135]. EPS from L. rhamnosus
contribute to its adhesion to the host while reducing the epithelial
adhesion of C. albicans [125]. Additionally, supernatants from L.
gasseri and L. crispatus reduce the C. albicans ability to adhere to
HeLa cells [136].

Immunomodulation
Lactobacilli display immunomodulatory activity by activating the
immune response via classic surface-associated Microorganism-
Associated Molecular Patterns (MAMPs). LactobacillusMAMPS
include the mannose-binding lectin Msa (L. plantarum), the
cell-wall-associated hydrolases p40 and p75 (L. rhamnosus), and
the S layer protein A –SlpA- (several Lactobacillus species).
MAMPs induce a host response when interacting with host
pattern recognition receptors [137]. The MAMP-induced host
response can result in the prevention or reduction of Candida
colonization, probably by their ability to activate Toll-like (TLRs)
and NOD-like receptors (NLRs) [138]. The following epithelial
antifungal effector mechanisms are reported to be influenced
by lactobacilli:

Induction of Antimicrobial Peptides
Lactobacilli induce the production of several epithelial AMPs
with anticandidal activity, such as β-defensins and protegrins
[56, 139]. Vylkonova et al. showed that human β-defensins 2
and 3 disintegrate the cell wall of C. albicans, whereas only
β-defensin 3 induces permeabilization on the cell membrane.
Moreover, both β-defensins showed synergistic anticandidal
activity with other AMPs –lysozyme and lactoferrin [140].
Rizzo et al. showed that β-defensin 2 and 3 upregulation
is mediated by L. crispatus [139]. Protegrins are reported to
disrupt the cell membrane of several microorganisms, including
Candida species [141].

Anti-inflammatory Properties
Numerous in vitro reports confirm that different Lactobacillus
species downregulate the expression of pro-apoptotic cytokines,
i.e., TNFα- and several other pyroptotic or pro-inflammatory
cytokines such as IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-17, [56,
58, 89, 90, 139, 142]; whereas other studies showed that the
anti-inflammatory cytokine IL-10 is upregulated [143, 144].
The pili-like structure from LGG reduces IL-6 expression while
increasing the IL-10 production [54]. Tryptophan catabolism

by lactobacilli has been reported to prevent colonization by
C. albicans, as the production of indole derivatives from
tryptophan degradation induces the production of IL-22 (an IL-
10 group cytokine involved in mucosal barrier function and
induction of epithelial AMPs) mediated by an aryl-hydrocarbon-
receptor (AhR) [145]. Several in vivo studies –in murine
models- confirm the modulatory effect of lactobacilli in cytokine
production afterCandida infection: L. crispatus and L. delbrueckii
consumption increase IFN-γ, IL-4, and IgG expression while
decreasing IL-17 expression [146], L. rhamnosus consumption
reduces IL-6 production [129], and L. reuteri increases the
expression IL-22 [147]. Authier et al. showed that combined
oral administration of L. helveticus and L. gasseri reduced
TNF-α, IL-1β, IL-8, and CRP inflammatory markers while
increasing the expression of IL-1ra and IL-10 anti-inflammatory
markers in colonic tissues ofC. albicans-infectedmice. Moreover,
mRNA expression of enzymes involved in the synthesis of pro-
inflammatory eicosanoids was also decreased [127]. Clinical trials
also confirm the immunomodulatory properties of lactobacilli in
humans. Macnaughtan et al. showed that L. casei-treated human
patients with cirrhosis had lower plasma MIP-1B concentrations
in an 8-week course; IL-1B and MPC-1 –in the alcoholic
patient subgroup- and IL-17 –in the non-alcoholic cohort-
plasma concentrations were also reduced [148]. Another clinical
study reported that an L. reuteri-antibiotic combined therapy
reduced abdominal pain and inflammatory markers (C-reactive
protein levels) in acute uncomplicated diverticulitis patients;
while also lowering hospitalization time [67]. The ability to
reduce inflammation is critical in balancing immunopathology
and protection in mucosal infections. For example, Swidsinski
et al. showed that the colonic mucous layer is thinner in
inflamed areas, allowing increased microbial adherence and
infiltration [149].

Immune Cell Activation
In vitro analyses show that lactobacilli may activate immune
cells by signaling viaTLR4 and TLR9 [90, 150] binding to
cell wall peptide SlpA [151] or cell wall peptidoglycans (PGN)
[152]. Lactobacillus acidophilus promotes the migration of
macrophages [89] and regulates T cell responses by interacting
with dendritic cells [153]. The LGG pilus-like structure may
modulate inflammatory response by signaling via TLR3 and
TLR4 in intestinal epithelial cells [54]. Studies in vivo show
that lactobacilli may induce a protective IgG and IgM- response
[154] and regulate T cell responses [155]. Additionally, purified
PGN from L. rhamonosus significantly increases the T-cell titer
in malnourished mice challenged with pneumococcal infection
[156]. Intravaginal inoculation of L. crispatus biosurfactants
reduced the leukocyte influx in mice challenged with C. albicans
[133]. A recent clinical study showed that HIV patients treated
with L. casei displayed an increase in the CD4+/CD8+ ratio
compared to the placebo group; yet, the difference did not reach
statistical significance [157].

Mechanisms of Epithelial Barrier Protection
Several pathogens disrupt the mucosal barrier integrity via
different mechanisms, such as compromising the production
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FIGURE 2 | Indirect antifungal modes of action. Lactobacillus interacts with the host to stimulate protective, antifungal functions. These mainly result from competition

with Candida in binding to mucus membrane glycoconjugates; strengthening the mucosal barrier through induction of mucins and positive regulation of tight junction

proteins; activation of T and B cell immune responses; downregulation of host-destructive inflammation; and induction of innate epithelial antimicrobial peptides.

of mucins or the organization of tight junction proteins
[158, 159]. In vitro assays show that lactobacilli improve
the epithelial barrier function against pathogen invasion,
contributing to protection of the GI tract from invasive
pathogens [160]. Lactobacilli induce epithelial secretion of
mucins MUC2 and MUC3, which improve barrier integrity
by preventing microbial adhesion [143, 161, 162]. Zhou et al.
suggested that the modulation of the mucosal homeostasis and
MUC2 expression may be related to lactobacilli EPS [163].
Additionally, Yu et al. revealed that when the epithelium is
challenged with pathogenic bacteria, L. fructosus preserved
the intestinal epithelial cell integrity and the transepithelial
electrical resistance, an intercellular tight junction integrity
marker [164]. In a porcine intestinal epithelial cell line (IPEC-
J2) L. plantarum ZLP001 pretreatment inhibits the reduction
in tight junction proteins and the increase in gut permeability
caused by enteropathogenic E. coli infection. Lactobacilli
maintain barrier integrity by increasing the expression of tight

junction proteins (claudin-1, occludin, and Zonula occludens-1),
thereby protecting the GI tract from invasive pathogens [56].
Also, the ability of lactobacilli to downregulate inflammatory
cytokine expression may indirectly preserve the integrity of tight
junctions [165]. In organoid models, L. reuteri can stimulate
the proliferation of intestinal epithelia by increasing expression
of R-spondins, leading to activation of the Wnt/β-catenin
pathway [166].

In vivo studies in murine models also confirm the role of
lactobacilli in preserving the integrity of the mucosal barrier.
Recent studies showed that desmosome-like junctions –in
vaginal epithelium- are reduced during Candida infections;
however, ultrastructural analysis revealed that L. crispatus
and L. delbrueckii increase the number of desmosome-like
junctions to almost the numbers in uninfected epithelia [146].
Oral administration of L. reuteri reduced the colonization and
intestinal inflammation in mice infected with the mucosal
pathogen Citrobacter rodentium [166]. In induced epithelial
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barrier hyper-permeability mice, L. rhamnosus restored
the expression of apical junction proteins Claudin-4, F11r,
E-cadherin and occludin, confirming the role of lactobacilli in
the modulation of junction proteins [167]. Moreover, L. reuteri
ameliorated intestinal mucosa damage in DSS-treated mice
by increasing the intestinal stem cell marker Lgr5+ and the
antibacterial enzyme lysozyme [147].

Biotransformation of Host Compounds
Lactobacilli may metabolize host-produced macromolecules
producing secondary metabolites with antimicrobial activity.
This mechanism has been explored for bacteria but remains
unexplored for Candida. Recently, McNair et al. reported a
new casein-derived Lactobacillus-biotransformed peptide with
antifungal activity [168].

CONCLUSIONS AND FUTURE
DIRECTIONS

Current evidence regarding the anticandidal activities of
Lactobacillus supports their use as a promising therapeutic
alternative agent for preventing and treating candidiasis; yet,
several challenges exist in establishing how lactobacilli inhibit
Candida growth. The production and/or activity of antifungal
compounds in vitro can be affected by the type of culture
media, pH, incubation time, solid vs. liquid culture, and the
interaction of lactobacilli with other microorganisms which
are part of the same ecosystem [98, 169–172]. Culture
conditions influence both the qualitative composition and
quantitative aspects of anticandidal metabolites; therefore,
diverse metabolite profiles and activity may arise under non-
standardized experiments among different laboratories [100].
For example, the composition of culture media influences
bacteriocin production in L. pentosus [173]. Another example
is the variable anticandidal activity of L. johnsonii in liquid
vs. solid media. The anticandidal properties of L. johnsonii are
usually reported as “good activity” in broth; in contrast, when the
susceptibility assays are performed on agar plates, the inhibition
is reported as “weak” or “null” [174–178]. Variable experimental
conditions may also influence the detection sensitivity of specific
metabolites, leading to contradictory results and potentially
erroneous data interpretation. Also, lack of standardization
negatively influences assay reproducibility among different
laboratories. Many of these compounds are rarely examined
under controlled pH conditions [98], which is critical for better
understanding their activity. A physiologic range of pH should
be maintained during antifungal activity assays to reflect the
dynamic changes of the host tissue environment in health
and disease. The interaction with other microorganisms also
plays a role in lactobacilli metabolism. For example, certain
strains of L. plantarum produced bacteriocins only when co-
cultured with other microbial species in liquid media in
vitro [170].

By regulating the growth of other microorganisms lactobacilli
may maintain a healthy microbiome and inhibit dysbiotic
disease states. Nevertheless, more research regarding the mutual

effect of Lactobacillus spp. with other probiotics and other
microorganisms –commensal or pathogenic- is needed. The
presence, composition, and metabolic stage of the resident
microbiota may affect the efficacy of Lactobacillus species used as
probiotics. For example, while lactobacilli modulate the growth
and morphologic transition of Candida in vitro, murine studies
show that Candida overgrowth may reduce the abundance
of oral lactobacilli, favoring an enterococcus-rich dysbiosis,
as recently demonstrated by our group [17, 23]. Moreover,
Candida may prevent the restoration of the healthy microbiota
post-antibiotics, by inhibiting Lactobacillus spp in th murine
gut [40].

Beyond the influence of lactobacilli on the host immune
system, the indirect anticandidal mechanisms of lactobacilli
remain relatively underexplored. Several connections between
lactobacilli and host metabolism have been established; however,
a comprehensive network of the complex metabolic interactions
between probiotic lactobacilli and C. albicans remains to be
characterized both in vitro and in vivo.

Lactobacilli-produced metabolites (post-biotics) also remain
underexplored. Understanding the mechanism of action behind
the anticandidal compounds is critical for assessing implications
to non-pathogenic host microbiota, potential adverse effects, and
their prospective therapeutically use as auxiliary anticandidal
agents. The interactions between lactobacilli-produced
antimicrobial post-biotics and current conventional therapies –
including antibiotics- remain practically unknown. Would these
anticandidal post-biotics display synergistic activity with current
antifungal treatments?

In conclusion, lactobacilli exert direct and indirect
activity against Candida species via a wide variety of
mechanisms. As these organisms are among the most
consumed probiotics, understanding their mechanisms
of action is clinically relevant. While the pace of new
anticandidal drug discovery remains slow and drug-
resistance is becoming a serious threat to humans and
animals worldwide, Lactobacillus-based antifungals may be
used as effective adjunctive therapies in several mucosal
fungal diseases.
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GLOSSARY

Commensal: Refers to organisms that benefit from living within
the host, while the host experiences no net effect. However,
our understanding of microbial commensalism is limited.
Also, commensal interactions may change under different host
conditions [179–181].
Paraprobiotics: (Also known as “non-viable” or “inactivated”
probiotics) refer to non-viable microbial cells that confer health
benefits to the host. Paraprobiotics are usually consumed in
diverse “healthy” food products or supplements [57].
Pathobionts: Commensal microorganisms that can become
opportunistic pathogens associated with chronic inflammatory
conditions. Pathobionts are not pathogenic to the host under
normal conditions [182].

Pathogen: Is a microorganism that causes disease to its
host. They are also called infectious agents, as they may cause
infections [183].

Post-biotics: (Metabiotics, biogenics, or metabolites/CFS
(cell-free supernatants) are soluble factors (metabolites)
secreted by live bacteria or released after bacterial lysis. The
bioactivity of these post-biotics offers health benefits to the
host [57].

Probiotics: Live microorganisms that confer health benefits to
the host. Probiotics are usually consumed in cultured milk and
fermented foods.

Symbiosis: In the host-microbiota context, symbiosis
encompasses different interactions, from commensalism to
mutualistic (win-win) [184, 185].
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