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Abstract: The innovative development of azapeptide analogues of growth hormone releasing peptide-6
(GHRP-6) has produced selective modulators of the cluster of differentiation 36 receptor (CD36).
The azapeptide CD36 modulators curb macrophage-driven inflammation and mitigate atherosclerotic
and angiogenic pathology. In macrophages activated with Toll-like receptor-2 heterodimer agonist,
they reduced nitric oxide production and proinflammatory cytokine release. In a mouse choroidal explant
microvascular sprouting model, they inhibited neovascularization. In murine models of cardiovascular
injury, CD36-selective azapeptide modulators exhibited cardioprotective and anti-atherosclerotic
effects. In subretinal inflammation models, they altered activated mononuclear phagocyte metabolism
and decreased immune responses to alleviate subsequent inflammation-dependent neuronal injury
associated with retinitis pigmentosa, diabetic retinopathy and age-related macular degeneration.
The translation of GHRP-6 to potent and selective linear and cyclic azapeptide modulators of CD36 is
outlined in this review which highlights the relevance of turn geometry for activity and the biomedical
potential of prototypes for the beneficial treatment of a wide range of cardiovascular, metabolic and
immunological disorders.

Keywords: semicarbazide; CD36; age-related macular degeneration; atherosclerosis; macrophage-driven
inflammation; peptide

1. Introduction

In modern biomedical science, the transformation of biologically active peptides into potent
and selective therapeutic prototypes is a challenge requiring an interplay of chemical synthesis and
biological analysis. Over more than a decade of such collaborative research, unselective peptide hits
exhibiting binding affinity for the cluster of differentiation 36 receptor (CD36) were transformed into
potent and selective azapeptide leads with promising medicinal potential. In the absence of structural
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data for CD36 alone nor in complex with small molecules, lead optimization relied on structure–activity
relationship data obtained from different assays designed to assess the pleiotropic effects of the
receptor. During this research novel methods were conceived for the synthesis of linear and cyclic
azapeptides. Certain azapeptides were shown to reduce inflammation by a mechanism featuring
binding of CD36 and disruption of its interaction with the Toll-like receptor (TLR)-2/6 heterodimer to
subsequently perturb downstream signaling and attenuate the pro-inflammatory cascade. In choroidal
explant models, some azapeptides reduced neovascularization mediated by the TLR-2 heterodimer.
Other CD36-selective azapeptides exhibited cardioprotective effects associated with an increase in
circulating adiponectin levels. This review focuses on the chemistry leading to a better understanding
of the topological requirements for binding and regulating CD36 activity towards the discovery of
novel prototypes for treating cardiovascular, metabolic and immunological conditions.

2. Discussion

2.1. The Cluster of Differentiation 36 Receptor (CD36) Is a Medicinally Relevant Target

CD36 is a transmembrane glycoprotein expressed on platelets, monocytes, macrophages,
hepatocytes, endothelial and several other cell types [1–3]. CD36 is comprised of a single 472-amino
acid chain cross-linked by three disulfide bonds and post-translationally modified by significant
glycosylation and phosphorylation [4]. The extracellular loop of CD36 is relatively large, binds diverse
circulating ligands and is flanked by two transmembrane spanning regions at the N- and C-termini with
short cytosolic domains that are anchored into the membrane by four palmitoylation sites. Functioning
as a class B scavenger receptor, CD36 is involved in the regulation of inflammatory processes, inhibition
of microvascular angiogenesis, transport of oxidized lipoproteins and phospholipids, phagocytosis of
microorganisms and cells, and autophagy [1–7]. CD36 binds to multiple endogenous ligands, including
long chain fatty acids, the extracellular matrix protein thrombospondin 1 (TSP1), oxidative low-density
lipoprotein (oxLDL), apoptotic cells and photoreceptor outer segments. Ligand engagement by CD36
has important implications in cardiovascular biology, including events leading to atherosclerosis,
angiogenesis, diabetic retinopathy and age-related macular degeneration (AMD) [1–3,5–7].

As a translocator of long chain fatty acids, CD36 plays a critical role in cardiac metabolism.
During ischemia-reperfusion injury, myocardial function is altered with increased uptake and oxidation
of fatty acid at the expense of glucose resulting in contractile dysfunction. Myocardial damage
can be mitigated, and cardiomyocyte function ameliorated by inhibition of fatty acid uptake and
mitochondrial oxidation in the myocytes [8,9]. Myocardial ischemia and reperfusion activate the
sympathoadrenal system and catecholamine-induced lipolysis causing increases in the availability
of circulating levels of non-esterified fatty acids driving myocardial fatty acid uptake and oxidation,
which may hinder glucose metabolism, a requirement for normal cardiac function [10]. Implicated in
regulating myocardial non-esterified fatty acid uptake, CD36 regulates both circulating and myocardial
levels of adiponectin, a major cardioprotective adipokine, that interplays with the transcription factor
peroxisome proliferator-activated receptor-γ (PPARγ), which is a key regulator of adiponectin gene
expression [11]. Adiponectin elicits antilipolytic effects and reduces circulating non-esterified fatty
acids [12], which in turn regulates myocardial anti-apoptotic, antioxidant and metabolic functions.

In addition to activity in cardiovascular biology, CD36 displays major roles in innate immunity,
in eliciting reactive oxygen species production and in modulating metabolic homeostasis in immune
cells [13]. As a co-receptor of the Toll-like receptor (TLR)-2/6 heterodimer assembly, CD36 regulates
TLR-2-dependent macrophage-driven inflammation by sustaining TLR-2/6 signaling on the surface
of membranes of mononuclear phagocytes [14–16]. The CD36-TLR-2/6 protein–protein interaction
appears as a promising target for therapeutic intervention to treat retinal inflammation associated with
accumulated mononuclear phagocyte activation, and photoreceptor degeneration neurotoxicity induced
by photo-oxidative stress. In consideration of these pleiotropic biological effects, binding ligands that
dissociated CD36 interaction with the TLR-2 heterodimer offer interesting therapeutic potential.
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2.2. Growth Hormone Releasing Peptide-6 (GHRP-6) Analogues as Lead CD36 Binding Ligands

Several CD36 ligands have demonstrated the capacity to protect and preserve normal cardiac
function [11,12,17]. Synthetic analogues of growth hormone releasing peptide-6 (GHRP-6, H-His-D-Trp-
Ala-Trp-D-Phe-Lys-NH2, 1, CD36 IC50 1.82 µM) have shown promising cardioprotective effects
by binding and regulating CD36 in a mouse model of myocardial ischemia and reperfusion [9].
For example, the GHRP-6 analogue EP80317 (Haic-D-Trp(2-Me)-D-Lys-Trp-D-Phe-Lys-NH2, 2, CD36
IC50 1.11 µM, Haic = 5-amino-1,2,4,5,6,7-hexahydroazepino[3,2,1-hi]indol-4-one-2-carboxylic acid)
exhibited cardioprotective activity, reduced myocardial fatty acid uptake and prevented non-esterified
fatty acid mobilization from adipose tissue [9]. The potential for ligands based on the GHRP-6 structure
to target ischemic cardiomyopathy was however limited due to their lack of receptor selectivity, binding
to both CD36 and the growth hormone secretagogue receptor (so-called ghrelin receptor, GHS-R1a).
Certain azapeptide GHRP-6 analogues have surmounted this limitation, retaining high binding affinity
for CD36 without exhibiting significant GHS-R1a binding affinity (vide infra) [18].

Topographical mapping of the binding hotspot domains of CD36 with a benzophenone alaninyl
(Bpa) hexarelin derivative [Tyr-Bpa-Ala-His-D-(2-Me)Trp-Ala-Trp-D-Phe-Lys-NH2, 3, CD36 IC50

2.08 µM] revealed that the lysine-rich Asn132-Gln177 extracellular domain which interacted with
GHRP-6 ligands overlapped with the oxLDL binding site [19]. Within this region, the positively-charged
side chains of Lys164 and Lys166 have been found to directly contribute to oxLDL ligand binding to
CD36 [20]. Considering the structures of GHRP-6 peptide ligands and the Lys-rich binding domain
of CD36, aromatic–cation interactions were hypothesized to contribute to ligand-receptor binding
affinity [21].

The binding affinity measurements (IC50 values) of peptide ligands for CD36 and the
GHS-R1a receptor (GHS-R1a) were respectively determined by competitive binding assays using
[125I]-radiolabeled photoactivatable Bpa-GHRP-6 derivative 3 as tracer and by a ghrelin binding assay
with [125I]-ghrelin as radiotracer [18,21]. CD36 ligand binding affinity (EC50 and Kd values) has also been
measured using surface plasmon resonance (SPR) analysis on a surface consisting of a peptide-based
self-assembled monolayer (SAM) containing a recombinant His-tagged receptor [22]. Gold-surface-
coated peptide monolayers consisting of 3-mercaptopropionyl-leucinyl-histidinyl-aspartyl-leucinyl-
histidinyl-aspartic acid were functionalized with N′,N′-bis(carboxymethyl)-L-lysine using 1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (HOSu) peptide-based
coupling chemistry. The peptide-functionalized surface enabled immobilization of nitrilotriacetic acid
for copper chelation and binding to recombinant histidine-tagged CD36, which could be reversed
with imidazole treatment. The immobilization of CD36 onto the peptide monolayer provided a
SPR means for screening binding ligands, such as GHRP-6 (1), EP80317 (2), and selected GHRP-6
azapeptides. The relative binding affinity measurements (EC50 values) of the peptide analogues
correlated with CD36-dependent phosphorylation of sarcoma, src-kinases (Lyn/Fyn) in CD36 expressing
J774 macrophages [5]. Moreover, the apparent binding affinity measurements (Kd values) were found
to be consistent (1 µM–70 µM) with those derived from the previously established competitive binding
assays [18,21]. The SPR biosensor platform for studying surface immobilized receptor–ligand binding
interactions may provide additional insight into requirements for selective ligand binding affinity and
downstream biological responses.

2.3. Conception of Azapeptide GHRP-6 Ligands Exhibiting CD36-Selective Binding Affinity

Exhibiting promising cardioprotective activity, the GHRP-6 peptides suffered from a lack of
receptor selectivity. The parent peptide GHRP-6 (1) bound respectively to CD36 and the GHS-R1a
receptor in the low micro- and nanomolar ranges (EC50 values, Table 1). Peptide 1 has been characterized
to adopt a random coil conformation in solution based on circular dichroism spectroscopic analysis
(vide infra) [18], in spite the central D-Trp-L-Ala-L-Trp-D-Phe sequence possessing alternating L- and
D-amino acid pairs, which are commonly found at the central resides of β-turns [23]. Considering that
a preferred turn geometry may be adopted on receptor binding, GHRP-6 analogues that discriminate
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between CD36 and the GHS-R1a receptor were pursued by employing semicarbazide residues as amino
amide surrogates to favor such conformers and improve selective binding affinity. In azapeptides,
semicarbazide residues can favor backbone β-turn geometry and improve metabolic stability [24].
Azapeptide GHRP-6 analogues served to elucidate structural requirements for selective CD36 binding
affinity. Certain azapeptides retained low micromolar CD36 binding affinity, but lost significant
(102-104-fold) binding affinity for the GHS-R1a receptor (Table 1).

Table 1. First generation aza-Growth Hormone Releasing Peptide-6 (GHRP-6) analogues from
aza-amino acid scanning.

Compound GHS-R1a EC50 (M) CD36
EC50 (M)

GHRP-6 (1) 6.08 × 10−9 1.82 × 10−6

[azaPhe2]GHRP-6 (4) 1.61 × 10−5 7.24 × 10−5

[azaTyr2]GHRP-6 (5) 8.53 × 10−6 1.80 × 10−6

[azaLeu3]GHRP-6 (6) 1.20 × 10−6 2.89 × 10−6

[azaGly3]GHRP-6 (7) 8.08 × 10−7 9.61 × 10−6

[azaPhe4]GHRP-6 (8) 2.77 × 10−6 1.34 × 10−6

[azaTyr4]GHRP-6 (9) 1.57 × 10−5 2.80 × 10−5

Aza-GHRP-6 analogues were identified which bound effectively CD36 without any binding
affinity for the GHS-R1a receptor. An aza-amino acid scan was initially performed in which each
residue of the central D-Trp2-Ala3-Trp4 region of GHRP-6 was replaced by aza-residues [18]. Fifteen
azapeptides were synthesized, in which the D-Trp2 and Trp4 residues were respectively substituted
with aromatic aza-amino acids (azaPhe, azaTyr, azaBip, azahPhe and azaNal-1, Bip = p-phenyl-Phe,
hPhe = homo-Phe, Nal = naphthylalanine), and the Ala3 residue was replaced with azaGly and azaLeu
(Figure 1). Although azaTrp analogues were synthesized in solution, the indol-3-yl methyl side chain
was labile under acidic conditions, such that azaGly peptides resulted from exposure of the azaTrp
counterparts to the trifluoroacetic acid (TFA) conditions used for resin cleavage [25]. Examination
of their respective binding affinities revealed that four of the fifteen azapeptide GHRP-6 analogues
(e.g., 5–8) retained micromolar binding affinity for CD36 but exhibited 102-104-fold losses in GHS-R1a
receptor binding (Table 1).
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Figure 1. Aza-scan of GHRP-6

A deeper understanding of the structural requirements for CD36 binding selectivity and affinity
was obtained by performing an alanine scan on five azapeptides (4–8). In the Ala-scan of the GHRP-6
azapeptides, selective substitutions of L- and D-alanine residues throughout the sequence except the
aza-residues enabled study of the importance of side chains on biological activity. So-called IRORI
Kans™ technology was used to prepare twenty-two analogues by split-and-mix parallel combinatorial
synthesis (vide infra). Six aza-GHRP-6 analogues were subsequently identified with improved CD36
selectivity and micromolar range binding affinity (Table 2). Notably, replacement of the N-terminal
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His by Ala resulted typically in a >104-fold loss of binding affinity for the GHRS-R1a receptor without
perturbing CD36 engagement (e.g., 10–12 and 15). Moreover, respective substitutions of L- and D-Ala
for the His1, Trp4 and D-Phe5 residues of [azaLeu3]GHRP-6 (6) provided analogues which maintained
CD36 binding affinity with improved selectivity (e.g., 12–14). Although micromolar affinity to both
the CD36 and GHSR-1a receptors was conserved upon deletion of Lys6 from [azaLeu3]GHRP-6 (6),
further truncation was unfruitful, and replacement of His1 for proline, propionic acid, glycine and
D-alanine, all reduced binding affinity by ~103 for the GHSR-1a receptor, but did not improve CD36
binding affinity (data not shown) [18].

Table 2. Second-generation aza-GHRP-6 analogues from alanine scanning.

Compound GHS-R1a EC50 (M) CD36 EC50 (M)

[Ala1, azaPhe2]GHRP-6 (10) » 10−5 4.27 × 10−5

[Ala1, azaTyr2]GHRP-6 (11) » 10−5 3.69 × 10−5

[Ala1, azaLeu3]GHRP-6 (12) 1.2×10−5 6.66 × 10−6

[azaLeu3, Ala4]GHRP-6 (13) » 10−5 2.59 × 10−5

[azaLeu3, d-Ala5]GHRP-6 (14) » 10−5 9.48 × 10−6

[Ala1, azaPhe4]GHRP-6 (15) » 10−5 7.58 × 10−6

2.4. Expanding Aza-GHRP-6 Analogue Diversity by azaGly Alkylation

In the synthesis of the aza-GHRP-6 analogues, the application of N-Fmoc-aza-amino acid chlorides
in split-and-mix chemistry was initially used to prepare azapeptide libraries [18]. The activation of
N’-alkyl 9-fluorenylmethyl carbazates with phosgene gave reactive N-Fmoc-aza-amino acid chlorides
(e.g., 19, Scheme 1) for introduction into peptides linked to solid support [25]. Employing resin
separated into solvent permeable plastic mesh containers (IRORI Kans™), the N-Fmoc-aza-amino
acid chlorides were reacted in parallel to synthesize azapeptides in sufficient purities and yields
for biological studies. Using Fmoc-based solid-phase peptide synthesis (SPPS) and a combinatorial
split-and-mix approach [26], a library of about fifty aza-GHRP-6 derivatives was prepared to examine
CD36 binding affinity, selectivity and activity [18].
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Application of N-Fmoc-aza-amino acid chlorides necessitated solution-phase synthesis of the
N’-alkyl fluoren-9-ylmethyl carbazates (e.g., 18) [25], typically by reductive amination procedures
using Fmoc-hydrazide (17) and various carbonyl compounds. This synthetic chemistry denied
access to certain aza-residues, such as aza-propargylglycine (azaPra), which would offer potential
for synthesizing azapeptide “libraries from libraries” using, for example, the copper-catalyzed azide
alkyne cycloaddition reaction (“click chemistry”). The installation of a broader diversity of aza-residues
was subsequently achieved using a “submonomer” method featuring the alkylation and arylation of
an aza-glycine semicarbazone [27], as reviewed elsewhere [28]. Strides in the discovery of selective
CD36 azapeptide ligands were made employing this method to construct analogues for deciphering
the structural and conformational requirements for activity.

In an example of the “submonomer” method (Scheme 2) [27], benzaldehyde hydrazone was
activated with p-nitrophenyl chloroformate as a carbonyl donor and coupled to the resin-bound
peptide to provide aza-glycine semicarbazone 26. The significant pKa differences of the semicarbazone,
urea, amide and carbamate NH in the azaGly-peptide sequence (e.g., 26) permitted chemoselective
deprotonation and alkylation of the aza-residue semicarbazone to add various side chains, such as
benzyl to give azaPhe-peptide 27. Azapeptides (e.g., 8) were isolated by HPLC after a sequence
featuring orthogonal deprotection of the semicarbazone (e.g., 27) using hydroxylamine hydrochloride in
pyridine, amino acylation of the semicarbazide (e.g., 22), peptide elongation, followed by resin cleavage
and deprotection. Employing such methods, [azaPhe4]GHRP-6 derivatives were synthesized using a
variety of substituted benzyl halides in the semicarbazone alkylation step and their structure–activity
relationships (SAR) were examined in vitro. Moreover, the submonomer approach gave access to a
broader diversity of azapeptides by arylation, Michael addition and conjugate addition-elimination
chemistries (vide infra) [28].
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2.5. Divergent Effects of Aza-GHRP-6 Analogues on Microvascular Sprouting Reveals the Relevance of azaPhe4

Ring Substitution

Divergent effects of aza-GHRP-6 analogues on choroidal neovascularization were observed in
an ex vivo microvascular sprouting assay using mouse choroid explants. For example, although
[azaTyr4]GHRP-6 (9) and [Ala1, azaPhe4]GHRP-6 (15) displayed similar receptor binding affinities
and CD spectra with curve shapes indicative of β-turn conformations [18], aza-tyrosine analogue 9
exhibited anti-angiogenic activity and aza-phenylalanine analogue 15 had limited if not a slightly
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pro-angiogenic effect on the choroidal explants. Quantification of microvascular sprouting after 4-day
treatment with [azaTyr4]GHRP-6 (9) revealed 17% choroid sprouting, validating its antiangiogenic
properties compared to the control, vehicle condition which produced 53% neovascularization. On the
other hand, [Ala1, azaPhe4]-GHRP-6 (15), which exhibited high binding affinity and CD36 selectivity,
increased slightly neovascularization compared to the control, likely due to the activation of Src
kinase recruitment and a vascular endothelial growth factor (VEGF)-driven protein kinase B (Akt)
phosphorylation pathway [7]. Azapeptide ligands of CD36 which lacked GHS-R1a receptor binding
affinity were shown to induce different biological responses, contingent upon the structure and location
of the aza-amino acid residue. The divergent effects on angiogenesis were investigated further using
[azaPhe4]-GHRP-6 analogues possessing the parent His1 residue, an Ala1 substitution, and diverse
side-chain modifications at the azaPhe4 residue [29].

2.6. Effect of His1 and azaPhe4 Substitutions on GHRP-6 Derivative Binding Affinity and Bioactivity

Intrigued by the similar β-turn CD spectra and divergent effects on angiogenesis of lead
azaPhe4-GHRP-6 analogues, we synthesized a library of derivatives using the submonomer approach
to explore further the importance of the aromatic ring of the aza-residue [29]. Aromatic substituents
were installed to study the influences of electronic density and χ-dihedral angle side chain geometry
on activity (Figure 2). A subset of the substituted aza-Phe4 analogues were synthesized with alanine
{e.g., [Ala1, azaPhe4]GHRP-6 (15) series 28} in lieu of histidine {e.g., [azaPhe4]GHRP-6 (8) series 29} to
examine the influence of the N-terminal residue.
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Nitric oxide (NO) production by immune cells such as monocytes and macrophages has been
considered an index of the inflammatory process in response to stimuli such as TLR agonists,
proinflammatory cytokines and interferon γ. Azapeptide analogues were examined for their ability to
reduce NO production in macrophages activated with the TLR-2 agonist (R)-fibroblast-stimulating
lipopeptide (R-FSL-1). The physiological mediator NO is a marker of inflammation that can be readily
trapped to provide a measurable fluorescent adduct [30]. The reduction of NO release from activated
macrophages was considered a prerequisite indicator of CD36-mediated activity and used to select
lead candidates for receptor binding affinity and angiogenesis studies in a microvascular sprouting
assay using choroid explants. Among the twenty-five azaPhe analogues tested, sixteen decreased
NO production and the remaining exhibited no significant effect. Notably, [azaPhe4]-GHRP-6 (8)
and [Ala1, azaPhe4]-GHRP-6 (15) showed respectively no effect and the most significant ability to



Biomedicines 2020, 8, 241 8 of 25

decrease NO production, but neither influenced vascular growth in the angiogenesis assay [29].
The CD36 binding affinities of the sixteen relatively similar azaPhe4 analogues that decreased NO
production differed by about 17-fold (1.65 µM–28.2 µM); however, contingent on aromatic substituent
the [azaPhe4]-GHRP-6 analogues exhibited divergent effects on choroidal neovascularization.

Anti-angiogenic activity was demonstrated by [azaTyr4]- and [aza(4-F)Phe4]-GHRP-6 (9 and 29b).
Moreover, anti-angiogenic trends were exhibited by analogues with other 4-position electronegative
groups [29d (4-Br) and 29f (4-MeO)]. In contrast, [aza(4-n-PrO)Phe4]-GHRP-6 (29h) increased
neovascularization. The subtle effects of the N-terminal residue were indicated further by the
anti- and pro-angiogenic trends exhibited respectively by [Ala1, aza(4-Cl)Phe4]-GHRP-6 (28c) and
[aza(4-Cl)Phe4]-GHRP-6 (29c). In contrast to the relatively high binding affinity and anti-angiogenic
effects of [azaTyr4]GHRP-6 (9), [aza(3-HO)Phe4]GHRP-6 (29n) exhibited about 15-fold lower CD36
binding affinity and no effect on microvascular growth.

2.7. Further Probing of the azaPhe4 Residue Using aza-arylGly4- and aza-1,2,3-triazole-3-Ala4-GHRP-6 Analogues

Side chain diversity was expanded beyond the benzyl substituents in the [azaPhe4]GHRP-6
analogues by synthetic approaches that delivered respectively aza-arylglycine and aza-1-aryl-2,3-
triazole-3-alanine residues (e.g., 30–34). This chemistry featured respectively Cu-catalyzed N-arylation
of azaGly semicarbazones [31], and azide-alkyne cycloadditions of aza-propargylglycine (azaPra)
residues (Figure 3) [32]. In contrast to azaTrp residues which were acid labile and decomposed to
azaGly peptides (vide supra) [25], aza-indolylglycine 31 was stable to the TFA conditions used to
cleave azapeptides from the Rink amide resin. The CD36 binding affinities of the aza-arylglycine and
aza-1-aryl-2,3-triazole-3-alanine GHRP-6 analogues were comparable to GHRP-6 (1) in the surface
plasmon resonance (SPR) binding assay [22]. For example, [aza-1-aryl-2,3-triazole-3-alanine4]GHRP-6
analogues 33 and 34 exhibited Kd values around 2-10-fold lower than GHRP-6 (1) in the SPR binding
assay (unpublished results).
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2.8. Exploring Potential Salt–Bridge Interactions Between CD36 and azaGlu-GHRP-6 Analogues

On engagement of CD36, GHRP-6 analogues such as hexarelin (38, His-d-(2-Me)Trp-Ala-
Trp-d-Phe-Lys-NH2) and azapeptide derivatives bind the Asn132–Glu177 sequence, which overlaps
with the binding site for oxLDL [19]. In this region, three conserved lysine residues (Lys163, Lys164

and Lys166) contribute to binding of oxLDL [20]. Hypothesizing that the same lysine residues may
participate in GHRP-6 binding by cationic-π interactions with the d-Trp2, Trp4, d-Phe5 aromatic
residues, a series of aza-glutamate analogues were synthesized to examine the potential of salt–bridge
interactions to improve receptor binding [21]. Conjugate and SN2’ additions of azaGly semicarbazone
peptides (e.g., 26) onto Michael acceptors and allylic acetates were respectively achieved using
tert-butyliminotri-(pyrrolidino)phospharane (BTPP) as base to install different azaGlu analogues at the
Ala3 (e.g., 35) and Trp4 (e.g., 36 and 37) positions of GHRP-6 (Figure 4).
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At the Ala3 position, comparable CD36 binding affinities to the GHRP-6 analogue standard
hexarelin (38, 2.3 µM) were demonstrated by [aza-(cyanoethyl)Gly3]GHRP-6 (35b) and [aza-(ethyl
diethylphosphoryl)Gly3]GHRP-6 (35e). In contrast, [azaGlu3]GHRP-6 (35a) and [aza-(ethyl
methylphosphoryl)Gly3]GHRP-6 (35c) bound with ~10-fold lower affinity, and [aza-(ethyl
dimethylphosphoryl)Gly3]GHRP-6 (35d) exhibited > 500-lower CD36 binding affinity. At the Trp4

position, compared to hexarelin (38), less significant decreases in CD36 binding affinity were
exhibited by azaGlu analogues {e.g., [azaGlu4]GHRP-6 (36a, ~5-fold) and [aza-(E/Z)-(2-carboxy-
p-nitrocinnamyl)Gly4]GHRP-6 (37a, ~8-fold)} compared to non-ionic aliphatic aza-residues: [aza-(ethyl
methylphosphoryl)Gly4]- (36b), [aza-(ethyl diethylphosphoryl)Gly4]- (36d) and [aza-(E/Z)-(2-cyano-
p-methoxycinnamyl)Gly4]GHRP-6 (37b) all showing >103-fold drops in binding affinity. The relatively
better binding affinity of the azaGlu4 analogues may be due to potential to engage in salt bridges with
CD36 [21].

2.9. Aza-Lysine GHRP-6 Analogues

Azapeptides with basic side chains were pursued with an interest to replace the C-terminal Lys
residue in GHRP-6 (Scheme 3). Aza-lysine GHRP-6 analogues were synthesized using two different
submonomer procedures. Alkylation of semicarbazones (e.g., 39) was used to install aza-amino
acids with chloroalkyl and propargyl side chains [33–35]. Chloride 40 was employed in different SN2
displacement reactions with a variety of amines and sodium azide to prepare various aza-ornithine,
aza-arginine and aza-lysine derivatives (e.g., 44–47) [33,34]. Alternatively, aza-propargylglycine
(azaPra) residues 42 were employed in copper-catalyzed A3-coupling reactions, between alkyne,
aldehyde, and amine components, to prepare aminobutynylglycine peptides (e.g., 48–50) [35]. In the
A3-coupling, the amine and aldehyde components combine to form an imine, which is attacked by a
metal acetylide nucleophile formed from the activation of the alkyne by the copper catalyst [36].
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Combined, these two methods provided over thirty [azaLys]GHRP-6 analogues with various
substituents on the amino group, different degrees of side chain saturation and chain length, as well as
azaLys residues placed respectively at the Ala3, Trp4, d-Phe5, and Lys6 positions (Figure 5). Analysis
by SPR of select members of the series revealed that [azaLys4]GHRP-6 analogues (e.g., 49f–g,k–p)
exhibited micromolar CD36 binding affinities (unpublished results). Notably, [azaLys6]GHRP-6 (47a)
was found to be inactive and used subsequently as a negative control in studies of azapeptide CD36
modulator activity [29]. Moreover, [aza-(N,N-diallylaminobut-2-ynyl)Gly4]-GHRP-6 (49f) exhibited
therapeutic potential in a model of atherosclerosis (vide infra). In addition, intramolecular variations
of the A3-coupling reaction were developed to access cyclic azapeptide derivatives of GHRP-6 with
promising results [37–39].
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2.10. Unprecedented Binding Affinity and Activity Achieved by Azacyclopeptide-GHRP-6 Analogue Synthesis
by A3-Macrocyclization

Macrocyclization has been widely employed for enhancing the metabolic stability and increasing
receptor binding affinity of peptide ligands, due in part to the stabilization of active conformers [40].
Considering the relevance of an active β-turn conformer in linear azapeptide CD36 modulators such
as [azaTyr4]GHRP-6 (9) [18], cyclic analogues were pursued to increase conformational rigidity and
improve binding affinity by minimizing the energy of folding for target engagement [40]. Macrocyclic
aza-GHRP-6 analogues were synthesized using an intramolecular variation of the A3-coupling
reaction [37]. The cyclic aza-GHRP-6 analogues were cross-linked using formaldehyde as a linchpin in
a copper-catalyzed macrocyclization between the side chains of azaPra and Nε-(alkyl)Lys residues.
The so-called A3-macrocyclization was performed following azaPra introduction as well as after
azapeptide linear sequence completion (Scheme 4).
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Different ring-sized aza-GHRP-6 macrocycles (e.g., 54–57, Figure 6) were synthesized by confining
the N ε-(alkyl)Lys to the C-terminus and moving the azaPra residue systematically towards the
N-terminus of the peptide sequence. Diverse azacyclopeptides (e.g., 58a–f) were synthesized by
A3-macrocyclizations on linear substrates with the N ε-(alkyl)Lys residue in other locations, as well
as with different alkyl groups on the Nε-amine. A systematic replacement of key residues in
azacyclopeptide 57c by alanine was accomplished by an approach featuring installation of the azaPra
residue using the corresponding Fmoc-aza-propargylglycine acid chloride [38]. Moreover, replacement
of the azaPra residue in azacyclopeptides 56 and 57c with R- and S-propargylglycine residues was
achieved using the A3-macrocyclization to provide configurationally stable cyclic peptides (R)- and
(S)-59 and 60 [39].

Biological screening demonstrated that azacyclopeptide GHRP-6 analogues 56 and 57a–d and
cyclic peptide counterparts (R)- and (S)-59 and 60, all could modulate NO overproduction in murine
RAW-264.7 macrophage cells activated with R-FSL-1 as a TLR-2 agonist. Relative to linear analogues
[aza-Tyr4]-GHRP-6 (9) [18] and [N-Ala-azaPra1, Ne-(allyl)Lys6]-GHRP-6, which exhibited respectively
similar and no influence at 10–6 M and 10–7 M, cyclic azapeptides 57b–d caused significant inhibition of
R-FSL-1-induced NO production at 10–7 M [37]. Cyclic peptides 59 and 60 reduced NO overproduction
with less than half the activity as azapeptide counterparts 56 and 57c with the (S)-isomers exhibiting a
stronger influence than the (R)-counterparts [39].

Azacyclopeptide GHRP-6 analogue 57c exhibited unprecedented CD36 binding affinity (IC50

0.08 µM) in the competitive binding assay against photoactivatable [125I]-Tyr-Bpa-Ala-hexarelin (3)
as radiotracer [37]. Azacyclopeptides 56, 57b and 57d also exhibited relatively high CD36 binding
affinities (IC50 0.24 µM, 1.03 µM, 0.49 µM). Relative to their azapeptide counterparts 56 and 57c,
(S)-cyclic peptides (S)-59 and (S)-60 exhibited respectively > 6- and 8-fold reduced binding affinities,
and (R)-cyclic peptides (R)-59 and (R)-60 had > 13-fold lower binding affinities.

In sum, cyclization provided azacyclopeptide GHRP-6 analogues with greater potency in reducing
TLR-2 agonist-induced NO overproduction and higher binding affinities than linear counterparts
reinforcing the hypothesis of an active turn geometry. Azacyclopeptides such as 56 and 57c are
currently under investigation in in vivo models. Moreover, cyclic azapeptides and their cyclic peptide
counterparts have served as tools for understanding the biologically active conformer as discussed in
detail below.
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2.11. Exploration of Differences between Semicarbazides and N-Aminosulfamides Using Azasulfurylpeptides

Azasulfurylpeptides feature an N-aminosulfamide residue as an amino amide surrogate with
potentially greater metabolic stability. N-Aminosulfamide residues differ from their semicarbazide
counterparts by the presence of a sulfuryl (SO2) group which adopts tetrahedral geometry and offers
two Lewis base sites in contrast to the planar carbonyl group (CO). Compared to azapeptides in
which the semicarbazide situates at the central residues of β-turns, model azasulfurylpeptides have
been observed to adopt γ-turn conformers in X-ray crystallographic analyses [41]. The replacement
of a semicarbazide residue by an N-aminosulfamide counterpart was performed to examine subtle
structural and conformational differences on activity.

A diversity-oriented synthesis of azasulfurylpeptide GHRP-6 analogues 65 was conceived to
prepare a set of novel CD36 modulators (Scheme 5) [42]. Protection of the sulfamide nitrogen with
an Fmoc group enabled coupling of azasulfurylglycine (AsG) tripeptide 61 onto resin. After Fmoc
removal, the azasulfurylglycine (AsG) residue of resin 63 was alkylated with various arylmethyl
bromides using tetraethylammonium hydroxide as base in THF. Elongation of azasulfurylpeptides
64 and resin cleavage gave four azasulfurylphenylalanine4-GHRP-6 analogues (e.g., 65a–d) and
azasulfuryl-2-naphthylalanine4-GHRP-6 65e.
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Scheme 5. Synthesis of azasulfuryl-GHRP-6 analogues 65a–e.

In TLR-2 agonist-stimulated macrophage cells, [(4-fluoro)azasulfurylphenylalaninyl4]-GHRP-6
{[(4-F)AsF4]-GHRP-6, 65c} exhibited significant ability to reduce NO overproduction [42]. Moreover,
in the competition binding assay against [125I]-Tyr-Bpa-Ala-hexarelin (3), [(4-F)AsF4]-GHRP-6 (65c, IC50

2.53 µM) had respectively 1.3-fold lower and 2.4-fold higher CD36 binding affinities relative to the
semicarbazide counterparts, [azaTyr4]- and [aza(4-F)Phe4]-GHRP-6 (9 and 29b). The subtle switch
from a carbonyl group to a sulfuryl moiety caused relatively little change on ability to mediate
a TLR-2-triggered inflammatory response and on binding affinity; however, as seen earlier with
[azaPhe4]-GHRP-6 analogues possessing different aromatic substituents [29], the switch from an
azapeptide to an azasulfurylpeptide had a significant influence on neovascularization. In the mouse
choroidal explant model in which [azaTyr4]- and [aza(4-F)Phe4]-GHRP-6 (9 and 29b) had exhibited
significant anti-angiogenic activity, azasulfuryl-GHRP-6 analogue 65c featured no anti-angiogenic
activity (Figure 7). [42].
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Figure 7. Angiogenic effects of cluster of differentiation 36 receptor (CD36) ligands in mouse choroidal
explant model. (A): Representative microvascular sprouting from Matrigel-embedded choroidal
explants treated 24h with CD36 ligands (10-6 M). (B): Histogram represents the quantification of the
variation of choroidal sprouting areas according to the ratio (T24-T0)/T0. * p < 0.05 vs. vehicle.
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2.12. Probing for Turn Conformations Using Aza-Proline and Aza-Pipecolic Acid Mimics

Application of aza-residues had revealed the likelihood of an active turn conformer for the
biological activity of the GHRP-6 analogues [18]. Moreover, the subtle change of a semicarbazide to
an N-aminosulfamide residue indicated that turn geometry may influence angiogenic activity [42].
Attempting to probe the turn conformation in more detail, a series of analogues were prepared using
covalent constraint by way of aza-proline, aza-pipecolate, lactam and aza-lactam residues.

Aza-proline (azaPro) and aza-pipecolic acid (azaPip) analogues were introduced into GHRP-6
in the search for selective CD36 receptor ligands [18,43]. In contrast to proline and pipecolate
residues, which often exist in peptides with their N-terminal amide in an equilibrium between cis-
and trans-isomers and a typically favored trans amide, electrostatic repulsion between the aza-residue
nitrogen and the amide carbonyl oxygen disfavor the trans-isomer to afford a dominant cis-isomer,
as observed by NMR spectroscopy and X-ray crystallography [44–51]. The combination of the
covalent and electronic constraints of the azaPro and azaPip residues can induce type VI β-turn
geometry [44–51]. The azaPro analogues were introduced by acylation of peptide on resin using
the corresponding Fmoc protected aza-amino acid chloride 68, which was synthesized by a route
featuring a series of protecting group manipulations and alkylation of N-Boc-N’-Cbz-hydrazine (66)
with 1,3-dibromopropane (Scheme 6) [52].
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Systematic replacement of each residue in the d-Trp2-Ala3-Trp4-d-Phe5 region of GHRP-6 by
aza-proline (azaPro scan) afforded azapeptides 70–73. Among the four, only replacement of the Ala
residue with azaPro gave an analogue that retained micromolar CD36 receptor binding affinity. In the
competition assay against [125I]-Tyr-Bpa-Ala-hexarelin (3), [azaPro3]-GHRP-6 (71, Figure 8) exhibited
CD36 binding affinity (IC50 9.81 µM) [18]. In addition, azaPro3-peptide 71 was CD36 selective and had
no binding affinity for the GHS-R1a receptor.

The related aza-pipecolic acid derivatives were synthesized by a route featuring pericyclic
chemistry on azopeptides (e.g., 76a and 76b, Scheme 7) [43]. Aza-pipecolate peptides 77 were prepared
by coupling N-Fmoc-aza-glycine N-hydroxysuccinimide ester (74) to peptide resin, oxidation of the azaGly
residue using N-bromosuccinimide (NBS) to give the corresponding azo-glycine-peptide 76, followed by
[4 + 2] cycloaddition reactions with butadiene and 2,3-dimethylbutadiene [43]. After elongation of 77 and
resin cleavage with concomitant protecting group removal, ∆4-dehydro-azaPip derivatives 78–80 were
isolated. Hydrogenation of 78 and 80 with palladium-on-carbon provided access to the corresponding
saturated azaPip analogues 81 and 82. After treatment with a TLR-2 agonist, four of the five [azaPip3]-
and [azaPip4]GHRP-6 derivatives (78 and 80–82) decreased NO production in macrophages with
activities similar to that of [azaTyr4]GHRP-6 (9). On the other hand, [(4,5-dimethyl-∆4)azaPip3]GHRP-6
(79) was inactive [43] indicating that the steric bulk of the additional methyl groups interfered likely
with receptor engagement.



Biomedicines 2020, 8, 241 15 of 25

Biomedicines 2020, 8, x FOR PEER REVIEW 14 of 25 

Application of aza-residues had revealed the likelihood of an active turn conformer for the 424 
biological activity of the GHRP-6 analogues [18]. Moreover, the subtle change of a semicarbazide to 425 
an N-aminosulfamide residue indicated that turn geometry may influence angiogenic activity [42]. 426 
Attempting to probe the turn conformation in more detail, a series of analogues were prepared using 427 
covalent constraint by way of aza-proline, aza-pipecolate, lactam and aza-lactam residues.  428 

Aza-proline (azaPro) and aza-pipecolic acid (azaPip) analogues were introduced into GHRP-6 429 
in the search for selective CD36 receptor ligands [18,43]. In contrast to proline and pipecolate residues, 430 
which often exist in peptides with their N-terminal amide in an equilibrium between cis- and trans-431 
isomers and a typically favored trans amide, electrostatic repulsion between the aza-residue nitrogen 432 
and the amide carbonyl oxygen disfavor the trans-isomer to afford a dominant cis-isomer, as observed 433 
by NMR spectroscopy and X-ray crystallography [44–51]. The combination of the covalent and 434 
electronic constraints of the azaPro and azaPip residues can induce type VI -turn geometry [44–51]. 435 
The azaPro analogues were introduced by acylation of peptide on resin using the corresponding 436 
Fmoc protected aza-amino acid chloride 68, which was synthesized by a route featuring a series of 437 
protecting group manipulations and alkylation of N-Boc-N’-Cbz-hydrazine (66) with 1,3-438 
dibromopropane (Scheme 6) [52].  439 

 440 
Scheme 6. Synthesis of azaproline-GHRP-6 analogues 70–73. 441 

Systematic replacement of each residue in the D-Trp2-Ala3-Trp4-D-Phe5 region of GHRP-6 by aza-442 
proline (azaPro scan) afforded azapeptides 70–73. Among the four, only replacement of the Ala 443 
residue with azaPro gave an analogue that retained micromolar CD36 receptor binding affinity. In 444 
the competition assay against [125I]-Tyr-Bpa-Ala-hexarelin (3), [azaPro3]-GHRP-6 (71, Figure 8) 445 
exhibited CD36 binding affinity (IC50 9.81 M) [18]. In addition, azaPro3-peptide 71 was CD36 446 
selective and had no binding affinity for the GHS-R1a receptor.  447 

 448 
Scheme 7. Synthesis of aza-pipecolate-GHRP-6 analogues 78-82. 449 

The related aza-pipecolic acid derivatives were synthesized by a route featuring pericyclic 450 
chemistry on azopeptides (e.g., 76a and 76b, Scheme 7) [43]. Aza-pipecolate peptides 77 were 451 

Scheme 7. Synthesis of aza-pipecolate-GHRP-6 analogues 78-82.Biomedicines 2020, 8, x FOR PEER REVIEW 16 of 25 

 475 
Figure 8. Aza-proline and aza-pipecolate GHPR-6 analogues 70–73 and 78–82. 476 

Furthermore, the aza-variants of the -amino -lactam, so called N-amino-imidazolidin-2-one 477 
(Aid) residues were introduced into GHPR-6 analogues (e.g., 91d, Figure 9) by a sequence featuring 478 
alkylation of semicarbazone 39 with 1,2-dibromoethane, liberation of semicarbazide 90 with 479 
hydroxylamine in pyridine, peptide elongation and resin cleavage (Scheme 9) [57]. In model peptides, 480 
Aid residues have been shown by NMR spectroscopy and X-ray crystallography to adopt the i + 1 481 
position of well-defined, compact -turns possessing intramolecular ten-member hydrogen bonds 482 
within types II and II’ geometry contingent on ring puckering [58].  483 

 484 
Scheme 9. Synthesis of Aid-GHRP-6 analogues 91. 485 

Figure 8. Aza-proline and aza-pipecolate GHPR-6 analogues 70–73 and 78–82.

2.13. Probing for Turn Conformations Using Lactam and Aza-Lactam Residues

The application of a covalent bridge between the N-terminal residue side chain and the amine of the
neighboring C-terminal residue in a lactam has been used with success in constraining peptides into rigid
geometry, such as β-turn conformations, since the pioneering studies of the Merck laboratory [53–55].
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Inspired by such studies, lactam analogues of GHRP-6 were prepared to restrict conformational
mobility and increase CD36 selectivity and binding affinity. α-Amino and β-amino γ-lactams (Agl and
Bgl) of both R- and S-configuration were introduced into the GHRP-6 peptide sequence by approaches
featuring N-alkylation of peptide on resin using six- and five-membered cyclic sulfamidates 83 and 84,
respectively, followed by annulation under microwave heating (Scheme 8) [56].
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Furthermore, the aza-variants of theα-aminoγ-lactam, so called N-amino-imidazolidin-2-one (Aid)
residues were introduced into GHPR-6 analogues (e.g., 91d, Figure 9) by a sequence featuring alkylation
of semicarbazone 39 with 1,2-dibromoethane, liberation of semicarbazide 90 with hydroxylamine in
pyridine, peptide elongation and resin cleavage (Scheme 9) [57]. In model peptides, Aid residues
have been shown by NMR spectroscopy and X-ray crystallography to adopt the i + 1 position of
well-defined, compact β-turns possessing intramolecular ten-member hydrogen bonds within types II
and II’ geometry contingent on ring puckering [58].
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Systematic replacement of the first five amino acids of the GHRP-6 sequence with (R)- and (S)-Agl
and Bgl, as well as Aid residues provided a total of twenty-six (aza-)lactam analogues [e.g., (S)- 87b,
(S)-87c, (R)-88 and 91d, Figure 9] [56,57]. Examination of CD36 and GHS-R1a binding affinities revealed
a number of structure–activity relationships [56]. For example, except for the case of [(S)-Agl2]-GHRP-6
[(S)- 87b] which retained CD36 selectivity (13.4 µM), replacements of the D- and L-Trp residues with
lactams diminished significantly binding affinity especially for the ghrelin receptor, likely due to
the loss of the aromatic side chain. Among the selective CD36 ligands, the notable binding affinity
of [(S)-Agl3]-GHRP-6 [(S)-87c, 7.45 µM] and [(R)-Bgl3]-GHRP-6 [(R)- 88c, 21.1 µM] indicated that a
turn conformer about the Ala3 residue may favor receptor engagement, because complementary bent
structures may be achieved by Agl and Bgl residues of opposite stereochemistry. Finally, replacement
of D-Phe5 with (S)-Agl and (R)- and (S)-Bgl provided GHRP-6 analogues which bound selectively
CD36 (21.4 µM–94.0 µM) [56].

In summary, the application of covalent constraint employing azaPro, azaPip, Agl, Bgl and
Aid residues added support to conclude that an active turn conformer existed within the central
residues of the hexapeptide. In general, replacement of Ala3 by these covalent constraining residues
gave GHRP-6 analogues that retained some activity and binding affinity. The loss of aromatic side
chains upon incorporation at the D-Trp, Trp and D-Phe residues may have likely mitigated beneficial
conformational effects.

2.14. Cardioprotective Effects of [Ala1, azaPhe4]-GHRP-6 (15)

The biomedical potential of specific azapeptide analogues has been further examined in mouse
models featuring both myocardial and subretinal inflammation. Examples of these ongoing studies are
presented using [azaTyr4]-GHRP-6 (9) and [Ala1, azaPhe4]-GHRP-6 (15). Azapeptides 9 and 15 have
been respectively examined in models of ischemia-reperfusion injury and subretinal inflammation
induced by exposure to blue-light.

CD36-selective aza-GHRP-6 ligands have exhibited beneficial cardioprotective effects in decreasing
myocardial injury [59,60]. In an examination of the release of adiponectin promoted by CD36 ligands
during myocardial ischemia and reperfusion, [Ala1, azaPhe4]-GHRP-6 (15) was found to exert
cardioprotective effects against myocardial damage and dysfunction following transient left coronary
artery ligation in mice [60]. Pretreatment of mice with azapeptide 15 reduced myocardial damage and
plasma cardiac troponin I levels 48 h after reperfusion relative to untreated animals. A single dose of
aza-phenylalanine analogue 15 before reperfusion resulted in reduction in injury due to myocardial
ischemia and reperfusion (Figure 10).

The effects of 15 were shown to be CD36 dependent; azapeptide treatment did not reduce injury in
CD36-deficient mice. Treatment with azapeptide 15 improved myocardial function without significant
change of heart rate as determined by real-time volume conductance and pressure-recording analyses.
Moreover, plasma levels of adiponectin were transiently elevated and myocardial fatty acid uptake
and non-esterified fatty acid mobilization were reduced by treatment with azapeptide 15. Increases
in adipose mRNA levels of PPARγ targeted genes (e.g., fatty acid transporter protein 1 (Fatp1) and
phosphoenolpyruvate carboxykinase 1 (Pck1)) were observed following treatment with azapeptide
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15 in CD36+/+ mice. Mice treated with azapeptide 15 and subjected to myocardial ischemia and
reperfusion exhibited a small but significant reduction of mitochondrial-derived reactive oxygen
species in saponin-permeabilized cardiomyocyte bundles, preservation of aconitase activity, augmented
cyclooxygenase-2 (COX-2) expression and increased AMP-activated protein kinase (AMPK), Akt,
and acetyl-CoA carboxylase (ACC) phosphorylation, as well as reduced cytosolic cytochrome c
release and caspase 3 activity. The role of adiponectin in sustaining the cardioprotective effect of
azapeptide 15 after myocardial ischemia and reperfusion was further delineated by the annulation of
restorative effects in the presence of an anti-adiponectin neutralizing antibody. In sum, treatment with
[Ala1, azaPhe4]-GHRP-6 (15) enhanced the cardioprotective effect of adiponectin in a CD36-dependent
manner to prevent injury in induced murine models [60]. Selective azapeptide CD36 ligands
offer beneficial means for treating myocardial ischemia and reperfusion induced injury and related
cardiometabolic and immunological disorders.Biomedicines 2020, 8, x FOR PEER REVIEW 18 of 25 
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Figure 10. (A) Representative photomicrographs of midventricular left ventricle (LV) sections of a
triphenyltetrazolium chloride–stained slice from the LV of CD36+/+ mice showing the infarct area (IA)
on the anterior section. Scale bars, 1 mm. (B) Bar graphs of the percentages of area at risk (AAR)/LV,
IA/LV, and IA/AAR in CD36+/+ mice after 48 h of reperfusion. (C) Plasma cardiac troponin I (cTnI)
levels in CD36+/+ mice (n = 8–12). Data are means ± SEM of 6–8 mice/treatment group. ** p < 0.01,
*** p < 0.001 vs. vehicle.

In the course of review, a publication in press was reported in which [aza-(N,N-diallylaminobut-
2-ynyl)Gly4]-GHRP-6 (49f) was shown to diminish aortic lesion progression and reduce lesions in the
aortic sinus of atherosclerotic mice below pre-existing levels [61]. Moreover, the effects of azapeptide
49f were associated with a relative increase of M2-like macrophages in lesions and reduced systemic
inflammation [61].

2.15. Mitigation of Subretinal Macrophage-Driven Inflammation Using [azaTyr4]GHRP-6 (9)

The CD36-selective modulator [azaTyr4]GHRP-6 (9) exhibited cytoprotective effects and preserved
retinal function under photooxidative stress conditions simulating chronic inflammation [62].
Azapeptide 9 reduced proinflammatory cytokine levels and mononuclear phagocyte recruitment in
wild-type (WT, C57BL6) mice exposed to blue LED-light for five days at an illuminance of 6000 lux
(Figure 11). A mechanistic study of the modulation of the immune response was performed using
fluorescent antibody for ionized calcium binding adapter molecule 1 (IBA-1) and revealed that
subretinal-activated mononuclear phagocyte accumulation was reduced by azapeptide 9 in WT
mice [62].
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membranes of cultured mononuclear phagocytes. Aza-tyrosine analogue 9 attenuated the R-FSL1-
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heterodimer complex by azapeptide 9 resulted in alteration of the downstream signaling of the 
activated TLR-2 heterodimer as observed in the photo-oxidative stress-triggered pro-inflammatory 
cascade [62,63]. Consequently, western blot analysis indicated that treatment with 9 altered the TLR-
2-signaling pathway with reduction of the phosphorylation of TLR-2-induced downstream signals 
(e.g., interleukin-1 receptor-associated kinase-4 (IRAK4), nuclear factor-kappa B (NF-κB), c-Jun N-
terminal kinase (JNK) and the P38 mitogen-activated protein kinase (P38 MAPK)).  

As a co-receptor of TLR-2, CD36 contributes in the activation of activator protein 1 (AP-1) 
triggering gene transcription of proinflammatory cytokines, primarily by stimulating JNK and P38 
activity. In isolated bone marrow-derived mononuclear phagocytes, which were isolated from 
femurs and tibias of 8-12-week-old C57BL/6 mice, azapeptide 9 decreased AP-1 activation by 
inhibiting JNK and P38 MAPK phosphorylation. Abrogation of inflammation was found to result in 
down-regulation of NF-κB and Nod-like receptor (NLR) family pyrin domain containing-3 (NLRP3) 
inflammasome assembly with decrease of interleukin-1β (IL-1β) secretion as observed using confocal 
microscopy of retinal pigment epithelium (RPE) flat mounts from illuminated CD36+/+ mice using 
fluorescent antibody staining. In addition, [azaTyr4]GHRP-6 (9) modulated the metabolic 
homeostasis of the macrophages by activating peroxisome proliferator-activated receptor-γ (PPAR-
γ). Selective allosteric modulation of the interaction between CD36 and TLR-2 by azapeptide 9 
decreased the immune response and reduced inflammation. Within the retina, the decreased 
inflammatory response caused by azapeptide 9 correlated with the preservation of neuronal cells 
[62], the loss of which is characteristic of retinal inflammation conditions such as retinitis pigmentosa, 
diabetic retinopathy and AMD (Figure 12) [63].  

Figure 11. Anti-inflammatory effect of CD36 ligand in a mouse model of light-induced retinal damage.
(A): Representative images of the accumulation of mononuclear phagocyte cells positively stained with
ionized calcium binding adapter molecule 1 (IBA-1, green) in the sub-retinal space of WT (C57BL6)
mice illuminated and treated or not with [azaTyr4]GHRP-6 (9). (B): Quantification of ionized calcium
binding adapter molecule 1 (IBA-1)-positive cells in the sub-retinal space. * p <0.05 illumination vs.
illumination + [azaTyr4]GHRP-6 (9). Scale bar = 25 µm.

Azapeptide 9 mitigated the activation of the CD36-TLR-2/6 complex after induction by R-FSL
as diacyl peptide TLR-2-agonist. The influence of [azaTyr4]GHRP-6 (9) on the CD36-TLR-2 complex
was ascertained by measuring Förster resonance energy transfer (FRET) efficiency using antibodies
for the respective proteins coupled to energy donor and acceptor Cy3 and Cy5 dyes. The TLR-2
agonist R-FSL1 induced an increase in FRET indicating a rapid association between CD36 and TLR-2
on the membranes of cultured mononuclear phagocytes. Aza-tyrosine analogue 9 attenuated the
R-FSL1-induced energy transfer efficiency between Cy3 and Cy5 indicating the dissociation of the
CD36-TLR-2/6 heterodimer complex at the mononuclear phagocyte cell membrane. Disruption of
the heterodimer complex by azapeptide 9 resulted in alteration of the downstream signaling of the
activated TLR-2 heterodimer as observed in the photo-oxidative stress-triggered pro-inflammatory
cascade [62,63]. Consequently, western blot analysis indicated that treatment with 9 altered the
TLR-2-signaling pathway with reduction of the phosphorylation of TLR-2-induced downstream
signals (e.g., interleukin-1 receptor-associated kinase-4 (IRAK4), nuclear factor-kappa B (NF-κB), c-Jun
N-terminal kinase (JNK) and the P38 mitogen-activated protein kinase (P38 MAPK)).

As a co-receptor of TLR-2, CD36 contributes in the activation of activator protein 1 (AP-1)
triggering gene transcription of proinflammatory cytokines, primarily by stimulating JNK and P38
activity. In isolated bone marrow-derived mononuclear phagocytes, which were isolated from femurs
and tibias of 8-12-week-old C57BL/6 mice, azapeptide 9 decreased AP-1 activation by inhibiting JNK
and P38 MAPK phosphorylation. Abrogation of inflammation was found to result in down-regulation
of NF-κB and Nod-like receptor (NLR) family pyrin domain containing-3 (NLRP3) inflammasome
assembly with decrease of interleukin-1β (IL-1β) secretion as observed using confocal microscopy
of retinal pigment epithelium (RPE) flat mounts from illuminated CD36+/+ mice using fluorescent
antibody staining. In addition, [azaTyr4]GHRP-6 (9) modulated the metabolic homeostasis of the
macrophages by activating peroxisome proliferator-activated receptor-γ (PPAR-γ). Selective allosteric
modulation of the interaction between CD36 and TLR-2 by azapeptide 9 decreased the immune
response and reduced inflammation. Within the retina, the decreased inflammatory response caused by
azapeptide 9 correlated with the preservation of neuronal cells [62], the loss of which is characteristic
of retinal inflammation conditions such as retinitis pigmentosa, diabetic retinopathy and AMD
(Figure 12) [63].
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or not with [aza-Tyr4]GHRP-6 (9). * p <0.05 illumination vs. illumination + [azaTyr4]GHRP-6 (9). (C): 603 
Quantification of a and b wave amplitudes in the electroretinogram (ERG) from WT mice at a light 604 
intensity of 3.0 cd-s/m². ** p < 0.01 and *** p < 0.001 illumination vs. illumination + [azaTyr4]GHRP-6 605 
(9). 606 

2.16. Implications of aza-GHRP-6 Conformation on Activity 607 
In the development of therapeutic prototypes from linear peptides leads, dynamic fluctuation 608 

between multiple conformers of similar energy can inhibit conformational analysis. For example, 609 
GHRP-6 exhibits a CD spectrum in water characteristic of a disordered random coil with a 610 
characteristic sharp negative band around 190 nm. The application of electronic and covalent 611 
constraints can limit the conformational flexibility of the peptide to favor populations with preferred 612 
geometry. Notably, the CD curves of certain linear azapeptide CD36 modulators, such as the [aza-613 
Phe4]GHRP-6 analogues (e.g., 9 and 15), exhibit typically curve shapes indicative of β-turn 614 
conformations with negative maxima centered at around 190 and 230 nm and a positive maximum 615 
band at 215 nm [64]. Assessment of linear azapeptide GHRP-6 derivatives by CD and nuclear 616 
magnetic resonance (NMR) spectroscopy have illustrated the importance of aromatic character and 617 
β-turn secondary structure of [aza-Phe4]GHRP-6 derivatives for CD36 binding [18,21]. 618 

Cyclization of linear peptides has been commonly employed to provide less conformationally 619 
flexible analogues [40]. In the case of the linear peptide ligands, A3-macrocyclization provided 620 
respectively azacyclopeptide CD36 ligands (e.g., 56 and 57) and their cyclic peptide counterparts (e.g., 621 
59 and 60) to study the conformational requirements for binding affinity, modulation of CD36-TLR-622 
2/6 complex signaling pathways and reduction of macrophage-driven inflammation [39]. The 623 

A illumination
+*vehicle

illumination
+*[aza1Tyr4]GHRP16*(9)no*illumination

ONL

INL

GCL

µ

0

200

400

600

800

b'
w
av
e'
am

pl
itu

de
'( µ

V)

B C

no#illumination
Illumination#+#vehicle
Illumination#+#9

Figure 12. Cytoprotective effect of CD36 ligand in a mouse model of light-induced retinal damage.
(A): Representative images of retinal cryosection from wild-type (WT) (C57BL6) mice exposed or not to
illumination and treated or not with [aza-Tyr4]GHRP-6 (9). ONL: Outer Nuclear Layer, INL: Inner
Nuclear Layer, GCL: Ganglion Cell Layer. Scale bar = 25 µm. (B): Area under the curves (AUC)
from ONL thickness measurement from WT mice no illumination or exposed to illumination and
treated or not with [aza-Tyr4]GHRP-6 (9). * p <0.05 illumination vs. illumination + [azaTyr4]GHRP-6 (9).
(C): Quantification of a and b wave amplitudes in the electroretinogram (ERG) from WT mice at a light
intensity of 3.0 cd-s/m2. ** p < 0.01 and *** p < 0.001 illumination vs. illumination + [azaTyr4]GHRP-6 (9).

2.16. Implications of aza-GHRP-6 Conformation on Activity

In the development of therapeutic prototypes from linear peptides leads, dynamic fluctuation
between multiple conformers of similar energy can inhibit conformational analysis. For example,
GHRP-6 exhibits a CD spectrum in water characteristic of a disordered random coil with a characteristic
sharp negative band around 190 nm. The application of electronic and covalent constraints can limit
the conformational flexibility of the peptide to favor populations with preferred geometry. Notably,
the CD curves of certain linear azapeptide CD36 modulators, such as the [aza-Phe4]GHRP-6 analogues
(e.g., 9 and 15), exhibit typically curve shapes indicative of β-turn conformations with negative maxima
centered at around 190 and 230 nm and a positive maximum band at 215 nm [64]. Assessment of linear
azapeptide GHRP-6 derivatives by CD and nuclear magnetic resonance (NMR) spectroscopy have
illustrated the importance of aromatic character and β-turn secondary structure of [aza-Phe4]GHRP-6
derivatives for CD36 binding [18,21].

Cyclization of linear peptides has been commonly employed to provide less conformationally
flexible analogues [40]. In the case of the linear peptide ligands, A3-macrocyclization provided
respectively azacyclopeptide CD36 ligands (e.g., 56 and 57) and their cyclic peptide counterparts
(e.g., 59 and 60) to study the conformational requirements for binding affinity, modulation of
CD36-TLR-2/6 complex signaling pathways and reduction of macrophage-driven inflammation [39].
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The configurationally stable (R)- and (S)-cyclic peptides were compared with their azacyclopeptide
counterparts to investigate the importance of semicarbazide sp2 and sp3 hybridizations for CD36
binding affinity and downstream proinflammatory responses. Conformational analysis was performed
using NMR spectroscopy and computational analysis, which revealed the conformational dynamics
of the cyclic analogues and indicated an active conformer featuring a type II’ β-turn geometry
for azacyclopeptide 57c (Figure 13) [39]. The semicarbazide sp2-configuration provided the best
representation of the aza-residue geometry in the active macrocycles with a descending preference for
pseudo-sp3 (S)- and (R)-hybridization. In this respect, although typically less active than their respective
azacyclopeptides, the (S)-cyclic peptides exhibited greater CD36 binding affinities, were typically
more potent at reducing TLR-2 agonist induced NO production, and enhanced cholesterol efflux
from macrophages more effectively than the (R)-counterparts [39]. The azacyclopeptide counterparts
exhibited typically better CD36 binding affinity and ability to reduce NO and increase cholesterol
efflux in macrophages. The active structure of azacyclopeptide 57c was suggested to adopt a compact
conformer featuring a type II’ β-turn geometry centered about the d-Trp-Ala dipeptide possessing an
additional bridging hydrogen bond from the C-terminal amine NH and the d-Trp carbonyl oxygen [39].
Spectroscopic and computational analysis of azacyclopeptides such as 57c have provided new food for
thought for the future design of improved CD36 modulators.

Biomedicines 2020, 8, x FOR PEER REVIEW 21 of 25 

configurationally stable (R)- and (S)-cyclic peptides were compared with their azacyclopeptide 624 
counterparts to investigate the importance of semicarbazide sp2 and sp3 hybridizations for CD36 625 
binding affinity and downstream proinflammatory responses. Conformational analysis was 626 
performed using NMR spectroscopy and computational analysis, which revealed the conformational 627 
dynamics of the cyclic analogues and indicated an active conformer featuring a type II’ -turn 628 
geometry for azacyclopeptide 57c (Figure 13) [39]. The semicarbazide sp2-configuration provided the 629 
best representation of the aza-residue geometry in the active macrocycles with a descending 630 
preference for pseudo-sp3 (S)- and (R)-hybridization. In this respect, although typically less active 631 
than their respective azacyclopeptides, the (S)-cyclic peptides exhibited greater CD36 binding 632 
affinities, were typically more potent at reducing TLR-2 agonist induced NO production, and 633 
enhanced cholesterol efflux from macrophages more effectively than the (R)-counterparts [39]. The 634 
azacyclopeptide counterparts exhibited typically better CD36 binding affinity and ability to reduce 635 
NO and increase cholesterol efflux in macrophages. The active structure of azacyclopeptide 57c was 636 
suggested to adopt a compact conformer featuring a type II’ -turn geometry centered about the D-637 
Trp-Ala dipeptide possessing an additional bridging hydrogen bond from the C-terminal amine NH 638 
and the D-Trp carbonyl oxygen [39]. Spectroscopic and computational analysis of azacyclopeptides 639 
such as 57c have provided new food for thought for the future design of improved CD36 modulators.  640 

      641 
Figure 13. Representative conformer from computational analysis of azacyclopeptide 57c (key N, O 642 

and H atoms are depicted in blue, red and white, respectively). 643 

3. Conclusions and Future Outlook 644 
CD36 is involved in a wide range of biological processes including the regulation of 645 

inflammation, microvascular angiogenesis, and transport of oxidized lipoproteins and 646 
phospholipids. Moreover, CD36 is implicated in microorganism and cell phagocytosis, and 647 
autophagic cell cycle events. As a clinically relevant biological marker, CD36 is associated with 648 
cardiovascular biology (e.g., atherosclerosis, angiogenesis, and ischemia-reperfusion injury), cardiac 649 
metabolism in the uptake of free fatty acids, and inflammatory related pathologies. Regulatory 650 
ligands of CD36 offer promise for various biomedical applications. Although unselective, peptide 651 
ligands related to the synthetic growth hormone releasing peptide-6 (GHRP-6) demonstrated 652 
interesting CD36 modulatory activity. Azapeptide GHRP-6 analogues bind selectively CD36 653 
presumably due to the stabilization of -turn conformers. The structure–activity relationship studies 654 
of CD36-selective azapeptides provided ligands exhibiting divergent effects on angiogenesis. 655 
Moreover, azapeptides can curb neovascularization, reduce nitric oxide production, and decrease 656 
immune responses mediated by mononuclear phagocytes, therefore mitigating potential neuronal 657 
injury associated with outer- and sub-retinal disorders such as retinitis pigmentosa, diabetic 658 
retinopathy and AMD. Azapeptides also exhibited cardioprotective effects and anti-atherosclerotic 659 
activity in a CD36-dependent manner. With proven beneficial activity in models of a wide range of 660 
cardiovascular, metabolic and immunological disorders, CD36-selective azapeptides are valuable for 661 
the development of peptide-based drugs. The translation of CD36 ligands into therapeutic agents is 662 
an on-going focus of our research program which is also investigating pharmacokinetic properties 663 
towards the design of optimal prototypes. Considering the challenges of conceiving drug-like ligands 664 
of receptors for which structural characterization is lacking, the synthetic methods described in this 665 

Figure 13. Representative conformer from computational analysis of azacyclopeptide 57c (key N, O
and H atoms are depicted in blue, red and white, respectively).

3. Conclusions and Future Outlook

CD36 is involved in a wide range of biological processes including the regulation of inflammation,
microvascular angiogenesis, and transport of oxidized lipoproteins and phospholipids. Moreover, CD36
is implicated in microorganism and cell phagocytosis, and autophagic cell cycle events. As a clinically
relevant biological marker, CD36 is associated with cardiovascular biology (e.g., atherosclerosis,
angiogenesis, and ischemia-reperfusion injury), cardiac metabolism in the uptake of free fatty acids,
and inflammatory related pathologies. Regulatory ligands of CD36 offer promise for various biomedical
applications. Although unselective, peptide ligands related to the synthetic growth hormone
releasing peptide-6 (GHRP-6) demonstrated interesting CD36 modulatory activity. Azapeptide
GHRP-6 analogues bind selectively CD36 presumably due to the stabilization of β-turn conformers.
The structure–activity relationship studies of CD36-selective azapeptides provided ligands exhibiting
divergent effects on angiogenesis. Moreover, azapeptides can curb neovascularization, reduce nitric
oxide production, and decrease immune responses mediated by mononuclear phagocytes, therefore
mitigating potential neuronal injury associated with outer- and sub-retinal disorders such as retinitis
pigmentosa, diabetic retinopathy and AMD. Azapeptides also exhibited cardioprotective effects and
anti-atherosclerotic activity in a CD36-dependent manner. With proven beneficial activity in models of a
wide range of cardiovascular, metabolic and immunological disorders, CD36-selective azapeptides are
valuable for the development of peptide-based drugs. The translation of CD36 ligands into therapeutic
agents is an on-going focus of our research program which is also investigating pharmacokinetic
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properties towards the design of optimal prototypes. Considering the challenges of conceiving
drug-like ligands of receptors for which structural characterization is lacking, the synthetic methods
described in this review offer pathways for the development of various peptidomimetics with selective
properties for different specific indications.
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