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Abstract: Objective: To investigate the process by which quercetin suppresses atherosclerosis by
upregulating MST1-mediated autophagy in RAW264.7 macrophages. Methods: An in vitro foam cell
model was established by culturing RAW264.7 macrophages with oxidized low-density lipoprotein
(ox-LDL). The cells were treated with quercetin alone or in combination with the autophagy inhibitor,
3-methyladenine, and autophagy agonist, rapamycin. Cell viability was detected with a CCK-8
kit. Lipid accumulation was detected by oil red O staining, senescence was detected by SA-β-gal
(senescence-associated β-galactosidase) staining, reactive oxygen species were detected by ROS assay
kit. Autophagosomes and mitochondria were detected by transmission electron microscope (TEM),
and expression of MST1, LC3-II/I, Beclin1, Bcl-2, P21, and P16 were detected by immunofluorescence
and Western blot. Results: Ox-LDL induced RAW264.7 macrophage-derived foam cell formation,
reduced survival, aggravated cell lipid accumulation, and induced a senescence phenotype. This
was accompanied by decreased formation of autophagosome; increased expression of P53, P21,
and P16; and decreased expression of LC3-II/I and Beclin1. After intervention with quercetin, the
cell survival rate was increased, and lipid accumulation and senescence phenotype were reduced.
Furthermore, the expression of LC3-II/I and Beclin1 were increased, which was consistent with the
ability of quercetin to promote autophagy. Ox-LDL also increased the expression of MST1, and this
increase was blocked by quercetin, which provided a potential mechanism by which quercetin may
protect foam cells against age-related detrimental effects. Conclusion: Quercetin can inhibit the
formation of foam cells induced by ox-LDL and delay senescence. The mechanism may be related to
the regulation of MST1-mediated autophagy of RAW264.7 cells.
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1. Introduction

Cardiovascular and cerebrovascular diseases are the leading causes of morbidity and mortality
worldwide, and atherosclerosis (AS) is considered to be a driver [1]. Macrophage foam cells are an
important component of AS lesions and play key roles in the development of AS [2]. At the early stages
of AS development, monocytes migrate to the intima to differentiate into macrophages. Macrophage
phagocytosis and metabolism of oxidized low-density lipoprotein (ox-LDL) are increased, and lipids are
transported from the cells to the vessel walls. When ox-LDL intake exceeds the capacity of macrophage
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metabolism, macrophages are transformed into foam cells, which promote the development of AS. Pulse
wave velocity acts as a marker of subclinical atherosclerosis, it increases with the gradual increment
of ox-LDL [3]. AS is more common in middle-aged and elderly people, and aging is an independent
risk factor for AS [4]. Cell senescence can be observed in atherosclerotic plaques of AS patients [5].
Furthermore, intima–media thickness, as a risk factor for AS and a subclinical gold indicator, shows a
high correlation with age [6]. All the above evidence confirms that the occurrence and development of
AS are related to aging and senescence. SA-β-gal (senescence-associated β-galactosidase) staining is a
widely used marker of senescence, but its activity is affected by the lysosomal state [7]. Therefore, the
tumor suppressor gene P53, cyclin-dependent kinase inhibitor (P21), and multiple tumor suppressor
1 (P16) have also been used as biomarkers for the detection of cellular senescence [8]. Cellular
senescence exhibits a range of morphological and physiological changes, including mitochondrial
changes, chromatin condensation, etc. [9]. The aging free radical theory emphasizes the role of reactive
oxygen species (ROS)-induced cell damage in aging promotion. The theory suggests that ROS are
overproduced under stress conditions in cells, both natural and artificial, and are harmful to cellular
components. Mitochondria are the main source of ROS and the primary target of ROS damage, and
their status is closely related to the aging phenotype [10].

Autophagy, a catabolic pathway mediated by lysis, maintains the environmental balance
in vivo [11]. Studies have shown that enhanced autophagy can improve age-related phenotypes,
reduce age-related heart and kidney disease, and improve the health status of mice [12]. It can also
protect the body from stress injury and delay the development of AS [13]. Macrophage autophagy plays
an important role in the occurrence and development of AS by promoting the efflux of intracellular
cholesterol. Defective autophagy of macrophages in AS impairs cholesterol metabolism, apoptosis and
inflammatory body activation, and accelerates cell senescence and plaque formation [14,15]. Loss of
the macrophage-specific autophagy gene Atg5 in high-fat diet-fed LDL-R−/− mice increased oxidative
stress, promoted plaque necrosis, and caused AS-associated thrombotic cardiovascular events [16].
Mammalian Ste20-like kinase 1 (MST1), the core component of the Hippo signaling pathway, participates
in multiple biological activities of cells, including autophagy, apoptosis, and oxidative stress [17].
Furthermore, inhibition of autophagy by MST1 promotes apoptosis of macrophages, thus aggravating
AS [18].

Quercetin (QUE), a natural flavonoid compound with anti-inflammatory, antiaging, and lipid
metabolism regulation, plays an important role in the treatment of AS. Previous research from our
group suggests that QUE can effectively reduce RAW264.7 cell damage induced by ox-LDL, improve
cell viability, reduce intracellular lipid accumulation and senescence, and QUE can prevent the
development of AS in apoE−/− mice by regulating lipid metabolism [19,20]. QUE has also been shown
to play an important role in the prevention and treatment of AS by upregulating endothelial autophagy
to protect cells from stress injury [21]. Based on these observations, we explored the role of QUE
in antagonizing the expression of key factors in the MST1 signaling pathway in order to provide a
mechanism for the inhibition of autophagy in ox-LDL-induced RAW264.7 foam cells.

2. Results

2.1. Quercetin Increased the Viability of RAW264.7 Cells

Foam cell formation, induced by phagocytizing LDL-C and ox-LDL by macrophages in the early
atherosclerotic plaques, is an important factor in the development of AS [22]. In order to establish a
macrophage-derived foam cell model, we cultured RAW264.7 cells with different concentrations of
ox-LDL. According to our CCK-8 assay results, cell proliferation was decreased by ox-LDL and began
to level at a concentration of 100 µg/mL ox-LDL (Figure 1A). Therefore, we used 100 µg/mL ox-LDL
to induce the formation of foam cells in subsequent experiments. The same concentration of ox-LDL
(100 µg/mL) has been reported in other studies [23]. Next, we assessed the effect of QUE on RAW264.7
cell viability. The cell viability decreased significantly at 200 and 100 µmoL/L QUE concentrations, but



Int. J. Mol. Sci. 2019, 20, 6093 3 of 17

25 and 50 µmoL/L QUE caused no statistically significant decrease (Figure 1B). To study the protective
effect of QUE on RAW264.7 cells treated with ox-LDL, we cotreated RAW264.7 cells with either 25 or
50 µmoL/L of QUE and 100 µg/mL of ox-LDL. The results demonstrated that 25 µmoL/L of QUE can
improve the cell viability (Figure 1C). Therefore, we selected 25 µmoL/L of QUE as an optimal dose for
interference with RAW264.7 cell induction by ox-LDL.
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Figure 1. Quercetin increased the viability of RAW264.7 cells treated with oxidized low-density
lipoprotein (ox-LDL). (A) viability of RAW264.7 cells treated with ox-LDL. (B) Viability of RAW264.7
cells treated with quercetin. (C) Viability of RAW264.7 cells treated with quercetin and ox-LDL. Data
are presented as means ± SD, * p < 0.05; ** p < 0.01.

2.2. Quercetin Delayed Senescence and Reduced the Accumulation of Lipid in RAW264.7 Cells

Oil red O and SA-β-gal staining were used to detect the effects of QUE on lipid accumulation and
senescence in RAW264.7 cells. As shown in Figure 2A,B, there was a large amount of red staining lipid
accumulation in the M group (ox-LDL-treated) compared with the Con group (untreated), indicating
that 100 µg/mL ox-LDL successfully induced the foam cell model. Furthermore, the addition of QUE to
ox-LDL-induced foam cells (M + Q group) significantly decreased the lipid accumulation. The results
of the SA-beta-gal staining assay also demonstrated that the number of positive staining cells in the
M + Q group was significantly lower than that in the M group (Figure 2C,D), which confirmed these
findings. We further studied the effect of QUE on the expression of P16 and P21. The results of
immunofluorescence revealed more protein aggregation of P16 and P21 in the M group; however, after
using QUE, the protein aggregation of P16 and P21 decreased (Figure 3A,C).The results of Western
blot showed that the expression of each of these markers of senescence was increased dramatically in
the M group, and that the expression in the M + Q group was significantly lower than that in the M
group (Figure 3D,F). Therefore, the results suggested that QUE can effectively delay the senescence of
ox-LDL-induced RAW264.7 cells and significantly reduce intracellular lipid accumulation.
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Figure 2. Quercetin can delay senescence of RAW264.7 cells and reduce the accumulation of intracellular
lipid. (A) Oil red O staining. (B) Intracellular lipid deposition. (C) SA-β-gal staining. (D) Percentage of
SA-β-gal positive stained cells. Con, control; M, model; Q, quercetin; M + Q, model + quercetin. Data
are presented as means ± SD, * p < 0.05; ** p < 0.01.



Int. J. Mol. Sci. 2019, 20, 6093 5 of 17
Int. J. Mol. Sci. 2019, 20, x 5 of 18 

 

 

Figure 3. Expression of P21 and P16 in macrophage cells detected by immunofluorescence and 
Western blot. (A) Immunofluorescence. (B,C) Results of P21 and P16 immunofluorescence. (D,E) 
Results of P21 and P16 Western blot. (F) Western blot. Con, control; M, model; Q, quercetin; M + Q, 
model + quercetin. Data are presented as means ± SD, * p < 0.05; ** p < 0.01; *** p < 0.001. 

2.3. Inhibition of Autophagy Promoted the Lipid Accumulation and Senescence of RAW264.7 Cells 

Therefore, we used 3-MA (3-methyladenine) to study the role of autophagy deficiency in ox-
LDL-treated RAW264.7 cells. The results demonstrated that inhibition of autophagy aggravated the 
lipid accumulation in ox-LDL-treated RAW264.7 cells (Figure 4A,B). Consistently, SA-β-gal staining 
showed more positive staining cells (Figure 4C,D), and the expression of P16 and P21 protein 
increased significantly (Figure 5A–F). These results suggested that inhibition of autophagy promoted 
lipid accumulation and senescence in RAW264.7 cells. 
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2.3. Inhibition of Autophagy Promoted the Lipid Accumulation and Senescence of RAW264.7 Cells

Therefore, we used 3-MA (3-methyladenine) to study the role of autophagy deficiency in
ox-LDL-treated RAW264.7 cells. The results demonstrated that inhibition of autophagy aggravated the
lipid accumulation in ox-LDL-treated RAW264.7 cells (Figure 4A,B). Consistently, SA-β-gal staining
showed more positive staining cells (Figure 4C,D), and the expression of P16 and P21 protein increased
significantly (Figure 5A–F). These results suggested that inhibition of autophagy promoted lipid
accumulation and senescence in RAW264.7 cells.
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Figure 4. 3-MA promoted senescence of RAW264.7 cells and aggravated accumulation of intracellular
lipid. (A) Oil red O staining. (B) Intracellular lipid deposition. (C) SA-β-gal staining. (D) Percentage of
SA-β-gal-positive stained cells. Con, control; M, model; 3-MA, 3-methyladenine; M + 3-MA, model +

3-methyladenine. Data are presented as means ± SD, * p < 0.05.
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Figure 5. Expression of P21 and P16 in macrophage cells detected by immunofluorescence and Western
blot. (A) Immunofluorescence. (B,C) Results of P21 and P16 immunofluorescence. (D,E) Results of P21
and P16 Western blot. (F) Western blot. Con, control; M, model; 3-MA, 3-methyladenine; M + 3-MA,
model + 3-Methyladenine. Data are presented as means ± SD, * p < 0.05; *** p < 0.001.

2.4. Promotion of Autophagy Inhibited the Lipid Accumulation and Senescence of RAW264.7 Cells

In addition, in this study, we used 0.1 µm autophagy agonist rapamycin to intervene in
macrophages to study the role of autophagy in the treatment of AS. The results showed that intracellular
lipid accumulation decreased (Figure 6A,B), and SA-β-gal staining showed senescent cells decreased
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(Figure 6C,D), accompanied by a decrease in P21 and P16 protein expression (Figure 7). These results
suggested that importation of autophagy reduced lipid accumulation and senescence in RAW264.7 cells.
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Figure 6. Rapamycin delayed senescence of RAW264.7 cells and reduced accumulation of intracellular
lipid. (A) Oil red O staining. (B) Intracellular lipid deposition. (C) SA-β-gal staining. (D) Percentage of
SA-β-gal-positive stained cells. Con, control; M, model; RAP, rapamycin; M + RAP, model + rapamycin.
Data are presented as means ± SD, * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 7. Expression of P21 and P16 in macrophage cells detected by immunofluorescence and Western
blot. (A) Immunofluorescence. (B,C) Results of P21 and P16 immunofluorescence. (D,E) Results of P21
and P16 Western blot. (F) Western blot. Con, control; M, model; RAP, rapamycin; M + RAP, model +

rapamycin. Data are presented as means ± SD, * p < 0.05; ** p < 0.01; *** p < 0.001.

2.5. Quercetin Delayed Senescence, Which Was Associated with MST1-Mediated Autophagy

Next, to study the mechanism of QUE on AS, we further examined the expression of autophagy.
As shown in Figure 8A, the autophagosomes were greater in the M + Q group than in the M group.
Furthermore, the autophagosomes were lower in the M + 3-MA group but higher in the M + Q
+ 3-MA group. These results suggested that inhibition of autophagy by 3-MA can be reversed
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by QUE. As we all know, AS is a degenerative disease associated with aging, and autophagy can
effectively delay the function of aging in AS. In the previous study, we have confirmed that QUE
can promote autophagy and effectively delay aging and exert an anti-AS effect in apoE−/− mice [24].
TEM showed that the mitochondria in the M group were swollen and the mitochondrial ridges were
blurred. The mitochondria morphology was normal in the M + Q group, and the mitochondrial
ridges were clearly visible (Figure 8B). Combined with the detection of ROS, QUE can significantly
reduce the content of ROS (Figure 8C,D), confirming that QUE can effectively delay the senescence
of RAW264.7 cells. We suspected that QUE acted as an anti-AS agent through autophagy and then
delayed senescence. We stained the LC3 and P53, the results showed that the M + Q group had
more double-labeled staining regions than the M group (Figure 9A). Due to the fact that MST1 can
inhibit autophagy and aggravate AS, we speculated whether QUE can play an anti-AS role through the
promotion of autophagy by inhibiting MST1. The results showed that QUE can significantly reduce
the expression of MST1 and Bcl-2, and increase the expression of Beclin1 and LC3-II/I;. These findings
suggested that QUE may play a role in promoting cell autophagy by inhibiting MST1.
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Figure 8. Quercetin delayed senescence by upregulating autophagy. (A) Autophagosomes labeled
by arrow. (B) Cellular ultrastructure. (C) ROS. (D) Results of ROS, expressed by the average optical
density value. id, lipid droplet. Con, control; M, model; M + Q; model + quercetin; M + 3-MA, model
+ 3-methyladenine; M + Q + 3-MA, model + quercetin + 3-methyadenine. Data are presented as
means ± SD, * p < 0.05; ** p < 0.01.
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Figure 9. Quercetin regulated MST1-mediated autophagy. (A) Immunofluorescence of LC3 and P53,
colocalization of P53 and LC3 labeled by yellow arrow, green arrows represented green fluorescent
P53. (B) Western blot. (C–F) Expression of LC3-II/I, MST1, Beclin1, and Bcl-2. Con, control; M, model;
M + Q; Model + Quercetin; M + 3-MA, model + 3-Methyladenine; M + Q + 3-MA, model + quercetin +

3-methyadenine. Data are presented as means ± SD, * p < 0.05; ** p < 0.01; *** p < 0.001.

3. Discussion

AS, a metabolic disease characterized by lipid deposition in the walls of the great and middle
arteries, is closely related to aging [25]. As a major component of AS lesions, foam cells play an
important role in the development of AS [26]. In this study, we exposed RAW264.7 cells to ox-LDL
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to establish a foam cell model. The cell viability was decreased, and oil red O staining showed an
increase in lipid content, suggesting that the model was successfully established. The expression of
P21 and P16 also increased, accompanied by an increase in SA-β-gal positive cells. As these markers
are associated with cell senescence [5,26], our results suggested that RAW264.7 macrophage-derived
foam cells were successfully derived and accompanied by cellular senescence.

We further demonstrated that the effects of ox-LDL on cell viability, lipid accumulation, and
cell senescence in RAW264.7 cells can be partially blocked by QUE, which was consistent with our
previous findings [19]. QUE is a flavonoid compound with anti-inflammatory, antioxidation, antiaging,
and other cardiovascular protective effects. Previous studies have reported that QUE can reduce
the expression of inflammatory factors and adhesion molecules in AS by regulating the TLR/NF-κb
signaling pathway and can also upregulate the cholesterol transporter protein ABCA1 in apoE−/−

mice to promote cholesterol outflow, which effectively intervenes with AS [27,28]. In the foam cell
model induced by ox-LDL, QUE can effectively upregulate the expression of ABCA1 and activator of
transcription PPAR, promote the RCT pathway, reduce the formation of foam cells, and further prevent
AS [29]. Our findings demonstrated that QUE can effectively reduce the accumulation of intracellular
lipid and delay cell senescence, which further confirmed the anti-AS and aging effect of QUE.

Autophagy promotes cellular homeostasis and stress adaptation, and plays an important role in
the occurrence and development of AS. Studies have shown that autophagy inhibitor 3-MA significantly
increases accumulation of lipid in THP-1 cells. Inhibition of autophagy accelerates cell senescence,
promotes AS development, and accelerates the formation of plaque [5,15]. As a widely used autophagy
agonist, RAP can promote autophagy, mainly by inhibiting the mTOR (Mammalian rapamycin target
protein) signaling pathway. Studies have shown that RAP can upregulate autophagy of macrophages,
reduce the accumulation of lipid, and delay senescence, which plays an effective role in anti-AS
activity [30,31]. Our results also confirmed that 3-MA promoted the accumulation of intracellular lipid
and aggravated senescence, while RAP significantly reduced the accumulation of intracellular lipid
and reduced the expression of senescence protein.

Recently, it has been demonstrated that QUE can upregulate autophagy in endothelial cells
through the ERK pathway, thus effectively preventing AS [20]. Autophagy, a subcellular process by
which lysosomes degrade damaged organelles and proteins, plays a key role in the development
of AS. Inducing macrophage autophagy can reduce the aggregation of macrophage in AS plaques,
protect cells from inflammatory factors, and promote the stability of plaque [32]. Autophagy can
also promote intracellular lipid hydrolysis and cholesterol efflux in macrophage-derived foam cells,
thereby effectively inhibiting the progression of AS [33]. Our results demonstrated that the number of
autophagosomes decreased after exposure of RAW264.7 cells to ox-LDL, and that decrease was blocked
by QUE. Furthermore, QUE promoted the expression of LC3-II/I, reversed the AS-promoting effect of
the autophagy inhibitor 3-MA, and reduced the expression of P21 and P16 proteins. Mitochondria are
closely related to aging and the morphology of mitochondria change with the aging process. Typical
mitochondria have well-stratified mitochondrial mites, while in senescent cells, mitochondrial mites
are unclear and appear as irregular vesicles [34]. ROS are mainly derived from mitochondria, and low
levels of ROS are associated with delayed biosenescence [35]. Our TEM showed that the mitochondria
in the M + Q group was clearly visible compared with the M group, the mitochondrial morphology was
normal, and autophagosomes were produced. The results of ROS testing showed that QUE can reduce
the production of ROS in cells, suggesting that it can effectively delay aging. These findings further
supported the role of QUE-induced autophagy in protecting macrophages against the detrimental
effects associated with AS. Therefore, these findings supported an anti-AS role for QUE by promoting
macrophage autophagy and delaying senescence.

As a potential mechanism for QUE-associated effects on autophagy, we also examined effects
on the expression of MST1, a serine-threonine kinase involved in a variety of biological functions,
including autophagy, apoptosis, and oxidative stress [17]. Our results demonstrated that QUE reduced
the expression of MST1 in ox-LDL-induced RAW264.7 foam cells, which was consistent with the
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possibility that QUE may promote autophagy by inhibiting the expression of MST1. MST1 has been
reported to phosphorylate Beclin1 at threonine 108 in the BH3 domain, which enhances its interaction
with Bcl-2/Bcl-xl, inhibits the PI3 kinase activity of the Atg14L-Beclin1-Vps34 complex, and inhibits
autophagy [36]. In a diabetic mouse model, knockout of MST1 significantly upregulated autophagy
and the expression of LC3-II in cardiac microvascular endothelial cells increased [16]. In recent years,
MST1 has been shown to be closely related to cardiovascular and metabolic diseases [37]. Knockout of
MST1 in apoE−/− mice reduced the plaque area, lipid core, and macrophage accumulation. Conversely,
apoE−/− mice overexpressing MST1 showed a large accumulation of lipid core and macrophages.
Additionally, MST1 knockout mice had significantly increased LC3-II expression and autophagosome
numbers in macrophages [38]. Therefore, results from previous studies overwhelmingly support its
role in autophagy and are consistent with our findings.

In summary, our results demonstrate that QUE effectively reduces ox-LDL-induced RAW264.7
foam cell formation, reducing cellular lipid accumulation and delaying cell senescence. This is associated
with increased autophagy, as evidenced by an increased number of autophagosomes in the QUE
group, increased LC3-II/I, Beclin1 protein expression, and downregulation of MST1, Bcl-2, P21, and P16
expression. The above results are consistent with a mechanism for QUE in inhibiting AS by enhancing
autophagy and delaying senescence through the MST1 pathway.

4. Materials and Methods

4.1. Cells and Reagents

RAW264.7 mouse macrophages were obtained from the cell bank of the Chinese Academy of
Sciences. The following reagents were also used: Dulbecco’s modified Eagle’s medium (DMEM)
medium (Gibco, 11965-092, Waltham, MA, USA), fetal bovine serum (FBS, Invitrogen, 10099-141,
Carlsbad, CA, USA), quercetin (Shanghai Yuanye Biotechnology Co., Ltd., B20527, Shanghai, China),
ox-LDL (Shanghai Yuanye Biotechnology Co., Ltd., S24879), 3-methyladenine (Sigma, M9281, St. Louis,
MI, USA),rapamycin (Sigma, V900930), anti-rabbit MST1 (Cell Signaling Technology, 14946, Boston,
MA, USA), anti-rabbit LC3A/B (Cell Signaling Technology, 4108), anti-rabbit Bcl-2(Abcam, ab182858,
Cambridge, UK), anti-rabbit Beclin1 (Abcam, ab210498), anti-mouse P53 (Abcam, ab26), anti-rabbit
P21 (Abcam, ab188224), anti-rabbit P16 (Abcam, ab51243), anti-mouse IgG (Cell Signaling Technology),
anti-rabbit IgG (Cell Signaling Technology, 7074 P2), protein ladder (Thermo Fisher, 26616, Waltham,
MA, USA), DAPI Staining Solution (Shanghai Beyotime Biotechnology Co., Ltd., C1006, Shanghai,
China), BCA protein assay kit (Shanghai Beyotime Biotechnology Co., Ltd., P0010), SDS-PAGE Gel
Preparation Kit (Shanghai Beyotime Biotechnology Co., Ltd., P0012A), Oil red O Staining Kit (Shanghai
Yi Sheng Biotechnology Co., Ltd., 40759, Shanghai, China), Reactive Oxygen Species Assay Kit
(Shanghai Beyotime Biotechnology Co., Ltd., S0033), In Situ β-galactosidase Staining Kit (Shanghai
Beyotime Biotechnology Co., Ltd., RG0039), and Cell Counting Kit-8 (Shanghai Beyotime Biotechnology
Co., Ltd., C0038).

4.2. Cell Culture

RAW264.7 macrophages were cultured in DMEM containing 10% FBS at 37 ◦C in a 5% CO2

incubator at constant temperature. After growth as a dense monolayer, the cells were routinely passed
to a third generation. After 8 h of starvation in serum-free DMEM, the cells were randomly divided into
different groups: Con (control); M (model); Q (quercetin); 3-MA (3-methyladenine), Rap (rapamycin);
M + Q; M + 3-MA; M + Rap; and M + Q + 3-MA.

4.3. Cell Proliferation Assay

When the cells reached 70–80% confluency, they were lifted from the plates by trypsinization and
diluted to 50,000/mL in culture medium. The cells were inoculated in 96-well plate with 100 µL cell
suspension per well. After cell adherence, the corresponding drugs were added for 24 h. Then, 10 µL
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CCK-8 solution was added per well, and the absorbance optical density (OD) at 450 nm wavelength
was measured in an enzyme labeling instrument after 1 h.

4.4. Oil Red O Staining of Cells

RAW264.7 cells were cultured in 24-well sterile culture plates and treated with corresponding
drugs. The cells were gently rinsed twice with PBS solution and fixed with 4% paraformaldehyde
for 30 min. The PBS solution was rinsed for 1 min, oil red O working fluid was applied in an oven
at 60 ◦C for 15–20 min, and the cells were washed with distilled water 1–2 times, 1–2 min each time.
Subsequently, 60% isopropanol was separated and the red intracellular lipid droplets were observed
under the microscope. The images were collected and the experimental results were analyzed by
Image J analysis software. The intracellular lipid droplets were expressed by integrated optical density.

4.5. SA-β-gal Staining of Cells

RAW264.7 cells were cultured in 24-well sterile culture plates and treated with corresponding
drugs. Then, the culture medium was discarded and the cells were fixed with 0.5 mL beta-gal staining
stationary solution for 15 min. The cells were incubated with 0.5–1 mL SA-β-gal staining working
fluid. A minimum of 200 cells were observed by optical microscopy, and the percentage of positive
staining cells was calculated.

4.6. Transmission Electron Microscopy (TEM) Observation of Autophagosome and Mitochondria

After discarding the culture medium, 2.5% glutaraldehyde was quickly added to the cultured cells.
The cells were scraped gently and collected into centrifuge tubes. After discarding the glutaraldehyde,
the cells were centrifuged for 5 min at 1000 rpm. A new batch of glutaraldehyde was added, and then
the cells were fixed in 2% OSO4. Graded alcohol was dehydrated, resin was embedded, and ultrathin
sections were stained with uranyl acetate and citric acid. Autophagosomes and cellular mitochondria
were observed by transmission electron microscopy (JEM-1230, Tokyo, Japan).

4.7. Reactive Oxygen Species Assay of Cells

RAW264.7 cells were cultured in 24-well sterile culture plates and treated with corresponding
drugs. DCFH-DA was diluted 1:1000 with serum-free medium to a final concentration of 10 µmoL/L.
The cell culture medium was removed and an appropriate volume of diluted DCFH-DA was added
and incubated in a 37 ◦C cell incubator for 20 min. The cells were washed 3 times with serum-free cell
culture medium to fully remove DCFH-DA that had not entered the cells. They were then observed by
fluorescence microscope.

4.8. Immunofluorescence Detection of Protein Expression in Macrophages

RAW264.7 cells were inoculated into 24-well culture plates with aseptic cover slides and treated
with corresponding drugs. After rinsing in PBS, the cells were fixed in 4% paraformaldehyde for
30 min, rinsed 3 times for 5 min with PBS, and 0.1% Triton-X-100 (PBST) statically placed at room
temperature for 15 min. The cells were blocked with 5% BSA for 1 h, after which the blocking solution
was discarded, primary antibody was added, and the cells were incubated overnight at 4 ◦C. The cells
were then rinsed 3 times for 5 min in PBST and incubated with fluorescent secondary antibody. After
incubation at room temperature for 1 h in the dark, the cells were stained with DAPI for 3 min in
the dark, washed 3 times for 5 min with PBST, and then sealed and observed under a laser scanning
confocal microscope.

4.9. Western Blot Detection of MST1, LC3II/I, Beclin1, Bcl-2, P21, and P16 Expression in Macrophages

RAW264.7 cells were cultured in 6-well sterile culture plates and treated in groups. The culture
medium was discarded, and RIPA lysis buffer containing PMSF was added. The cells were scraped
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gently and collected into centrifuge tubes. After centrifugation at 12,000 rpm, 4 ◦C, for 30 min, the
supernatants were collected for protein measurement using the BCA method. Samples were mixed with
5× loading buffer and heated in boiling water for 10 min to denature proteins. Samples were resolved
in SDS-PAGE gels and then transferred to PVDF membranes. The membranes were blocked with 5%
skim milk and then incubated in corresponding antibody solutions (all diluted at 1:1000) overnight.
After washing, the membranes were incubated at room temperature with secondary antibodies for 1 h.
Protein band images were acquired and analyzed as the integrated absorbance (IA = mean OD × area)
using Image-J software, and the relative levels of target proteins were normalized to Gapdh (target
protein IA/Gapdh IA).

4.10. Statistical Analysis

Statistical analysis was conducted using SPSS23.0 software, and figures were generated using
Graph Pad Prism 5 Project software and Adobe illustrator CC. Results were presented as means ±
standard deviation (SD). Differences between groups were determined by nonpaired tests or one-way
ANOVA. Differences at p < 0.05 were considered significant.

5. Conclusions

In summary, our results demonstrate that QUE effectively reduces ox-LDL-induced RAW264.7
foam cell formation, reducing cellular lipid accumulation and delaying cell senescence. This is associated
with increased autophagy, as evidenced by the increased number of autophagosomes in the quercetin
group; increased LC3; Beclin1 protein expression; and downregulation of MST1, Bcl-2, P21, and P16
expression. The above results are consistent with a mechanism for QUE in inhibiting AS by enhancing
autophagy and delaying senescence through the MST1 pathway.
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LDL-C Low Density Lipoprotein Cholesterol
mTOR Mammalian rapamycin target protein
MST1 Mammalian Ste20-like Kinase 1
ox-LDL Oxidized Low-Density Lipoprotein
PBS Phosphate Buffer Saline
PBST Phosphate Buffer Saline-Twen 20
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RAP Rapamycin
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SA-β-gal Senescence-Associated β-galactosidase
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