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Abstract: Salmonella is one of the most common bacteria causing food poisoning worldwide. We
evaluated the prevalence, the serotypes, and the antimicrobial resistance (AMR) of Salmonella isolates
from many kinds of food, particularly pork and chicken in retail, in Taiwan between January 2017
and December 2019. The E-test was used to assess antimicrobial susceptibility and a polymerase
chain reaction was performed for serotyping. A total of 459 different foods were investigated, and
117 Salmonella strains were isolated. Retail pork and chicken were the most common Salmonella-
contaminated foods (64.1% and 29.1%, respectively). Of the 117 isolates, 23 serotypes were identified.
The serotypes Derby (16.2%), Anatum (13.7%), and Agona (8.5%) were the most prevalent. The resis-
tance rates to ciprofloxacin, ceftriaxone, and carbapenem were 41.9%, 11.1%, and 1.7%, respectively.
The Derby and Anatum serotypes were prevalent in chicken and pork; the Anatum serotype had
significantly higher ciprofloxacin and ceftriaxone resistance rates and was highly prevalent in 2017
and 2018. Multi-locus sequence typing analysis revealed that the 58 randomly chosen Salmonella
isolates belonged to 18 sequence types (STs). ST64 (Anatum, 16 out of 58, 27.6%) was the most
common, followed by ST321 (Muenster, 6/58, 10.3%), ST831 (Give, 5/58, 8.6%), ST155 (London, 4/58,
6.9%) and ST314 (Kentucky, 4/58, 6.9%). Multidrug-resistant Salmonella strains were remarkably
observed in the serotypes Anatum (ST64) and Goldcoast (ST358). This study revealed that retail pork
was commonly contaminated with antimicrobial-resistant Salmonella. Thus, periodic investigations of
Salmonella serotypes and AMR are needed.

Keywords: Salmonella; antimicrobial resistance; multi-locus sequence typing; retail pork; chicken;
multidrug-resistant

1. Introduction

Salmonella is one of the most common pathogens causing foodborne illnesses in hu-
mans, such as acute gastroenteritis, bacteremia, meningitis, arthritis and mycotic aneurysm,
and the World Health Organization classifies it as a significant cause of illness and death [1];
however, many animals, such as pigs, chickens, rodents, and cattle, can carry Salmonella in
their digestive tract and even invade and multiply in enterocytes and tonsillar lymphoid
tissues without significant signs of illness [2]. Non-typhoidal salmonellosis (NTS) causes
78 million foodborne infections and 59,000 deaths each year, and NTS infection has become
an emerging issue in public health worldwide [1]. Eating Salmonella-contaminated foods,
such as poultry, pork, beef, and eggs, causes most Salmonella illnesses in humans [3]. The
burden imposed by NTS is complicated in some infections caused by multidrug-resistant
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(MDR) bacteria [4]. Salmonella has increasingly emerged, and there is growing concern
about its resistance to last-line therapies [5].

A variety of foods linked to Salmonella outbreaks have been extensively studied [6,7].
Various resistance genes have been identified in Salmonella from different sources, with NTS
infections posing a significant threat to global human health and being a cause of foodborne
illnesses [8]. NTS infection is also the leading cause of foodborne illness in Taiwan [9].
According to Taiwanese research, antimicrobial resistance (AMR) is a serious problem in
clinical Salmonella isolates [10]. The antimicrobial-resistant Salmonella spreads through the
food chain, especially the MDR serotypes Anatum and Goldcoast in Taiwan [11,12], and it
has been making the treatment of Salmonella infections in clinical practice more difficult [13].

However, there is little information on the epidemiology and AMR of Salmonella
isolated from food in Taiwan, making it difficult to assess the impact of food-related
AMR on public health [14]. Understanding the status of Salmonella contamination in food,
as well as AMR, is critical for effectively controlling the spread of Salmonella. To better
understand antimicrobial-resistant Salmonella isolated from food, we evaluated Salmonella
contamination and AMR in food from Taiwanese markets.

2. Materials and Methods
2.1. Sample Collection and Identification of Salmonella

We collected Salmonella isolates from food samples. All the samples were collected
from New Taipei City and Taoyuan City in Northern Taiwan. These two densely popu-
lated districts are the main sources of patients treated at Chang Gung Memorial Hospital
(CGMH). We randomly gathered food samples from 16 traditional markets and super-
markets from 2017 to 2019. The samples were processed using the methods suggested
by the Association of Official Agricultural Chemists International and specified in the
Microbiology Laboratory Guidebook of the United States Department of Agriculture/Food
Safety and Inspection Service [15]. Each sample weighed 200–250 g and was collected at the
point of sale in vendor-supplied containers, much like a consumer would purchase food.
The packed pieces were immediately placed in a cooler and transferred to the laboratory,
where they were stored at 4 ◦C until evaluation; the holding time did not exceed 16 h.

2.2. Microbiological Analysis

The 25 g samples (e.g., giant vegetables, fruits, or meat) were broken up in a ho-
mogenizer and incubated in 225 mL of BBL™ Gram-Negative Broth (Becton Dickinson
Biosciences, Franklin Lakes, NJ, USA) for 24 h at 37 ◦C, followed by sub-incubation of a
0.1 mL aliquot of primary cultured bacterial solution in 10 mL fresh Rappaport-Vassiliadis
medium (Becton, Dickinson and Co.) for 24 h at 42 ◦C. The Salmonella strains were obtained
from the bright-black single colonies using Salmonella-selective HardyCHROM™ SS No-
Pro Agar plates (Hardy Diagnostics, Santa Maria, CA, USA). Salmonella serotyping was
conducted using the multiplex polymerase chain reaction (mPCR) method, as described
previously [16]. Bacterial genomic DNA was extracted using DNeasy Blood and Tissue Kits
(Qiagen, Hilden, Germany), and an mPCR test was applied using the primer set design
based on the chromosomal sequences of S. enterica serovars Typhimurium LT2 (STM),
Typhi CT18 (STY) and Enteritidis (PT4) [16]. The serotype of each Salmonella isolate was
determined based on its PCR amplicon pattern analyzed using electrophoresis in 2.5%
agarose gel and compared to the patterns of the 30 most prevalent S. enterica serotypes.

2.3. Antimicrobial Susceptibility Testing

We tested the Salmonella isolates purified from the food samples for resistance to
antimicrobials. The antimicrobial sensitivity of the isolates to ciprofloxacin (suscepti-
ble: ≤0.5 µg/mL; resistant: ≥1 µg/mL), ceftriaxone (susceptible: ≤8 µg/mL; resistant:
≥64 µg/mL) and ertapenem (susceptible: ≤1 µg/mL; resistant: ≥4 µg/mL) was de-
termined using E-test strips according to the Clinical and Laboratory Standards Insti-



Pathogens 2022, 11, 705 3 of 9

tute’s (https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf; accessed
on 14 April 2022) instructions [17].

2.4. Multi-Locus Sequence Typing (MLST) and Sequence Data Analyses

MLST was performed using PCR amplification and using 7 specific primer sets de-
signed according to 7 housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA), fol-
lowing the methods reported by Jolley et al. and referred to on the website of the Salmonella
enterica MLST Database (https://pubmlst.org/bigsdb?db=pubmlst_mlst_seqdef&page=
schemeInfo&scheme_id=2; accessed on 14 April 2022) [18]. The sequence type of each
Salmonella isolate was determined according to the identity of 7 allelic profiles through
sequencing PCR amplicons of 7 loci and screening with known sequences registered in the
MLST Database.

2.5. Statistical Analysis

The prevalence of AMR and replicon types were expressed as percentages of the
total number of Salmonella isolates and calculated using Microsoft Excel (Microsoft Inc.,
Redmond, WA, USA). A chi-square test of independence was used to examine the cor-
relations between different years of Salmonella collection for resistance phenotypes us-
ing SPSS version 22.0 software (SPSS Inc., Chicago, IL, USA). A p-value < 0.05 was
considered significant.

3. Results

Of the 459 food samples analyzed, 117 (25.4%) were positive for Salmonella. The
foods investigated included pork (31.8%), vegetables (20.9%), chicken (20.3%), eggs (10 %),
seafood (3.2%), fruit (5.0%), beef (5.8%), delicatessen (2.1%), sauces (0.4%), pig intestines
(0.4%), and duck (0.2%). Salmonella was significantly more prevalent (p < 0.001) in pork
(51.3% of the samples were positive) and chicken (35.2%) than in seafood (6.6%), vegetables
(5.2%), beef (3.7%), eggs (0%), or other foods (2.7%). Twenty-three serotypes were identified
from the 117 Salmonella-positive samples (Table 1). The Derby serotype was predomi-
nant (16.2%), followed by the Anatum (13.7%), Agona (8.5%), Albany (7.7%), Kentucky
(7.7%), and London (6.8%) serotypes; these serotypes accounted for 60.6% of the isolates
(Tables 1 and 2). The prevalence of other serotypes ranged from 0.9% to 5.1%. Pork pur-
chased from the supermarket had less Salmonella contamination than that purchased from
a traditional market. The five serotypes most often identified among the pork isolates were
Derby, Anatum, Agona, London, and Give. The Albany, Kentucky (12.8%), Anatum, and
Brancaster (5.1%) serotypes were the most commonly isolated serotypes from chicken. In
addition, the Salmonella serotypes Agona, Corvallis, Give Goldcoast, Livingstone, London,
Mbandaka, Newport, Potsdam, Rissen, and Weltevreden were found in pork only, and
other serotypes, including Brancaster, Enteritidis, Schwarzengrund, and Thompson, were
isolated from chicken only. Salmonella Kaitaan and Salmonella Zigong were only detected in
vegetable samples. The Derby serotype was the most common among the pork isolates
(n = 16), while the Kentucky (n = 6) and Albany (n = 6) serotypes were isolated from chicken.
The Anatum serotype was most prevalent in pork, followed by chicken and beef.

The AMR rate from 2017 to 2019 is shown in Figure 1. The resistance rates of
ciprofloxacin and ceftriaxone were higher in 2017 (60.7% and 17.9%, respectively), particu-
larly the ciprofloxacin-resistant rate between 2017 and 2018, with a significant difference
(p = 0.027). Tables 1 and 2 list the resistance rates of the 117 Salmonella isolates. The resis-
tance rates to ciprofloxacin, ceftriaxone, and carbapenem were 41.9%, 11.1%, and 1.7% in
total, respectively (Table 2). Of all the Salmonella isolates tested, 50 (42.7%) were resistant
to at least one highly antimicrobial-resistant agent and 13 (11.1%) were resistant to both
(Table 1). Resistance to carbapenem was observed in two isolates. The carbapenem-resistant
isolates included the Anatum serotype from pork and the Derby serotype from chicken. The
resistance rate differed depending on the serotype. The Goldcoast and Anatum serotypes
had the highest resistance to ceftriaxone (100% and 68.7%, respectively). The resistance
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rates to ciprofloxacin were higher among the Brancaster (100%), Give (100%), Goldcoast
(100%), Albany (77.8%), Anatum (75.0%), London (50%), Kentucky (44.4%), Derby (42.1%),
Enteritidis (25.0%), and Livingstone (20.0%) serotypes, while the Agona, Muenster, New-
port, Typhimurium, and Weltevreden serotypes had lower resistance rates to ciprofloxacin
and ceftriaxone. Of the 117 Salmonella isolates, 58 were randomly chosen for MLST analysis
(Table 1). Eighteen STs were identified. The most common ST was ST64 (serotype Anatum,
16/58, 27.6%; represented by 16 Salmonella isolates among 58 MLST-confirmed isolates),
followed by ST321 (Muenster, 6/58, 10.3%), ST831 (Give, 5/58, 8.6%), ST155 (London, 4/58,
6.9%), ST314 (Kentucky, 4/58, 6.9%), ST358 (Goldcoast, 2/58, 3.4%), ST31 (Newport, 2/58,
3.4%), and ST96 (Schwarzengrund, 2/58, 3.4%). Most of the STs obtained in this study were
correlated with particular serotypes, such as ST64 with Anatum, ST831 with Give, and
ST358 with Goldcoast; moreover, Kentucky was correlated to at least two sequence types,
ST198 and ST314 (Table 1).

Table 1. Diversity profiles of the Salmonella isolates based on MLST, serotyping, and antimicrobial
resistance.

Serotypes Sequence Type * No. Antimicrobial
Resistance No. Resistance

Rate (%) Source (No.)

Agona ND 10 S 10 0 Pork (10)

Albany

ST292 1 S 1

77.8

Chicken (1)

ND 8

S 1 Chicken (1)

CIP 7
Chicken (4);

Vegetables (1);
Giblets (1); Clams (1)

Anatum ST64 16

S 4

75.0

Pork (4)

CIP, CRO 11 Pork (4); Chicken (4);
Haslets (2); Beef (1)

CIP, CRO, ETP 1 Haslets (1)

Brancaster
ST2133 1 CIP 1

100
Chicken (1)

ND 2 CIP 2 Chicken (2)

Corvallis ST1541 1 S 1 Pork (1)

Derby ND 19

S 10

47.4

Pork (8); Vegetables (2)

CIP 8 Pork (6); Haslets (2)

ETP 1 Chicken (1)

Enteritidis ND 4
S 3

25.0
Chicken (3)

CIP 1 Chicken (1)

Give ST831 5 CIP 5 100 Pork (4); Haslets (1)

Goldcoast ST358 2 CIP, CRO 2 100 Pork (1); Chicken (1)

Kaitaan * 1 S 1 0 Vegetables (1)

Kentucky

ST198 1 S 1

44.4

Chicken (1)

ST314 4
S 1 Pork (1)

CIP 3 Chicken (3)

ND 4
S 3 Chicken (2); Pork (1)

CIP 1 Pork (1)

Livingstone ND 5
S 4

20.0
Chicken (2); Pork (2)

CIP 1 Pork (1)
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Table 1. Cont.

Serotypes Sequence Type * No. Antimicrobial
Resistance No. Resistance

Rate (%) Source (No.)

London
ST155 4 CIP 4

50.0
Pork (4)

ND 4 S 4 Pork (4)

Mbandaka ND 2 S 2 0 Pork (2)

Muenster ST321 6 S 6 0 Pork (3); Chicken (2);
Haslets (1)

Newport ST31 2 S 2 0 Pork (2)

Potsdam ST2462 1 S 1 0 Pork (1)

Rissen ST469 1 S 1 0 Pork (1)

Schwarzengrund ST96 2 CIP 2 100 Chicken (2)

Thompson ST26 1 S 1 0 Chicken (1)

Typhimurium
ST36 1 S 1

0
Chicken (1)

ND 4 S 4 Pork (3); Chicken (1)

Weltevreden
ST65 1 S 1

0
Pork (1)

ND 3 S 3 Pork (3)

Zigong ST3467 1 S 1 0 Vegetables (1)

Total 117 117 42.7% 117

No., number; ND, not detected; CIP, ciprofloxacin; CRO, ceftriaxone; ERT = ertapenem; * no MLST analysis but
PFGE typing to confirm that it was S. Kaitaan.

Table 2. Antimicrobial resistance profiles of the Salmonella serotypes.

Serotypes * No. of Isolates
(%)

Ciprofloxacin
Resistance Rate

%

Ceftriaxone
Resistance Rate

%

Carbapenem
Resistance Rate

%

Derby 19 (16.2%) 42.1% (8/19) 0% (0/19) 5.3% (1/19)

Anatum 16 (13.7%) 75% (12/16) 68.8% (11/16) 6.3% (1/16)

Agona 10 (8.5%) 0% (0/10) 0% (0/10) 0% (0/10)

Kentucky 9 (7.7%) 44.4% (4/9) 0% (0/9) 0% (0/9)

Albany 9 (7.7%) 77.8% (7/9) 0% (0/9) 0% (0/9)

London 8 (6.8%) 50% (4/8) 0% (0/8) 0% (0/8)

Muenster 6 (5.1%) 0% (0/6) 0% (0/6) 0% (0/6)

Give 5 (4.3%) 100% (5/5) 0% (0/5) 0% (0/5)

Livingstone 5 (4.3%) 20% (1/5) 0% (0/5) 0% (0/5)

Typhimurium 5 (4.3%) 0% (0/5) 0% (0/5) 0% (0/5)

Enteritidis 4 (3.4%) 25% (1/4) 0% (0/4) 0% (0/4)

Weltevreden 4 (3.4%) 0% (0/4) 0% (0/4) 0% (0/4)

Brancaster 3 (2.6%) 100% (3/3) 0% (0/3) 0% (0/3)

Goldcoast 2 (1.7%) 100% (2/2) 100% (2/2) 0% (0/2)

Mbandaka 2 (1.7%) 0% (0/2) 0% (0/2) 0% (0/2)

Newport 2 (1.7%) 0% (0/2) 0% (0/2) 0% (0/2)

Schwarzengrund 2 (1.7%) 100% (2/2) 0% (0/2) 0% (0/2)
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Table 2. Cont.

Serotypes * No. of Isolates
(%)

Ciprofloxacin
Resistance Rate

%

Ceftriaxone
Resistance Rate

%

Carbapenem
Resistance Rate

%

Corvallis 1 (0.9%) 0% (0/1) 0% (0/1) 0% (0/1)

Kaitaan 1 (0.9%) 0% (0/1) 0% (0/1) 0% (0/1)

Potsdam 1 (0.9%) 0% (0/1) 0% (0/1) 0% (0/1)

Rissen 1 (0.9%) 0% (0/1) 0% (0/1) 0% (0/1)

Thompson 1 (0.9%) 0% (0/1) 0% (0/1) 0% (0/1)

Zigong 1 (0.9%) 0% (0/1) 0% (0/1) 0% (0/1)

Total 117 41.9% (49/117) 11.1% (13/117) 1.7% (2/117)
* The order of serotype is exhibited based on its number of isolates.
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4. Discussion

Our study provides the status of Salmonella contamination in food and the AMR
properties in Taiwan. We found a high prevalence of Salmonella in retail pork. High AMR
was found in at least one-third of the Salmonella isolates from chicken and pork, and was
related to specific serotypes. Furthermore, we noted the diversity in the serotypes and
genotypes of the Salmonella isolates during the 3 years.

In the current investigation, the prevalence rates of Salmonella in pork and chicken
samples were 51.3% and 35.2%, respectively, which were consistent with previous studies
conducted in Taiwan [9,19,20]. The Salmonella strains obtained from pork carcasses in
Taiwan were previously relatively resistant to the antimicrobial treatments tested [21–23].
This study found Salmonella in 51.3% of retail pork. This figure is higher than the 2.1–31%
reported in Ireland, Denmark, China, and the United States [24–28]. The relatively high
contamination rate of Salmonella may be occurring because retail pork is generally obtained
from traditional markets without consistent refrigerated storage. Additionally, Taiwan is in
a subtropical zone, and Salmonella thrives in hot weather. In the current study, Derby was
the most prevalent S. enterica serotype (abbreviated as S. Derby), matching previous results
from other regions and nations [29,30]. S. Derby is one of the top ten serotypes isolated
from human salmonellosis infections in many countries, including Taiwan [14,30–32]. In
addition, a large S. Derby clone spread from pigs to humans in Europe [33,34]. According
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to these investigations, S. Derby has the potential to infect people through pork products,
indicating that Salmonella may be transmitted from pigs to humans via the food chain.

The Salmonella strains isolated from pork in this study were relatively resistant to the
antimicrobial agents tested, compared to the results from pork carcasses studied in Taiwan
between 2000 and 2003, all of which were susceptible to ceftriaxone. Ceftriaxone-resistant
Salmonella isolates from humans have emerged in Taiwan. In this study, high AMR was
common in some Salmonella serotypes detected in pork samples, particularly the Anatum
and Goldcoast serotypes. A human outbreak of MDR S. Anatum emerged in Taiwan in
2015 [11]. This serotype is virulent in humans, and children became ill more frequently due
to contamination from meat. Pork and poultry have been identified as potential carriers.
This serotype is responsible for foodborne diseases, and it has caused outbreaks in many
countries. S. Goldcoast infection was first reported in Taiwan in 2014, and all but one
isolate were pan-susceptible from 2014 to 2016. S. Goldcoast infections spiked in 2018, and
all isolates were MDR. According to whole-genome sequencing, the clone responsible for
the clinical outbreak shared its genealogy with an S. Goldcoast strain detected in a retail
meat isolate [12]. The antimicrobial-resistant isolates of serotypes Anatum and Goldcoast
from Taiwan, which harbor conjugatable plasmids (such as pSal-3973_DHA_CMY and
pSal-5364) with qnrB4 (or qnrS1) and blaDHA-1 (or blaCMY-2) genes conferring resistance
to ciprofloxacin and ceftriaxone, respectively, show high genetic similarity to Anatum
isolates from the UK and Goldcoast isolates from the UK (strain 296839) and Germany
(strain SAL_IB6386AA) [11,12]. Notably, very few MDR isolates were verified before
2015 [11,12,35,36]. Such global-wide dissemination of antimicrobial-resistant Salmonella
strains via bacterial conjugation to transmit the MDR gene-carrying plasmids could be the
reason why certain areas have isolates that are resistant to certain antimicrobial agents.

Overall, Salmonella was detected in 35.2% of chicken samples. The prevalence was
higher than in a previous report (25.1%; 95% confidence interval: 21.7–28.7). Similar to
previous studies [37], Albany and Kentucky are the most common serotypes in chicken.
S. Albany dominates chicken abattoirs in Taiwan. The Kentucky serotype is the most
common in poultry products from North America [38]. The Agona serotype is susceptible
to all antimicrobial agents. The Kentucky serotype is also sensitive to ceftriaxone. The
link between serotypes and human epidemics in the United States is very weak, with
rates < 1% [39].

Our results revealed that ST64 among the 18 identified STs was the most frequent
Salmonella genotype in the current study. ST64 was commonly detected in Asian and
European patients, and occurs widely in pork from Europe and the USA [40]. ST34 and
ST19 were the second and third most common serotypes, respectively, widely found in
humans and pigs in Japan, China, the USA, and Europe, indicating that Salmonella may be
transmitted from pigs to humans via the food chain [24,41]. Additionally, ciprofloxacin-
resistant ST314 strains have been increasing since 2014 (from 5.6% in 2014 to 53.2% in 2016).
The emergence of ST314 strains increasingly becoming ciprofloxacin-resistant, similar to
ST198, is a warning in global health. The recent emergence of concurrent resistance to
ciprofloxacin and ceftriaxone among Salmonella isolates is posing a serious threat that
requires further monitoring. Another emerging issue related to colistin resistance that was
first reported in patients with infection of the Salmonella ST155 strain harboring a colistin-
resistant mcr-1 gene in China highlights the importance of cautious use and continuous
monitoring of colistin resistance in both clinical and veterinary medicines [41,42].

Our findings reveal a high prevalence of Salmonella in retail meat in Northern Taiwan.
Strong AMR was found in half of the Salmonella isolates from chicken and one-third of the
Salmonella isolates from pork. High AMR correlates to specific serotypes, particularly MDR
Anatum and Goldcoast, posing a danger to the control of Salmonella infections in humans
and animals. More epidemiological surveillance is needed in Taiwan to determine the
prevalence, AMR, and subtyping characteristics of foodborne pathogens, which will help
to develop scientifically sound public health policies and put into place practical actions to
ensure the safety of our food supply.
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