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ABSTRACT
Background  Advances in CT and machine learning have 
enabled on-site non-invasive assessment of fractional flow 
reserve (FFRCT).
Purpose  To assess the interoperator and intraoperator 
variability of coronary CT angiography-derived FFRCT using 
a machine learning-based postprocessing prototype.
Materials and methods  We included 60 symptomatic 
patients who underwent coronary CT angiography. FFR

CT 
was calculated by two independent operators after training 
using a machine learning-based on-site prototype. FFRCT 
was measured 1 cm distal to the coronary plaque or in 
the middle of the segments if no coronary lesions were 
present. Intraclass correlation coefficient (ICC) and Bland-
Altman analysis were used to evaluate interoperator 
variability effect in FFR

CT estimates. Sensitivity analysis 
was done by cardiac risk factors, degree of stenosis and 
image quality.
Results  A total of 535 coronary segments in 60 patients 
were assessed. The overall ICC was 0.986 per patient 
(95% CI 0.977 to 0.992) and 0.972 per segment (95% CI 
0.967 to 0.977). The absolute mean difference in FFR

CT 
estimates was 0.012 per patient (95% CI for limits of 
agreement: −0.035 to 0.039) and 0.02 per segment 
(95% CI for limits of agreement: −0.077 to 0.080). Tight 
limits of agreement were seen on Bland-Altman analysis. 
Distal segments had greater variability compared with 
proximal/mid segments (absolute mean difference 0.011 
vs 0.025, p<0.001). Results were similar on sensitivity 
analysis.
Conclusion  A high degree of interoperator and 
intraoperator reproducibility can be achieved by on-
site machine learning-based FFR

CT assessment. Future 
research is required to evaluate the physiological 
relevance and prognostic value of FFRCT.

INTRODUCTION
The role of fractional flow reserve (FFR) 
assessment in the evaluation and management 
of patients with coronary artery disease was 
firmly established by the FAME (Fractional 
Flow Reserve vs Angiography for Guiding 
Percutaneous Coronary Intervention) trial, 

which demonstrated that an FFR guided 
percutaneous coronary intervention (PCI) 
strategy was superior at reducing the rates of 
death, myocardial ischemia and repeat revas-
cularisation at 1 year1 However, the need for 
an invasive angiography and its attendant 
risks limited routine use in clinical practice.

Advances in computational fluid dynamics 
(CFD), a non-invasive image postprocessing 
technique, enabled the determination of 
physiological significance of coronary artery 
stenosis by using data acquired from stan-
dard, routine diagnostic coronary cardiac 
tomography angiography (CCTA) studies. 
Machine learning (ML)-based flow assess-
ment is the latest development using an 

Key questions

What is already known about this subject?
	► Studies have shown similar sensitivity and specific-
ity between machine learning (ML)-based fractional 
flow reserve (FFRCT) determination and computa-
tional fluid dynamics-based determination.

	► Reproducibility of measurements across opera-
tors is not well demonstrated in ML-based FFRCT 
determination.

What does this study add?
	► We have shown a high degree of interoperator and 
intraoperator reliability for ML-based FFRCT in a rep-
resentative patient population.

	► Our study contributes to the body of literature sup-
porting the role of ML-based FFRCT determination in 
providing timely data for guiding revascularisation 
strategies among patients being evaluated for coro-
nary artery disease.

How might this impact on clinical practice?
	► This study will help enable cardiovascular clinicians 
to evaluate how ML-based FFRCT prototype performs 
in transitioning FFRCT processing from outside cen-
tre to point of care.

http://www.bcs.com
http://openheart.bmj.com/
http://dx.doi.org/10.1136/openhrt-2021-001951
http://dx.doi.org/10.1136/openhrt-2021-001951
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http://crossmark.crossref.org/dialog/?doi=10.1136/openhrt-2021-001951&domain=pdf&date_stamp=2022-03-20
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artificial intelligence algorithm to compute the func-
tional severity of a lesion.2–4 ML-based FFRCT determina-
tion enables a rapid on-site determination by the reading 
physician, providing timely point-of-care information 
without the potential risks to patient privacy arising from 
off-site data transfer.

ML-based FFRCT requires semiautomatic determina-
tion of centreline, lumen contour and stenosis area, all 
of which potentially contributing to variability. Although 
several studies have shown similar sensitivity and speci-
ficity to CFD-based determination,5 research is lacking on 
reproducibility of this operator dependent technology. 
The purpose of this study is to measure the interoperator 
and intraoperator reliability and determine the repro-
ducibility of coronary CT angiography-derived fractional 
flow reserve (FFRCT) values using a postprocessing proto-
type based on ML algorithm.

METHOD
Patient population
The population from which the current subgroup analysis 
was done has been published before.6 Briefly, the study 
population was defined as patients who underwent both 
clinically indicated CCTA and single photon emission 
computed tomography (SPECT) myocardial perfusion 
imaging for suspected coronary artery disease between 
1 January 2016 through 22 June 2020 (n=965). Next, 
patients with prior PCI, coronary artery bypass grafts and 
left ventricular assist devices were excluded (n=258, 93 
and 2, respectively). Moreover, patients with congenital 
abnormalities of the coronary tree (n=12) and those with 
severe valvular abnormalities (n=30) were also excluded, 
as were those with revascularisation or myocardial infarc-
tion between the two studies (n=25). Last, patients with 
excessive calcification or poor image quality who could 
not be processed by the FFRCT prototype (due to failure 
in tracing central line or vessel lumen) were excluded 
(n=74). A cohort of 471 patients was obtained following 
the application of the above exclusions.

Sixty (60) patients were randomly selected using 
simple random sampling without replacement. We aimed 
to sample 10% of the larger population and sampling 
was stratified by categories of stenosis using Society of 
Cardiovascular Computed Tomography Coronary Artery 
Disease Reporting & Data System (CAD-RADS) to be 
representative of the population from which sampling 
was done. Approval from the Institutional Review Board 
was obtained prior to the start of the study and informed 
consent was waived due to the retrospective nature of 
the study. Patients or the public were not involved in the 
design, or conduct, or reporting, or dissemination plans 
of our research.

Assessment of covariates
Information on sociodemographic variables (age and 
gender), medical history, comorbidities (hypertension, 
diabetes, dyslipidaemia), smoking history and medication 

use was obtained from chart review of all patient profiles 
in electronic medical records within 30 days of imaging.

CCTA
CCTA scans were obtained using third generation 
SOMATOM FORCE Scanner (Siemens, Forchheim, 
Germany). Image acquisition was performed in accord-
ance with the Society of Cardiovascular Computed Tomog-
raphy (SCCT) guidelines.7 Intravenous metoprolol was 
administered for patients with a heart rate ≥65 beats/min 
and sublingual nitroglycerin 0.4 mg was administered 
immediately before image acquisition. During image 
acquisition, 60–100 cc of contrast was injected, followed 
by saline flush. Axial scans were obtained with prospec-
tive electrocardiographic gating. Image acquisition was 
prescribed to include the coronary arteries, left ventricle 
and proximal ascending aorta.

Images were assessed with a three-dimensional work-
station using one of several postprocessing methods 
including axial, multiplanar reformat, maximum inten-
sity projection and cross-sectional analysis. The quality of 
scans was determined by expert opinion and qualitatively 
graded as fair, good and excellent. Type and location of 
lesion were visually evaluated using an 18-segment model 
according to SCCT guidelines.7 In each segment, athero-
sclerosis was defined as tissue structures >1 mm2 within 
the coronary artery lumen or adjacent to the lumen that 
could be discriminated from pericardial tissue, epicardial 
fat or vessel lumen itself.

Per cent coronary stenosis was quantified based on 
a comparison of the luminal diameter of the segment 
exhibiting obstruction to the luminal diameter of the 
most normal-appearing site and classified as none (0%), 
mild (1%–49%), moderate (50%–69%) or severe (≥70%) 
based on degree of narrowing of the luminal diameter. 
Anatomically obstructive CAD by CCTA was defined as 
≥50% in the left main (LM) artery and ≥70% stenosis 
severity in proximal, mid and distal branches of the 
left anterior descending (LAD), left circumflex (LCX) 
and right coronary artery (RCA) without including side 
branches. Findings were reported using CAD-RADS.8

Segment involvement score (SIS) was used to quan-
tify burden of disease using CCTA. Using an 18-segment 
coronary artery model, each segment was individually 
scored as 0 or 1 based on the presence of plaque irre-
spective of the degree of stenosis. The sum of all involved 
segments was calculated for each patient. A Hounsfield 
unit threshold of ≥130 was used to classify plaques 
composition as calcified (C SIS), mixed (M SIS), calcified 
or mixed (C/M SIS) and non-calcified plaque (NC SIS).

FFRCT

FFRCT was determined using a ML-based prototype for 
computation of fractional flow reserve (cFFR 3.2, Siemens 
Healthcare GmbH, Forchheim, Germany).

CCTA accusation phase was chosen based on heart 
rate and absence of motion. The best diastolic phase was 
selected for heart rate  <65 bpm, while the best systolic 
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phase was used when heart rate ≥65 bpm. The coronary 
tree was isolated semiautomatically to generate a three-
dimensional model. The extent of manual adjustment 
was proportional to severity and extent of calcification, 
with most cases requiring limited adjustment of centre-
line and contour.

The algorithm generated a value for every point of 
the coronary artery tree using the ratio of the average 
aortic and local pressure over a cardiac cycle. A three-
dimensional color-coded mesh of the coronary artery 
tree was created in combination with functional informa-
tion at each segment of interest. FFRCT was determined 
at the mid-point of a vessel segment for normal vessels 
and 1 cm distal to stenosis when one was present based on 
prior work showing higher prognostic role of measure-
ments distal to stenosis.9 Determination was made for 
the LM and proximal, mid and distal segments of the 
LAD, LCX and RCA without including side branches. 
Vessel segments that could not be isolated by the proto-
type were coded as missing. FFRCT of <0.8 in the LM or 
any proximal, mid or distal segment was considered as 
the threshold for significant ischaemia based on prior 
literature.10–13

Image processing was done by two investigators blinded 
to results from other tests. Both had backgrounds in the 
health sciences (one with a medical degree and another 
with a master’s in biomedical engineering) but no prior 
experience with CCTA or FFRCT processing. Training was 
organised by the vendor on the steps of image processing. 
Investigators subsequently processed and received feed-
back on the first 20 set of patients. Experts from the 
vendor were consulted on difficult cases throughout 
the data collection phase. Investigators independently 
completed all steps involved in processing images 
(editing centreline, vessel contour and localising areas of 
stenosis). Each investigator did two rounds of processing 
for each patient. During the second round, processing 
was started from the beginning without using persistent 
data from the prior round.

Online supplemental figure 1 demonstrated the proto-
type interface and FFRCT results of the same patient case 
processed by two operators.

Statistical analysis
Analysis was done on a per-patient and per-segment level. 
For per-patient analysis, comparisons were made between 
the mean of all isolated segmental FFRCT values of the 
coronary artery. Per-segment analysis was stratified by 
each segment to assess for difference in reproducibility 
comparing proximal (LM and proximal branches of LAD, 
LCX and RCA) versus distal segments in light of prior 
studies that have shown a decrease in FFR/FFRCT values 
from proximal-distal segments even in vessels with no 
obstruction, and the prognostic value of change in FFR/
FFRCT.14–16 Both interinvestigator and intrainvestigator 
agreement were assessed. The average of two rounds of 
processing was used for interinvestigator analysis, and 

Table 1  Baseline characteristics of patients

Total

N=60

Sociodemographics
Age—Mean (SD) 63.50 (11.65)

Gender—N (%)

 � Female 27 (45%)

Comorbidities—N (%)

Hypertension 47 (78%)

Diabetes 41 (68%)

Dyslipidaemia 52 (87%)

Symptoms—N (%)

Chest pain or shortness of breath 31 (52%)

Medication—N (%)

Aspirin/Clopidogrel 50 (83%)

Statin 50 (83%)

ACE/ARB 39 (65%)

Beta Blockers 46 (77%)

Calcium Channel Blockers 25 (42%)

Study quality—N (%)

 � Excellent 20 (33%)

 � Good 30 (50%)

 � Fair 10 (17%)

CCTA—N (%)

CCTA CAD-RAD

 � CAD-RAD 0 13 (22%)

 � CAD-RAD 1/2 24 (40%)

 � CAD-RAD 3 11 (18%)

 � CAD-RAD 4A 7 (12%)

 � CAD-RAD 4B 5 (8%)

CCTA obstructive stenosis 11 (20%)

CCTA multivessel disease 5 (8%)

Plaque burden—Mean (SD)

Total plaque segment involvement score 4.60 (4.09)

Calcified plaque segment involvement score 1.95 (2.91)

Mixed plaque segment involvement score 2.05 (3.06)

Non-calcified plaque segment involvement score 0.60 (1.34)

FFRCT—N (%)

FFRCT <0.80 on any proximal/mid/distal segment 28 (47%)

Left main FFRCT<0.8 1 (2%)

Major LAD segment FFRCT <0.80 18 (30%)

Major LCX segment FFRCT <0.80 14 (23%)

Major RCA segment FFRCT <0.80 14 (24%)

CAD-RAD, Cardiovascular Computed Tomography Coronary 
Artery Disease Reporting & Data System; CCTA, coronary CT 
angiography; FFR, fractional flow reserve; LAD, left anterior 
descending; LCX, left circumflex; RCA, right coronary artery.

https://dx.doi.org/10.1136/openhrt-2021-001951
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per cent reclassification was determined using an FFRCT 
threshold of <0.8.

The mean difference with 95% limits of agreement 
and intraclass correlation coefficient (ICC) using two-way 
mixed effect model were used to assess for agreement. 
Thresholds for agreement were classified based on prior 
literature (<0.2, poor; 0.2–0.4, fair; 0.4–0.6-moderate; 
0.6–0.8, good; 0.8–1.0, very good).17 Furthermore, Bland-
Altman analysis was used to evaluate for variability. Sensi-
tivity analysis was done by cardiac risk factors, degree of 
stenosis and image quality. All analyses were done using 
Stata V.16.0 (Stata, College Station, Texas, USA).

RESULTS
Sociodemographic
Sixty (60) patients were included in this study. Baseline 
characteristics are listed in table  1. The mean age was 
63.5+11.7 years and 45% were women. The majority had 
cardiovascular comorbidities: 78% hypertension, 68% 
diabetes and 87% dyslipidaemia. Most patients (52%) 
were symptomatic with chest pain or shortness of breath 
and a majority were on some form of medication (83% 
aspirin/clopidogrel, 83% statin, 65% ACE inhibitor/
angiotensin receptor blocker).

Figure 1  Bland-Altman graphs per-patient and per-segment. Tight limits of agreement are seen on both per-patient and per-
segment analysis.

Table 2  Interinvestigator agreement

Segment

ICC Difference

95% CI Absolute mean difference Bland-Altman limits of agreement

Average
Per patient 0.986 0.977 to 0.992 0.012 −0.035–0.039

Per-segment 0.972 0.967 to 0.977 0.02 −0.077–0.080

Per-segment (proximal) 0.970 0.962 to 0.977 0.011 −0.050–0.046

Per-segment (distal) 0.962 0.953 to 0.969 0.025 −0.087–0.089

Per-segment

Left main 0.972 0.953 to 0.983 0.005 −0.025–0.021

LAD

Proximal 0.949 0.915 to 0.969 0.014 −0.046–0.049

Mid 0.976 0.960 to 0.986 0.024 −0.067–0.068

Distal 0.964 0.940 to 0.978 0.032 −0.098–0.107

LCX

Proximal 0.973 0.955 to 0.984 0.015 −0.079–0.069

Mid 0.975 0.958 to 0.985 0.027 −0.077–0.075

RCA

Proximal 0.974 0.957 to 0.984 0.009 −0.035–0.031

Mid 0.979 0.965 to 0.988 0.019 −0.065–0.074

Distal 0.958 0.930 to 0.975 0.038 −0.136–0.154

LAD, left anterior descending; LCX, left circumflex; RCA, right coronary artery.
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CCTA
More than half (83%) of CCTA’s image quality was 
graded as excellent or good by reading physicians, and 
none were considered non-diagnostic. Most patients had 
CAD-RAD scores ≤2 (62%) and the mean (SD) SIS was 
4.6 (±4.09). Obstructive stenosis was present in 12 (20%) 
patients and 5 (8%) had multivessel disease. Nearly half 
(47%) of patients had functional stenosis (FFRCT <0.8), 
and the LAD was the most affected vessel. No patient in 
our cohort had an identifiable ramus intermedius branch. 
A total of five vessel segments (one distal LAD, one distal 
LCX and three distal RCA) could not be isolated by both 
investigators and coded as missing.

Intrainvestigator agreement
Online supplemental table 1 summarises measures of 
intrainvestigator agreement. There was a high degree 
agreement between the two measurements taken by 
the same investigator. Per-patient and per-segment ICCs 
were  >0.95 for both investigators, with higher ICCs in 
proximal versus distal segments. Absolute differences 
showed similar trends, with tight limits of agreement.

Interinvestigator agreement
Table 2 summarises measures of interinvestigator agree-
ment. Per-patient and per-segment ICC was 0.986 per 
patient (95% CI 0.977 to 0.992) and 0.972 per segment 
(95% CI 0.967 to 0.977). The absolute mean difference 
in estimates was 0.012 per patient (the 95% CI for limits 
of agreement: −0.035–0.039) and 0.02 per segment (the 
95% CI for limits of agreement: −0.077–0.080). Distal 
segments had greater variability compared with prox-
imal/mid segments (ICC 0.97 vs 0.962 and absolute mean 
difference 0.011 vs 0.025 for proximal vs distal segments). 
Using a threshold of FFRCT <0.8, per-patient discordance 
was seen in 3.3% (n=2) patients.

Figures 1 and 2 show Bland-Altman graphs per-patient 
and per-segment. Tight limits of agreement were seen on 
all analysis, with relatively wider margins on distal versus 
proximal segments.

Tables 3 and 4 summarise measures of agreement by 
CAD-RAD and quality of CCTA scans. Absolute mean 
difference increased with higher CAD-RAD scores and 
lower quality. Results were more variable with ICC. 
Table  5 summarises measures of agreement comparing 
patients with cardiovascular risk factors. Absolute mean 
differences were lower and ICC was higher among those 
without versus with risk factors.

DISCUSSION
Using a randomly selected sample from a real-world 
single-centre cohort of patients, we demonstrated that 
ML-based ML-FFRCT determination has good reproduc-
ibility and reliability.

Non-invasive determination of FFR has the potential 
to further enhance the gate-keeper role of CT angiog-
raphy in patients evaluated for coronary artery disease 
by providing a functional complement to anatomic 
assessment.18 ML-based FFR determination takes this 
one step further by offering several distinct advantages 
all the while maintaining comparative test characteristics 
to the current CFD-based approach.4 19 Specifically the 
advantages of a switch from off-site to on-site ML-based 
FFR determination may translate into reductions in test 
turn-around time (currently as high as 24 hours), rejec-
tion rate (~15%)10 20 21 and cost combined with increased 
patient data protection by eliminating the need for 
data exporting and related infrastructural and logistical 
considerations .

Of the few studies that have looked at reproducibility 
of non-invasive FFR measurement, most have been on 
CFD-based methods. For example, a study with repeated 
off-site non-invasive FFRCT measurement (CFD-based 
method) on 25 patients showed good reproducibility. 
The study also went on report no significant difference 
when comparing FFRCT with FFR obtained from an 
invasive gold standard.22 However, few studies tackled 
potential operator dependence similar to the aim of our 
study. These studies featuring both on-site and off-site 

Figure 2  Bland-Altman graphs comparing proximal vs distal segments. Tight limits of agreement are seen on both, with 
slightly wider margins in distal segments.

https://dx.doi.org/10.1136/openhrt-2021-001951


Open Heart

6 Han Y, et al. Open Heart 2022;9:e001951. doi:10.1136/openhrt-2021-001951

Ta
b

le
 3

 
In

te
rin

ve
st

ig
at

or
 a

gr
ee

m
en

t 
b

y 
C

A
D

-R
A

D

C
A

D
-R

A
D

 0
C

A
D

-R
A

D
 1

/2
C

A
D

-R
A

D
 >

2

IC
C

D
iff

er
en

ce
IC

C
D

iff
er

en
ce

IC
C

D
iff

er
en

ce

95
%

 C
I

A
b

so
lu

te
 

m
ea

n 
d

iff
er

en
ce

B
la

nd
-A

lt
m

an
 

lim
it

s 
o

f 
ag

re
em

en
t

95
%

 C
I

A
b

so
lu

te
 

m
ea

n 
d

iff
er

en
ce

B
la

nd
-

A
lt

m
an

 li
m

it
s 

o
f 

ag
re

em
en

t
95

%
 C

I

A
b

so
lu

te
 

m
ea

n 
d

iff
er

en
ce

B
la

nd
-A

lt
m

an
 

lim
it

s 
o

f 
ag

re
em

en
t

Av
er

ag
e

Pe
r p

at
ie

nt
0.

84
1

0.
55

8 
to

 0
.9

49
0.

00
8

−
0.

03
8 

to
 0

.0
34

0.
97

5
0.

94
4 

to
 0

.9
89

0.
01

1
−

0.
02

8 
to

 0
.0

38
0.

98
8

0.
97

2 
to

 0
.9

95
0.

01
6

−
0.

04
0 

to
 0

.0
41

Pe
r-

se
gm

en
t

0.
72

9
0.

63
1 

to
 0

.8
04

0.
01

4
−

0.
08

5 
to

 0
.0

82
0.

96
0

0.
94

9 
to

 0
.9

70
0.

01
8

−
0.

05
8 

to
 0

.0
68

0.
98

1
0.

97
4 

to
 0

.9
85

0.
02

7
−

0.
09

0 
to

 0
.0

89

Pe
r-

se
gm

en
t 

(p
ro

xi
m

al
)

0.
80

1
0.

67
8 

to
 0

.8
81

0.
00

5
−

0.
01

6 
to

 0
.0

17
0.

97
6

0.
96

5 
to

 0
.9

84
0.

00
8

−
0.

02
6 

to
 0

.0
32

0.
96

9
0.

95
4 

to
 0

.9
79

0.
01

7
−

0.
07

7 
to

 0
.0

60

Pe
r-

se
gm

en
t 

(d
is

ta
l)

0.
74

1
0.

64
0 

to
 0

.8
26

0.
01

3
−

0.
04

2 
to

 0
.0

36
0.

94
7

0.
92

8 
to

 0
.9

62
0.

02
4

−
0.

06
3 

to
 0

.0
83

0.
96

8
0.

95
6 

to
 0

.9
77

0.
03

3
−

0.
12

1 
to

 0
.1

10

C
A

D
-R

A
D

, S
oc

ie
ty

 o
f C

ar
d

io
va

sc
ul

ar
 C

om
p

ut
ed

 T
om

og
ra

p
hy

 C
or

on
ar

y 
A

rt
er

y 
D

is
ea

se
 R

ep
or

tin
g 

&
 D

at
a 

S
ys

te
m

; I
C

C
, i

nt
ra

cl
as

s 
co

rr
el

at
io

n 
co

ef
fic

ie
nt

.

Ta
b

le
 4

 
In

te
rin

ve
st

ig
at

or
 a

gr
ee

m
en

t 
b

y 
im

ag
e 

q
ua

lit
y

E
xc

el
le

nt
G

o
o

d
Fa

ir

IC
C

D
iff

er
en

ce
IC

C
D

iff
er

en
ce

IC
C

D
iff

er
en

ce

95
%

 C
I

A
b

so
lu

te
 

m
ea

n 
d

iff
er

en
ce

B
la

nd
-A

lt
m

an
 

lim
it

s 
o

f 
ag

re
em

en
t

95
%

 C
I

A
b

so
lu

te
 

m
ea

n 
d

iff
er

en
ce

B
la

nd
-A

lt
m

an
 

lim
it

s 
o

f 
ag

re
em

en
t

95
%

 C
I

A
b

so
lu

te
 

m
ea

n 
d

iff
er

en
ce

B
la

nd
-A

lt
m

an
 

lim
it

s 
o

f 
ag

re
em

en
t

Av
er

ag
e

Pe
r p

at
ie

nt
0.

98
5

0.
96

2 
to

 0
.9

94
0.

00
7

−
0.

01
6 

to
 0

.0
21

0.
98

0
0.

95
9 

to
 0

.9
91

0.
01

4
−

0.
03

9 
to

 0
.0

47
0.

98
2

0.
93

0 
to

 0
.9

96
0.

01
8

−
0.

04
7 

to
 0

.0
37

Pe
r-

se
gm

en
t

0.
94

7
0.

93
0 

to
 0

.9
60

0.
01

4
−

0.
05

2 
to

 0
.0

57
0.

97
4

0.
96

7 
to

 0
.9

79
0.

02
−

0.
08

0 
to

 0
.0

86
0.

96
6

0.
94

8 
to

 0
.9

77
0.

03
4

−
0.

10
6 

to
 0

.0
96

Pe
r-

se
gm

en
t 

(p
ro

xi
m

al
)

0.
76

4
0.

65
4 

to
 0

.8
42

0.
00

6
−

0.
02

2 
to

 0
.0

22
0.

98
4

0.
97

8 
to

 0
.9

89
0.

01
−

0.
03

8 
to

 0
.0

39
0.

94
0

0.
88

9 
to

 0
.9

68
0.

02
2

−
0.

10
3 

to
 0

.0
76

Pe
r-

se
gm

en
t 

(d
is

ta
l)

0.
91

8
0.

80
6 

to
 0

.9
67

0.
01

2
−

0.
02

8 
to

 0
.0

35
0.

97
7

0.
95

1 
to

 0
.9

89
0.

02
6

−
0.

07
4 

to
 0

.0
80

0.
95

2
0.

82
0 

to
 0

.9
88

0.
04

9
−

0.
12

0 
to

 0
.1

12

IC
C

, i
nt

ra
cl

as
s 

co
rr

el
at

io
n 

co
ef

fic
ie

nt
.



7Han Y, et al. Open Heart 2022;9:e001951. doi:10.1136/openhrt-2021-001951

Coronary artery disease

approaches have reported a high degree of interoper-
ator correlation which was consistent among operators of 
different expertise and training.23 24

Our results confirm, at least in our prototype that the 
observed differences in reproducibility are due primarily 
to variability in ML algorithm and changes made by the 
investigators. It would be difficult to conclude of the 
appropriateness of adjustments as we did not compare 
our findings to a reference gold standard. However, prior 
studies have emphasised decreased variabilities in oper-
ators receiving face-to-face training.23 As such, in-person 
training may counter a potential source of variability 
which has been the incorrect determination of centre-
line.23 25

A case can be made to the generalisability of our find-
ings to those presenting to a tertiary care cardiology 
practice as our study used a representative sample from a 
real-world cohort of patients with consistent results across 
spectrums of image quality and calcification.

However, our study is not without its limitations. This 
is an observational single-centre study including patients 
who had undergone both CCTA and SPECT with a rela-
tively small sample size. Second, no comparison of ML-F-
FRCT measurements were made with a gold standard. 
However, two prior studies using invasive FFR as a gold 
standard have shown a high degree of accuracy with no 
significant change in variability between operators of 
varying levels of expertise.23 26 Third, the studied ML 
prototype is not yet approved for clinical use. However, 
a meta-analysis has shown high concordance between 

ML-FFRCT determination by ML prototype to invasive 
and computational flow dynamics.5 Although the two 
investigators who processed images had no background 
in CCTA interpretation, it can be argued that future 
application of these approaches will be carried out by 
non-physicians and previous studies have confirmed 
consistent correlation in ML-FFRCT across a broad range 
of expertise23

In conclusion, we have shown a high degree of interop-
erator and intraoperator reliability for ML-based FFRCT 
in a representative patient population. Our study contrib-
utes to the body of literature supporting the role of 
ML-based FFRCT determination in providing timely data 
for guiding revascularisation strategies among patients 
being evaluated for coronary artery disease.
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Table 5  Interinvestigator agreement by cardiovascular risk factors

Hypertensives Normotensives

ICC Difference ICC Difference

95% CI

Absolute 
mean 
difference

Bland-Altman 
limits of 
agreement 95% CI

Absolute 
mean 
difference

Bland-Altman 
limits of 
agreement

Per patient 0.985 0.974 to 0.992 0.013 −0.036 to 0.043 0.991 0.971 to 0.997 0.008 −0.025 to 0.020

Per-segment 0.976 0.971 to 0.980 0.021 −0.076 to 0.081 0.935 0.908 to 0.954 0.019 −0.082 to 0.077

Per-segment 
(proximal)

0.981 0.974 to 0.985 0.01 −0.042 to 0.039 0.902 0.835 to 0.942 0.012 −0.071 to 0.066

Per-segment (distal) 0.965 0.956 to 0.972 0.027 −0.094 to 0.098 0.928 0.893 to 0.955 0.017 −0.053 to 0.047

 �  Diabetics Non-diabetics

Per patient 0.985 0.971 to 0.992 0.013 −0.036 to 0.042 0.990 0.974 to 0.996 0.01 −0.032 to 0.030

Per-segment 0.968 0.961 to 0.974 0.022 −0.082 to 0.087 0.982 0.976 to 0.987 0.017 −0.065 to 0.063

Per-segment 
(proximal)

0.970 0.960 to 0.978 0.011 −0.052 to 0.052 0.973 0.958 to 0.983 0.009 −0.042 to 0.030

Per-segment (distal) 0.958 0.946 to 0.967 0.024 −0.069 to 0.079 0.969 0.956 to 0.979 0.028 −0.118 to 0.104

 �  Dyslipidaemics Non-dyslipidaemics

Per patient 0.986 0.975 to 0.992 0.013 −0.037 to 0.041 0.959 0.809 to 0.992 0.006 −0.017 to 0.015

Per-segment 0.974 0.968 to 0.978 0.022 −0.079 to 0.083 0.840 0.755 to 0.898 0.012 −0.061 to 0.059

Per-segment 
(proximal)

0.970 0.961 to 0.977 0.012 −0.054 to 0.049 0.964 0.928 to 0.982 0.004 −0.014 to 0.018

Per-segment (distal) 0.963 0.954 to 0.970 0.027 −0.091 to 0.095 0.787 0.668 to 0.880 0.013 −0.041 to 0.035

ICC, intraclass correlation coefficient.
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