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Occurrence of Bacterial Markers 
and Antibiotic Resistance Genes 
in Sub-Saharan Rivers Receiving 
Animal Farm Wastewaters
Dhafer Mohammed M. Al Salah1,2, Amandine Laffite1 & John Poté1

Antibiotic resistant bacteria and genes which confer resistance to antibiotics from human/animal 
sources are currently considered a serious environmental and a public health concern. This problem is 
still little investigated in aquatic environment of developing countries according to the different climatic 
conditions. In this research, the total bacterial load, the abundance of relevant bacteria (Escherichia 
coli (E. coli), Enterococcus (Ent), and Pseudomonas), and antibiotic resistance genes (ARGs: blaOXA-48, 
blaCTX-M, sul1, sul2, sul3, and tet(B)) were quantified using Quantitative Polymerase Chain Reaction 
(qPCR) in sediments from two rivers receiving animal farming wastewaters under tropical conditions in 
Kinshasa, capital city of the Democratic Republic of the Congo. Human and pig host-specific markers 
were exploited to examine the sources of contamination. The total bacterial load correlated with 
relevant bacteria and genes blaOXA-48, sul3, and tet(B) (P value < 0.01). E. coli strongly correlated with 
16s rDNA, Enterococcus, Pseudomonas spp., blaOXA-48, sul3, and tet(B) (P value < 0.01) and with blaCTX-M, 
sul1, and sul2 at a lower magnitude (P value < 0.05). The most abundant and most commonly detected 
ARGs were sul1, and sul2. Our findings confirmed at least two sources of contamination originating 
from pigs and anthropogenic activities and that animal farm wastewaters didn’t exclusively contribute 
to antibiotic resistance profile. Moreover, our analysis sheds the light on developing countries 
where less than adequate infrastructure or lack of it adds to the complexity of antibiotic resistance 
proliferation with potential risks to the human exposure and aquatic living organisms. This research 
presents useful tools for the evaluation of emerging microbial contaminants in aquatic ecosystems 
which can be applied in the similar environment.

The global consumption of antibiotics between 2000 and 2015 has increased by approximately by 69%; that’s more 
than 4% increase annually. The spike in the consumption rate is quite alarming and has to be addressed1. Some 
countries have achieved a restriction on the sales of antibiotic and limited it to prescriptions by medical profes-
sionals. However, the sales of antibiotics in the rest of the world remains unmonitored and effortlessly accessible. 
The overuse of antibiotics and their subsequent poorly managed release to the environment especially aquatic 
systems have been linked with the development of antibiotic resistant characteristics2–5.

Wastewater effluent and effluent from animal farming and slaughter houses, where livestock consume stagger-
ing amounts of antibiotics for growth promotion, remain the most serious sources of antibiotic resistant genes. 
Even when such effluent goes under treatment, there’s more than sufficient evidence that ARGs remain detect-
able6–8. ARGs were found to remain detectable via molecular methods in the effluents from urban and hospital 
wastewater treatment plants7,9. The release of such contamination into the environment presents a great risk to 
the public health10–13.

The study of faecal contamination and ARGs outside clinical settings has gained momentum in the scien-
tific community over last number of decades14–18. The assessment of the propagation and persistence of ARGs 
amongst all bacteria in general and human and animal pathogens especially in the environment will provide 
control measures to limit the harm of such genetic materials8,19–22. Waterbodies receiving typically wastewater 
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contain a relatively high content of metals and provide a suitable environment for the selective pressure for anti-
biotic resistance and horizontal gene transfer (HGT) especially in warmer climates23. The occurrence of heavy 
metals in a given environment has shown to exert a selective pressure for antibiotic resistance bacteria. Moreover, 
low concentration of toxic metals have been shown to induce the conjugative transfer of ARGs24,25. However, sed-
iments retain bacteria and antibiotics at a much higher scale than water and are less influenced by fluid dynamics. 
Therefore, sediments have been identified as reservoir of faecal indicator bacteria (FIB) and ARGs26–28 in aquatic 
environment according to the different climatic conditions.

The untreated/partial treated wastewater treatment plants (WWTP), urban, hospital, animal farms and indus-
trial effluent waters can be considered as the main sources contributing to the dissemination of emerging contam-
inants (such as heavy metals, pathogens, ARGs, nutrients) into the aquatic environment. In developing countries, 
little information is available on the assessment of these contaminants in river receiving systems and few studies 
have been conducted to evaluate the effects of untreated hospital and urban effluent waters under tropical condi-
tions including previous publications from our lab23,29. Moreover, studies on the contribution of animal farming 
to the proliferation of pathogens, ARGs in Sub-Saharan African rivers are quite limited. Consequently, in this 
study, we aimed to investigate the occurrence of ARGs and relevant bacteria marker genes in two different river 
systems in Kinshasa, Democratic Republic of Congo which are receiving effluent from animal farms to assess the 
contribution of the farms in the dissemination of antibiotic resistance. Also, we confirmed the source of contami-
nation via detection of host-specific genetic markers. The assessment is based on Quantitative Polymerase Chain 
Reaction (qPCR) of ARGs (blaOXA-48, blaCTX-M, Sul1, Sul2, Sul3, and tet(B)) and relevant bacteria marker genes 
(Escherichia coli, Enterococcus, and Pseudomonas spp.) and PCR of host-specific markers (humans and pigs). To 
the best of our knowledge, this is the first study on the impact of animal farming on the propagation of ARGs and 
relevant bacteria in a central African region and specifically in the city of Kinshasa, the capital of the Democratic 
Republic of the Congo.

Materials and Methods
Sampling sites.  Two urban rivers were selected in the municipalities of Masina and Kintambo in the cap-
ital city of Kinshasa (DR Congo) to assess the impact of animal farming on the dissemination of ARGs (Fig. 1). 
Kinshasa is around 9,965 km2 and home to more than 11 million inhabitant. Each year Kinshasa receives a signif-
icant amount of people displaced by conflict, which contributes to the uncontrollable growth of urbanization in 
this Sub-Saharan Capital. Infrastructure, sanitation, and drainage system suffer a heavy load due to this growth 
that’s unaccounted for. Sampling procedure was similar to our previous publications8,23,29. The sampling took 
place in October, 2018. The letters K and M will be used to refer to Kintambo and Masina respectively in the 
text and figures. In each urban river, sediment samples were taken directly from the animal farms outlets which 
grew some cattle but mainly pigs (K eff and M eff) (Table 1) as well as downstream (K down and M down) and 
upstream (K up and M up) to the effluent discharge. Additionally, sediment samples were collected from Lake Ma 
Vallée to serve as controls because the lake doesn’t receive any wastewater effluents of any kind. Samples subse-
quently are preserved in an ice box at 4 °C before being shipped to the Department F.-A. Forel for Environmental 
and Aquatic Sciences at the University of Geneva and analyzed within two weeks.

DNA extraction.  DNA was extracted from a mass of about 0.2 g of each of the samples according to the man-
ufacturer’s protocol of PureLink Microbiome DNA purification kit (Invitrogen). The exact mass, from which the 
DNA was extracted, was used for a more precise mean of DNA quantification. Extracted DNA was kept at −20 C 
until needed for downstream applications. The extracted DNA quality was examined by spectrophotometer (UV/
VIS Lambda 365, PerkinElmer, Massachusetts, USA) using the 260/280 ratio which ranged between 1.74 and 
1.92. The extraction volume was 50 μL and the concentrations ranged between 13.16 ng μL−1 and 54.66 ng μL−1.

Figure 1.  Map of the sampling location in Kinshasa and its location in relation to Democratic Republic of 
Congo and in relation to Africa (Adapted from Google Earth).
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Faecal source tracking.  The presence of host-specific markers of interest within the extracted genomic 
DNA was investigated using Polymerase Chain Reaction (PCR) with specific primer pairs for each of the human 
and pig markers (Table 2). Each PCR reaction was done in 50 µL volume which contains 5 µL of 10X DreamTaq 
buffer, 5 µL of 2 mM dNTP mix, 2.5 µl of 10 mM of each primer, 30 µL of molecular grade water, 0.25 µL of 
DreamTaq polymerase (5U/µL), and 5 µL of genomic DNA extracts. Biometra TOne thermocycler (Labgene) 
was used to perform an initial polymerase activation stage of 3 minutes followed by thirty cycles of 95 °C for 30 s, 
appropriate annealing temperature (Tm) for 30 s, and 72 °C for 1 min and a final 5 min extension at 72 °C. The 
PCR products were subsequently analyzed via 1.5% agarose gel electrophoresis. Samples with clear bands and a 
corresponding length to the marker of interest were considered positive.

Quantification of ARGs and relevant bacteria markers.  Primer pairs targeting different and specific 
genes for the qPCR have different efficiencies of amplification and varying annealing temperatures (Table 3). 
The quantification of the ARGs and the 16S rDNA was performed using SensiFAST SYBR No-Rox kit in an Eco 
qPCR System (Illumina) with a mix of 2 µL of 2X SensiFAST SYBR No-Rox mix, final concentration of 0.4 µM 

Municipality Site description Site name

Kintambo

Effluent from animal farm K eff

100 m upstream K up

100 m downstream K down

Masina

Effluent from animal farm M eff

100 m upstream M up

100 m downstream M down

Lake Ma Vallée
North of the Lake control

South of the Lake control

Table 1.  Sampling site description.

Target Gene Primer Sequence
Size of 
Target

Tm 
(°C) Reference

Human-Specific bacteroidales
HF134 GCCGTCTACTCTTGGCC

591 49
15

Bac708R CAATCGGAGTTCTTCGTG 14

Pig-specific bacteriodales
PF163F GCGGATTAATACCGTATGA

559 47
51

Bac708R CAATCGGAGTTCTTCGTG 14

Table 2.  PCR Primer Pairs for ARGs screening and source tracking.

Target Gene Primer Sequence
Size of 
Target Tm R2

Amplification 
efficiency (%) Reference

16s
338 F ACTCCTACGGGAGGCAGCAG

197 62 0.99 102 52

518 R ATTACCGCGGCTGCTGG

E. coli (UidA)
Uida 405 F CAACGAACTGAACTGGCAGA

121 60 0.97 108 53

Uida 405 R CATTACGCTGCGATGGAT

Pseudomonas spp.
Pse435F ACTTTAAGTTGGGAGGAAGGG

251 62 0.99 94 54

Pse686R ACACAGGAAATTCCACCACCC

Enterococcus (Ent)
Ent376F GGACGMAAGTCTGACCGA

220 62 0.99 92 55

Ent578R TTAAGAAACCGCCTGCGC

Sul 1
SulI-F CGCACCGGAAACATCGCTGCAC

163 65 0.99 98 56

SulI-R TGAAGTTCCGCCGCAAGGCTCG

Sul 2
SulII-F CTCAATGATATTCGCGGTTTYCC

245 62 0.96 93 57

SulII-R AAAAACCCCATGCCGGGRTC

Sul 3
sul3-F GAGCAAGATTTTTGGAATCG

128 60 0.99 109 56

sul3-R CTAACCTAGGGCTTTGGA

Tet (B)
tetB F TACGTGAATTTATTGCTTCGG

206 60 0.97 96 58

tetB R ATACAGCATCCAAAGCGCAC

BlaOXA-48
BlaOXA F GCGTGGTTAAGGATGAACAC

438 61 0.99 98 59

BlaOXA R CATCAAGTTCAACCCAACCG

BlaCTX-M
blaCTX-M F ATTCCRGGCGAYCCGCGTGATACC

227 65 0.99 92 60

blaCTX-M R ACCGCGATATCGTTGGTGGTGCCAT

Table 3.  Quantitative PCR Primer Pairs for the Quantification of Genes of Interest.
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of primers, 1 µL of extracted DNA and molecular grade water up to 5 µL. The following cycling conditions were 
applied: 95 °C of polymerase activation for 3 min, followed by 40 cycles of denaturation at 95 °C for 5 s, optimal 
annealing temperature for 10 s, and extension at 72 °C for 10 s, and a final melting curve analysis. The interpre-
tation of the qPCR results has been described in our previous publications8,29. In brief, six different dilutions of 
positive controls of known concentrations were used to construct the standard curve. Any samples with Ct value 
higher than or equal to negative control or the most diluted concentration of the standard curve were considered 
below the detection limit.

Statistical analysis.  The R software version (3.5.2) was utilized to generate Principle Component Analysis 
(PCA) by inputting the absolute copy numbers of investigated markers and genes per gram of dry sediment30. 
The R package (Ade4) was used to generate the statistical data. The copy numbers were scaled to standardize 
the variance of the variables prior to the PCA analysis31. Also, the R software was utilized to produce Pearson 
Correlations Matrix at 95% confidence level.

Results and Discussion
PCR assays for source tracking.  Faecal contamination originating from pig is occurring in all studied 
sites except for the samples from Lake Ma Vallée, the control site (Table 4). In the river from Masina, all sites 
were positive for contamination originating from pig feces; also, anthropogenic activities were detected upstream 
and downstream but not in the animal farm effluent. Similarly, in Kintambo, all sites were contaminated by pigs 
waste and contamination from human origins occurs upstream and downstream but not in the effluent from 
animal farming. Downstream and upstream of the effluents are affected by anthropogenic activities, which isn’t 
surprising due to the uncontrolled urbanization of Kinshasa and the unmanaged waste release. The control site 
from Lake Ma Vallée were negative for human and pig contamination. To summarize, all the sampling sites with 
the exception of Lake Ma Vallée were contaminated by bacteria originating from pigs.

Quantification of ARGs by quantitative PCR (qPCR).  The absolute abundances of 16s rDNA are illus-
trated in (Fig. 2). The 16s rDNA abundances are expressed in log10 of copies per 1 g of dry sediment for a clearer 
presentation. The abundances of 16s rDNA varies significantly between Masina and Kintambo (p value < 0.01). 
The riverbed sediment from Masina housed significantly more 16s rDNA copies than Kintambo and the control 
site. The abundance ranged from its lowest at 8.13 × 1010 (control) to its highest in Masina (M up) upstream of the 
effluent at 5.35 × 1011 copies per gram of dry sediment, which isn’t surprising considering all the bacterial load 
brought in from urban wastewater and various anthropogenic activities compared to the control site. On average 
the sampling sites in Masina has 3.7 and 5.7 times the bacterial load as Kintambo and the control site respectively.

Target 
host

Masina Kintambo
Lake Ma 
Vallée

D eff.
D 
up

D 
down K eff.

K 
up

K 
down Control

Humans − + + − + + −

pigs + + + + + + −

Table 4.  Occurrence/absence of ARGs. +detectable; −absent.

Figure 2.  Absolute abundances of 16s rDNA per gram of dry sediment.
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Normalized abundances of relevant bacteria marker genes is expressed in log10 total copy numbers per copies 
of 16s rDNA (Fig. 3). In a comparison between Masina, Kintambo, and the control sites, the average abundances 
of E. coli, Enterococcus and Pseudomonas in folds were 11.1 and 3.4, 30 and 1.9, and 5.8 and 5.4 respectively higher 
in Masina than the control site and Kintambo respectively. The relative abundance of E. coli, Enterococcus and 
Pseudomonas variations were significant between Masina, Kintambo and the control site (P value < 0.05); how-
ever, the variation upstream and downstream from the animal farm effluent weren’t which leads to the conclusion 
that the animal farming effluent didn’t contribute specifically to the degradation of the microbial quality of the 
rivers. On a different note, E. coli and Enterococcus relative abundances are higher in Masina and Kintambo than 
of the control site which concludes that both municipalities are contributing to the degradation of the microbial 
quality of the surface water. Masina district is a home to about four times the population of Kintambo which 
could attribute the higher copy numbers of all investigated markers and genes32. The contribution of wastewater 
investigated in this study site isn’t distinguishable when comparing downstream and upstream which could be 
attributed to a number of factors such as inadequate infrastructure and furrow release of wastewater. However, in 
the developed world where infrastructure is integral part of cities and even towns, the contribution of wastewater 
is noticeable and significant9.

Sulfonamides, and tetracycline resistance genes were selected for this study because of the usage of their 
perspective antibiotics in animal farming worldwide. Both tetracycline and sulfonamides are heavily used in 
the veterinary medicine to treat microbial infections and also as feed additives at lower concentrations to pro-
mote growth in livestock33,34. For instance, in 2012, the annual consumption of tetracycline in the United States 
exceeded 5954 tons35. Also, betalactam resistant genes were selected because more than half of the antibiotic 
prescribed to humans are betalactams36.

The relative abundances of blaOXA-48 and tet (B) are significantly different between Masina, Kintambo and 
the control site (p value < 0.05) but not blaCTX-M (Fig. 4). blaOXA-48 and tet (B) aren’t detectable in the control site; 
however, blaCTX-M was ubiquitous and detectable in all sites even in the control site that is expected as blaCTX-M is 
considered one of the most widespread ARGs around the world37. Therefore, both municipalities are contributing 
to the spread of antibiotic resistant but not animal farming specifically. Moreover, tet (B) wasn’t detected in efflu-
ent from the animal farm in Kintambo.

The relative abundance of sulfonamide resistance gene (sul1, sul2, and sul3) is illustrated in (Fig. 5). The abun-
dance in all the sites of sul1 was the highest followed by sul2 and finally by sul3. Sul1 and sul2 weren’t significantly 
different between Masina and Kintambo. However, all the sulfonamide resistance genes weren’t detectable in the 
control sites. This means that again that both municipalities are contributing to the spread of ARGs.

Sul1 and sul2 are the most abundant ARGs reported in this study which could be attributed to lack of infra-
structure in the study sites and the overwhelming agricultural runoff from farms using manure as demonstrated 

Figure 3.  Relative abundances of bacterial markers genes expressed as log10 of copies per copy of 16s rDNA.

Figure 4.  Relative abundances of betalactams and tet (B) expressed as log10 of copies per copy of 16s rDNA.
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in several studies performed in similar environment; e.g., in a study38, soils were supplied with antibiotic-free 
manure and with manure containing sulfonamides (10 or 100 ppm sulfadiazine in soil); Copy number of sul1 
and sul2 increased with the application of the manure and increased even higher with the addition of sulfadiazine 
compare to the control soil. In a similar study conducted in China39, soils receiving compost and manure from 
pig farms showed a median ARGs enrichment of 192 times that of the control soils. In Canada and the United 
States40, research samples were soils receiving compost and manure from antibiotic-free animal farms and farms 
using subtherapeutic quantities of antibiotics; tetracycline resistance genes were only detected in isolates from 
farms using antibiotics for growth promotion.

Sediments are known to provide safe haven for bacteria by providing nutrient essential for growth and also 
provides a protection from degradation by sunlight41,42. The persistence of bacteria accompanied by Horizontal 
Gene Transfer (HGT) leads to the enrichment and proliferation of ARGs43–45. All these factors present a risk to 
the public health and further degradation of surface water quality.

Statistical analysis.  The data from the absolute abundances of the 16s rDNA, relevant bacteria markers, 
and ARGs per gram of dry sediments was processed to perform a principle component analysis (Fig. 6). The data 
was scaled to standardize the variance amongst the variables to eliminate the dominance of certain variables e.g. 
16s rDNA in this case. The Principle component analysis is utilized in this study to illustrate the resemblance 

Figure 5.  Relative abundances of sulfonamide resistance genes expressed as log10 of copies per copy of 16s 
rDNA.

Figure 6.  Principle Component and Cluster Analysis based on absolute abundances of 16s rDNA, bacterial 
markers, and ARGs per gram of dry sediments on correlation bipilot of the variables used for the analysis.
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of bacterial composition in the study sites. The first principle accounted for 52.2% of the total variance and the 
second principle component accounted for 14.1%, which make a grand total of 66.3%. The correlation between 
the genes used in this study is quite clear from (Fig. 6) with a range of magnitudes. According to the analysis of 
variance (ANOVA), there wasn’t a significant different within groups. Therefore, the PCA and cluster analysis 
was utilized to illustrate between group analysis (BGA) and not within group analysis (WGA). Each munici-
pality is forming its own cluster suggesting that Masina, Kintambo and the control site are distinctly different 
from one another. However, Kintambo and the control site clusters are closer to each other, which means that 
Kintambo is less contaminated than Masina which further backs up our earlier findings from the ARGs abun-
dance comparisons.

Also, a Pearson correlation matrix was constructed to demonstrate the linear relationship between all the 
variables and its degree in a form of P value (Table 5). 16s rDNA is positively correlated with E. coli, Pseudomonas, 
Enterococcus, blaOXA-48, sul3, and tet (B) at a significance level of 0.01 and coefficients between 0.45 and 0.89. 
Moreover, E. coli is positively correlated with all the genes at the 0.01 significance level with the exception of 
blaCTX-M, sul1 and sul2 at the 0.05 level. Enterococcus and Pseudomonas don’t correlate with each other; however, 
they share the same correlation profile with all the other genes with only a single difference. Enterococcus and 
Pseudomonas positively correlate 16s rDNA, E. coli, sul3, and tet(B) at the 0.01 level and with blaOXA, 0.05 and 
0.01 level for Enterococcus and Pseudomonas respectively. In the next part of this paragraph, only the relationship 
between ARGs will be discussed to avoid repetition. BlaOXA-48 correlates with sul1, sul3, and tet(B) at the 0.01 level 
and blaCTX-M only correlates with one other ARG which is sul3. Tet (B) correlates with all the genes are at the 0.01 
level with the exception of blaCTX-M and sul1. The persistence of ARGs has been long linked to the occurrence of 
faecal indicator bacteria e.g. E. coli and Enterococcus46,47. Also, other studies showed that the tropical climate such 
as our study sites further aids the efficiency of HGT which ultimately leads to the persistence and propagation of 
ARGs which represents a major public health issue48–50. The strong correlation of ARGs with E. coli support the 
fecal origin of these genes.

Conclusion
This research investigates the occurrence trends of relevant bacteria and ARGs in two different rivers receiving 
effluent waters from animal farming under tropical conditions. These rivers serve as a basic network for human 
and animal consumption as well as irrigation for fresh urban produces. The findings from this study demon-
strated that such aquatic systems can act as a reservoir of indicator bacteria (Escherichia coli, Enterococcus and 
Pseudomonas), and antibiotic resistance genes (blaOXA-48, blaCTX-M, sul1, sul2, sul3, and tet(B)) which could pose a 
further potential threat to the environment and human health.

On the other hand, the presence of higher values of relevant bacteria and ARGs in sediment samples located 
upstream of studied sites indicates that the animal farming wastewaters are not the only source of deterioration of 
the quality of studied rivers by investigated indicator bacteria and ARGs. Additionally, the faecal source tracking 
shows a variety of contamination originating from both pigs and anthropogenic activities.

The study concludes that effluent from animal farms aren’t the exclusive contributors in the propagation and 
the spread of ARGs but also anthropogenic activities. The lack of infrastructure, the furrow release of untreated 
wastewater, the unmonitored urbanization of Kinshasa, open defecation, septic tanks, over-the-counter antibi-
otics consumption and absence of antibiotics use regulation in humans, animals as well as for other agricultural 
purposes are probable sources of deterioration of the quality of the rivers. This study provides significant infor-
mation indicating that sediments from tropical river receiving system could act as a potential reservoir of bac-
terial populations from human and animal sources. Thus, we suggest a well-monitored plan for the reduction of 
antibiotic consumption in animal farming to relieve the pressure applied for the selection of antibiotic resistance. 
The treatment or at least the partial treatment of the effluent will decrease bacteria of faecal origin that contribute 
to the propagation and persistence of such genes. Also, the uncontrolled urbanization in the Sub-Saharan Capital 
Cities and the lack of adequate infrastructure contribute to the spread of ARGs and has to be addressed.

Correlations

16s E. coli Pseudomonas Enterococcus BlaOXA-48 BlaCTX-M sul1 sul2 sul3 Tet(B)

16s 1 0.892** 0.644** 0.445** 0.876** 0,195 0,302 0,218 0.749** 0.775**

E. coli 1 0.551** 0.469** 0.927** 0.383* 0.429* 0.325* 0.827** 0.756**

Pseudomonas 1 0,179 0.451** 0,229 0,152 0,044 0.598** 0.475**

Enterococcus 1 0.369* 0,143 −0,153 0,114 0.717** 0.493**

BlaOXA-48 1 0,252 0.511** 0,276 0.719** 0.712**

BlaCTX-M 1 0,069 −0,137 0.329* 0,013

sul1 1 −0,090 0,190 0,148

sul2 1 0,251 0.513**

sul3 1 0.778**

Tet(B) 1

Table 5.  Correlation Matrix among ARGS and bacterial population genes. **Correlation is significant at the 
0.01 level. *Correlation is significant at the 0.05 level.
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Ethic statement.  We confirm that the field studies and sampling did not involve misunderstanding. 
The funder has no role in study design, data collection and analysis, decision to publish, or preparation of the 
manuscript.

Data Availability
The datasets generated or analyzed during the current study are available from the corresponding author on 
reasonable request.
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