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Simple Summary: Metastatic castration-resistant prostate cancer (mCRPC) is the most aggressive
and deadly form of prostate cancer. As a bone-predominant metastatic disease, liquid biopsy-based
biomarkers have advantages in monitoring cancer dynamics. Previous studies have demonstrated
the associations between circulating tumor cells (CTCs) and mCRPC outcomes, but little is known
about the prognostic value of CTC-clusters. In this study, we investigated the associations of CTCs
and CTC-clusters with mCRPC prognosis, individually and jointly, using longitudinal samples. We
confirmed the associations of CTC counts with mCRPC outcomes in both baseline and longitudinal
analyses. Our results also showed that the presence of CTC-clusters alone had prognostic value
and that CTC-clusters may further improve CTC-based prognostic stratification in mCRPC. Our
findings suggest the potential of combing CTC and CTC-clusters as non-invasive means to monitor
progression and predict survival in mCRPC and build a premise for in-depth genomic and molecular
analyses of CTCs and CTC-clusters.

Abstract: Liquid biopsy-based biomarkers have advantages in monitoring the dynamics of metastatic
castration-resistant prostate cancer (mCRPC), a bone-predominant metastatic disease. Previous stud-
ies have demonstrated associations between circulating tumor cells (CTCs) and clinical outcomes of
mCRPC patients, but little is known about the prognostic value of CTC-clusters. In 227 longitudinally
collected blood samples from 64 mCRPC patients, CTCs and CTC-clusters were enumerated using
the CellSearch platform. The associations of CTC and CTC-cluster counts with progression-free
survival (PFS) and overall survival (OS), individually and jointly, were evaluated by Cox models.
CTCs and CTC-clusters were detected in 24 (37.5%) and 8 (12.5%) of 64 baseline samples, and in 119
(52.4%) and 27 (11.9%) of 227 longitudinal samples, respectively. CTC counts were associated with
both PFS and OS, but CTC-clusters were only independently associated with an increased risk of
death. Among patients with unfavorable CTCs (≥5), the presence of CTC-clusters signified a worse
survival (log-rank p = 0.0185). mCRPC patients with both unfavorable CTCs and CTC-clusters had
the highest risk for death (adjusted hazard ratio 19.84, p = 0.0072), as compared to those with <5
CTCs. Analyses using longitudinal data yielded similar results. In conclusion, CTC-clusters provided
additional prognostic information for further stratifying death risk among patients with unfavorable
CTCs.
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1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed cancer and the second leading
cause of cancer-related death among men in the United States [1]. In patients who are
diagnosed with or progress to advanced or metastatic PCa, the standard treatment is andro-
gen deprivation therapy (ADT). Initial responses in patients receiving ADT are generally
favorable, but almost all patients ultimately progress to metastatic castration-resistant
prostate cancer (mCRPC) [2,3]. Approximately 10–20% of PCa patients develop CRPC
within five years of diagnosis, and 84% of newly diagnosed CRPC have metastases [3,4].
The all-cause mortality for PCa is estimated to be 219,360 in 2020, and mCRPC accounts for
19.5% of these deaths [5].

Remarkable progress has been made in the use of tissue-based molecular analyses
(i.e., precision genomics) to guide treatment decisions of many cancers. However, such
tissue-based genomic profiling is challenging in mCRPC due to several reasons. First,
mCRPC is a bone-predominant metastatic disease, thus tissue samples are not always
obtainable. Second, the yield of tumor tissues from metastatic sites can often be quite
low, particularly when sampling from bone metastases [6]. Third, due to intratumoral
heterogeneity [6,7], biopsy samples may not fully represent the tumor, and sequencing
results could yield inaccurate findings. Fourth, during the course of disease progression
and treatment, genomic signatures change over time to evade therapeutic or immune
attacks [8,9], but the invasive nature of tumor tissue biopsy makes it infeasible to perform
repeated biopsies to guide each new treatment decision over time. Therefore, non-invasive
biomarkers based on liquid biopsy samples, such as circulating tumor cells (CTCs), need
to be developed to guide mCRPC treatment decisions and monitor treatment response or
resistance.

CTCs are shed from primary or metastatic tumors into the blood and have extremely
high malignant potential. Since CTCs constitute “seed cells” for metastasis, they are
arguably the most important subset of tumor cells to monitor and treat [10,11]. Unlike
tissues or biopsies, CTCs can be repeatedly, non-invasively measured, and characterized
in a real-time manner. A multicenter prospective landmark study by de Bono et al. [12]
reported that the CTC number at different time points after treatment was the strongest
independent predictor of overall survival (OS) in mCRPC, which led to the expansion
of the clinical utilization of the CellSearchTM system, the FDA-cleared method for CTC
enumeration, from breast cancer to prostate cancer. Numerous subsequent studies further
confirmed the prognostic value of CTC enumeration in mCRPC [13–18]. A pooled analysis
of five randomized phase III clinical trials also suggested using the baseline CTC and its
conversion (≥5 CTCs at baseline and <5 CTCs at follow-up visit) as response endpoints
for early-phase mCRPC clinical trials, as these exhibited the highest discriminatory power
among the indices tested [19].

In addition to disseminating as individual cells, tumor cells also collectively migrate
as clusters, in which cell-cell adhesion remains intact [20,21]. Clustered CTCs in peripheral
blood have been reported in patients with different cancer types, but at lower frequencies
than single CTCs, whereas within primary lesions of epithelial tumors, collective migra-
tion is more prominent than single-cell motility [21]. Several recent studies, including
ours, reported a worse prognosis associated with CTC-clusters in patients with breast
cancer [22–24] and lung cancer [25]. The seminal study by Aceto et al. [22] found that
the presence of CTC-clusters was associated with shorter overall survival (OS) in patients
with PCa. CTC-clusters were also identified in patients with mCRPC, but very few studies
have evaluated the prognostic value of CTC-clusters and these limited reports showed
inconsistent findings [26,27].
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As yet, no study has been reported to evaluate whether CTC-clusters can further
improve CTC-based prognostic stratification in mCRPC. Furthermore, no in-depth analysis
has been conducted to explore the prognostic value of CTC-clusters, by using longitudinally
collected data. Herein, based on an ongoing mCRPC cohort with longitudinal samples,
we conducted, to our best knowledge, the first study that evaluated the prognostic value
CTC-clusters in high-risk mCRPC patients with high CTC levels.

2. Results
2.1. Patient Characteristics

A total of 64 mCRPC patients were included in this analysis (Table 1). At the first
time of biomarker measurement (baseline), 18 (28.1%) patients had newly diagnosed
mCRPC and the median age was 71.8 (range 53.0–93.0) years old. Among these patients,
49 (76.6%) patients were whites, 53 (82.8%) patients had an Eastern Cooperative Oncology
Group (ECOG) performance score of 0–1, 60 (93.8%) had bone metastasis, and 13 (20.3%)
had visceral metastasis (e.g., liver, lung). Of the 64 patients, 35 (54.7%) had received
androgen receptor signaling inhibitors (ARSi) (e.g., enzalutamide, abiraterone acetate) and
10 (15.6%) had received chemotherapy from metastatic diagnose to the baseline sample
collection. There were 44 (68.8%) patients treated by ARSi and 16 (25%) patients treated by
cytotoxic reagents after the baseline blood draw. The baseline (median) laboratory results
were as follows: prostate-specific antigen (PSA) = 9.5 ng/mL, hemoglobin (HGB) = 12.0
g/dL, alkaline phosphatase (ALP) = 88.5 IU/L, albumin (ALB) = 4.1 g/dL, and lactate
dehydrogenase (LDH) = 216 IU/L. During a median follow-up of 14.4 months (interquartile
range: 9.7–19.1 months), 45 (70.3%) patients had progressive disease and 23 (35.9%) died.

Table 1. Patient characteristics †.

Variables n (%)

Age (year), median (range) 71.8 (53.0–93.0)
Race

White 49 (76.6)
Black 12 (18.8)
Other 3 (4.7)

ISUP Grade at Diagnosis
1 3 (4.7)
2 5 (7.8)
3 5 (7.8)
4 11 (17.2)
5 32 (50.0)

Unknown 8 (12.5)
ECOG Performance Status

0 28 (43.8)
1 25 (39.1)
2 8 (12.5)
3 2 (3.1)

Unknown 1 (1.6)
Bone Metastasis

No 4 (6.3)
Yes 60 (93.8)

Visceral Metastasis
No 51 (79.7)
Yes 13 (20.3)

Previously Treated by AR Signaling Inhibitors *
No 29 (45.3)
Yes 35 (54.7)

Previous Chemotherapy *
No 54 (84.4)
Yes 10 (15.6)
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Table 1. Cont.

Variables n (%)

AR Signaling Inhibitors After Baseline Blood Draw
No 20 (31.3)
Yes 44 (68.8)

Cytotoxic Therapy After Baseline Blood Draw
No 48 (75.0)
Yes 16 (25.0)

Prostate-specific antigen (ng/mL), median (range) 9.5 (0.1–3256.0)
Hemoglobin (g/dL), median (range) 12.0 (7.4–15.9)

Alkaline phosphatase (IU/L), median (range) 88.5 (31.0–1709.0)
Albumin (g/dL), median (range) 4.1 (2.6–4.7)

Lactate dehydrogenase (IU/L), median (range) # 216 (149–560)
ISUP: International Society of Urological Pathology; ECOG: Eastern Cooperative Oncology Group; AR: androgen
receptor. †: characteristics at the first time of biomarker measurement (baseline), otherwise specifically described;
*: previous treatments received from metastatic diagnose to the baseline sample collection; #: data were available
from 22 patients.

2.2. Associations between Baseline CTCs and Clinical Outcomes

We first evaluated the prognostic values of baseline CTCs and CTC-clusters individu-
ally. CTC enumeration results (Table S1) showed that CTCs were detected in 24 (37.5%)
patients, and among them, 19 had ≥5 CTCs. We then categorized mCRPC patients as
having either unfavorable (≥5 CTC/7.5 mL) or favorable (<5 CTC/7.5 mL) CTC counts
as described previously [12]. The patients with unfavorable CTC counts had significantly
shorter survival time, compared to those with favorable CTC counts (median survival time
2.1 vs. 10.5 months, log-rank p < 0.0001 for progression-free survival (PFS); 6.0 months vs.
not reached, log-rank p < 0.0001 for OS) (Figure 1A,B and Table 2). mCRPC patients with
unfavorable CTC counts had a 4.03-fold (hazard ratio (HR) 4.03, 95% confidence interval
(CI) 2.09–7.77) increased risk for developing the progressive disease and a 6.90-fold (HR
6.90, 95% CI 2.72–17.47) increased risk for death (Table 2). When conducting univariate
analyses on each demographic, clinical, and laboratory variable, we found an association
between outcomes and performance status, previous chemotherapy, ARSi, and cytotoxic
therapy after the baseline blood draw, PSA, HGB, ALP, and ALB (Table S2). We then in-
cluded these covariates into the multivariate Cox model. After adjustment, the associations
between CTC counts and clinical outcomes remained significant (p = 0.0101 for PFS and
p = 0.0134 for OS, Table 2).
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PFS and (D) for OS). 
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Univariate Analyses Multivariate Analyses * 
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Association With PFS 

CTC       
< 5 29/45 10.5 1.00  1.00  
≥ 5 16/19 2.1 4.03 (2.09–7.77) < 0.0001 3.01 (1.30–6.95) 0.0101 

CTC-Cluster       
0 38/56 7.5 1.00  1.00  
≥ 1 7/8 1.7 4.33 (1.81–10.37) 0.0010 2.36 (0.70–7.95) 0.1666 

Risk Group       
CTC < 5 without CTC-cluster 28/44 11.3 1.00  1.00  
CTC ≥ 5 without CTC-cluster 10/12 2.1 3.53 (1.66–7.51) 0.0011 3.51 (1.38–8.89) 0.0082 

CTC ≥ 5 with CTC-cluster 6/7 1.7 6.30 (2.40–16.53) 0.0002 2.57 (0.62–10.59) 0.1909 
Association With OS 

CTC       
< 5 12/45 NR 1.00  1.00  
≥ 5 11/19 6.0 6.90 (2.72–17.47) < 0.0001 4.66 (1.38–15.74) 0.0134 

CTC-Cluster       
0 17/56 NR 1.00  1.00  
≥ 1 6/8 4.2 6.58 (2.50–17.33) 0.0001 5.52 (1.18–25.79) 0.0299 

Risk Group       
CTC < 5 without CTC-cluster 12/44 NR 1.00  1.00  
CTC ≥ 5 without CTC-cluster 5/12 12.4 3.96 (1.29–12.21) 0.0165 1.42 (0.32–6.33) 0.6497 

CTC ≥ 5 with CTC-cluster 6/7 4.2 21.53 (6.64–69.85) < 0.0001 19.84 (2.24–175.32) 0.0072 
CTC: circulating tumor cell; PFS: progression free survival; OS: overall survival; MST: median 
survival time; HR: hazard ratio; CI: confidence interval; NR: not reached. *: Adjusted for perfor-

Figure 1. Cont.



Cancers 2021, 13, 268 5 of 13

Cancers 2021, 13, x 5 of 14 
 

 

 
Figure 1. Kaplan-Meier estimates of the probability of progression-free survival (PFS) and overall survival (OS) in meta-
static castration-resistant prostate cancer (mCRPC). Survival differences were compared between patients with < 5 circu-
lating tumor cells (CTCs) and ≥ 5 CTCs ((A) for PFS and (B) for OS), or between those with 0 and ≥ 1 CTC-clusters ((C) for 
PFS and (D) for OS). 

Table 2. Associations of baseline CTC and CTC-cluster with clinical outcomes. 

Variables Event/Total MST (mo) 
Univariate Analyses Multivariate Analyses * 

HR (95% CI) p HR (95% CI) p 
Association With PFS 

CTC       
< 5 29/45 10.5 1.00  1.00  
≥ 5 16/19 2.1 4.03 (2.09–7.77) < 0.0001 3.01 (1.30–6.95) 0.0101 

CTC-Cluster       
0 38/56 7.5 1.00  1.00  
≥ 1 7/8 1.7 4.33 (1.81–10.37) 0.0010 2.36 (0.70–7.95) 0.1666 

Risk Group       
CTC < 5 without CTC-cluster 28/44 11.3 1.00  1.00  
CTC ≥ 5 without CTC-cluster 10/12 2.1 3.53 (1.66–7.51) 0.0011 3.51 (1.38–8.89) 0.0082 

CTC ≥ 5 with CTC-cluster 6/7 1.7 6.30 (2.40–16.53) 0.0002 2.57 (0.62–10.59) 0.1909 
Association With OS 

CTC       
< 5 12/45 NR 1.00  1.00  
≥ 5 11/19 6.0 6.90 (2.72–17.47) < 0.0001 4.66 (1.38–15.74) 0.0134 

CTC-Cluster       
0 17/56 NR 1.00  1.00  
≥ 1 6/8 4.2 6.58 (2.50–17.33) 0.0001 5.52 (1.18–25.79) 0.0299 

Risk Group       
CTC < 5 without CTC-cluster 12/44 NR 1.00  1.00  
CTC ≥ 5 without CTC-cluster 5/12 12.4 3.96 (1.29–12.21) 0.0165 1.42 (0.32–6.33) 0.6497 

CTC ≥ 5 with CTC-cluster 6/7 4.2 21.53 (6.64–69.85) < 0.0001 19.84 (2.24–175.32) 0.0072 
CTC: circulating tumor cell; PFS: progression free survival; OS: overall survival; MST: median 
survival time; HR: hazard ratio; CI: confidence interval; NR: not reached. *: Adjusted for perfor-

Figure 1. Kaplan-Meier estimates of the probability of progression-free survival (PFS) and overall survival (OS) in metastatic
castration-resistant prostate cancer (mCRPC). Survival differences were compared between patients with <5 circulating
tumor cells (CTCs) and ≥5 CTCs ((A) for PFS and (B) for OS), or between those with 0 and ≥1 CTC-clusters ((C) for PFS
and (D) for OS).

Table 2. Associations of baseline CTC and CTC-cluster with clinical outcomes.

Variables Event/Total MST (mo)
Univariate Analyses Multivariate Analyses *

HR (95% CI) p HR (95% CI) p

Association With PFS
CTC
<5 29/45 10.5 1.00 1.00
≥5 16/19 2.1 4.03 (2.09–7.77) <0.0001 3.01 (1.30–6.95) 0.0101

CTC-Cluster
0 38/56 7.5 1.00 1.00

≥1 7/8 1.7 4.33
(1.81–10.37) 0.0010 2.36 (0.70–7.95) 0.1666

Risk Group
CTC < 5
without

CTC-cluster
28/44 11.3 1.00 1.00

CTC ≥ 5
without

CTC-cluster
10/12 2.1 3.53 (1.66–7.51) 0.0011 3.51 (1.38–8.89) 0.0082

CTC ≥ 5 with
CTC-cluster 6/7 1.7 6.30

(2.40–16.53) 0.0002 2.57
(0.62–10.59) 0.1909

Association With OS
CTC
<5 12/45 NR 1.00 1.00

≥5 11/19 6.0 6.90
(2.72–17.47) <0.0001 4.66

(1.38–15.74) 0.0134

CTC-Cluster
0 17/56 NR 1.00 1.00

≥1 6/8 4.2 6.58
(2.50–17.33) 0.0001 5.52

(1.18–25.79) 0.0299

Risk Group
CTC < 5
without

CTC-cluster
12/44 NR 1.00 1.00

CTC ≥ 5
without

CTC-cluster
5/12 12.4 3.96

(1.29–12.21) 0.0165 1.42 (0.32–6.33) 0.6497

CTC ≥ 5 with
CTC-cluster 6/7 4.2 21.53

(6.64–69.85) <0.0001 19.84
(2.24–175.32) 0.0072

CTC: circulating tumor cell; PFS: progression free survival; OS: overall survival; MST: median survival time; HR: hazard ratio; CI: confidence
interval; NR: not reached. *: Adjusted for performance status, previous therapies, treatments after blood draw, prostate-specific antigen,
hemoglobin, alkaline phosphatase, and albumin. Two different clinical endpoints (PFS and OS) were observed and analyzed. The italic
words are explanation of the following results.
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2.3. Associations between Baseline CTC-Clusters and Clinical Outcomes

CTC-clusters were identified in 8 (12.5%) of 64 patients. Representative immunofluo-
rescent images of CTC-clusters are shown in Figure S1. Except for one patient, CTC-clusters
were mostly observed in patients with ≥5 CTCs, which was similar to our findings in
breast cancer [23]. Among 5 (62.5%) of the 8 patients with CTC-clusters, had clusters each
consisting of 2 cells (Table S1). We then stratified mCRPC patients by whether or not
they had CTC-clusters. The patients with ≥1 CTC-clusters had poor survival compared
to those without any CTC-cluster (median survival time 1.7 vs. 7.5 months, log-rank p =
0.0003 for PFS; 4.2 months vs. not reached, log-rank p < 0.0001 for OS) (Figure 1C,D and
Table 2). mCRPC patients with CTC-clusters had a 4.33-fold (HR 4.33, 95% CI 1.81–10.37)
increased risk for progression and a 6.58-fold (HR 6.58, 95% CI 2.50–17.33) increased risk
for death (Table 2). After adjusting covariates, only the associations of CTC-clusters with
OS remained significant (p = 0.0299) (Table 2)

2.4. Prognostic Stratification Using Baseline CTCs and CTC-Clusters

We were interested in learning whether CTC-clusters could further stratify prognostic
risk in patients with unfavorable CTC counts. To this end, we categorized patients into
three risk groups. The low-risk group (n = 44) included those with favorable CTC counts
(<5 CTCs), and no patients in this group had a CTC-cluster. The medium-risk group (n =
12) included those with unfavorable CTC counts (≥5 CTCs) but without a CTC-cluster. The
high-risk group (n = 7) included those with both unfavorable CTC counts and CTC-clusters.
Note that the one patient with one CTC that was a 2-cell cluster was excluded from this
analysis because this subgroup only had one subject.

Patients in the low-risk group had the longest survival time, whereas those in the
high-risk group had the shortest survival time (median survival time 11.3 vs. 2.1 vs. 1.7
months for low-, medium-, and high-risk group, respectively, log-rank p < 0.0001 for PFS
analysis; not reached vs. 12.4 vs. 4.2 months for low-, medium-, and high-risk group,
respectively, log-rank p < 0.0001 for OS analysis) (Figure 2A,B and Table 2). Among patients
with unfavorable CTCs, we further compared the survival difference between those with
CTC-clusters and those without, and found a significant difference in OS (p = 0.0185),
suggesting improved prognostic stratification using CTC-clusters. In the univariate Cox
analyses, compared with the patients in the low-risk group, those in medium- and high-
risk groups had a 3.53-fold (HR 3.53, 95% CI 1.66–7.51) and 6.30-fold (HR 6.30, 95% CI
2.40–16.53) increased risk for progression, as well as a 3.96-fold (HR 3.96, 95% CI 1.29–12.21)
and 21.53-fold (HR 21.53, 95% CI 6.64–69.85) increased risk for death (Table 2). mCRPC
patients with both unfavorable CTCs and CTC-clusters still had the highest risk for death
(adjusted HR 19.84, p = 0.0072) in the multivariate Cox analyses (Table 2).
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2.5. Prognostic Stratification Using Longitudinal CTCs and CTC-Clusters

In the joint analyses of CTCs and CTC-clusters described above, we found that baseline
CTC-clusters could further stratify patients with unfavorable baseline CTCs into different
risk groups. However, using measurements with only one time point may underestimate
prognostic values. In comparison, using longitudinal data obtained from repeated mea-
surements of each individual over time is an effective approach to improve prediction
power [24,28].

To confirm the additional prognostic value of CTC-clusters, and to clarify whether
the non-significant finding in PFS analyses was due to relatively small sample size, we
evaluated the associations of longitudinal changes in CTCs and CTC-clusters with clinical
outcomes, using the Cox proportional hazards model with time-dependent covariates.
The time-dependent CTC- and cluster-related variables, including risk groups, were re-
defined for every patient at each time point of blood draw from baseline to first progression
or death [24]. In total, 227 longitudinally collected samples (median 3 samples, range
1–10 samples for each patient) with both CTC and CTC-cluster enumeration results were
included in this analysis. Among these samples, 76 (33.5%) had ≥5 CTCs, and 27 (11.9%)
had CTC-clusters (Table 3), of which 14 (51.9%) comprised one or more 2-cell clusters.
Similar to what we had conducted in the analyses using baseline samples, we excluded
one sample with one CTC that was a 2-cell cluster (n = 1) from joint analyses. As shown in
Table 3, we found that high CTC counts (≥5) were significantly associated with unfavorable
outcomes (p < 0.0001). The association between the presence of CTC-clusters and outcomes
remained significant in OS-related analyses, even after adjustment for covariates (p < 0.05).
In the joint analysis using longitudinal CTCs and CTC-clusters at each time point, we
found that the death risk for patients with both unfavorable CTCs and CTC-clusters almost
doubled, as compared to those with unfavorable CTCs but without a CTC-cluster (using
patients without CTC as the reference group, adjusted HR 48.17 vs. 28.15; using patients
with 1–4 CTCs as the reference group, adjusted HR 16.79 vs. 9.81). These results from
longitudinal analyses were consistent with the baseline analyses and further confirmed
that CTC-clusters conferred additional prognostic information to CTC enumeration alone
and improved prognostic stratification in patients with unfavorable CTCs.

Table 3. Associations Time-dependent analysis of CTCs and CTC-clusters with clinical outcomes.

Variables
Univariate Analyses Multivariate Analyses *

HR (95% CI) p HR (95% CI) p

Association with PFS
CTC

0 1.00 1.00
1–4 4.25 (1.98–9.13) 0.0002 4.98 (2.11–11.74) 0.0002
≥5 9.72 (4.38–21.58) <0.0001 8.07 (2.91–22.41) <0.0001

CTC-Cluster
0 1.00 1.00
≥1 4.97 (2.15–11.50) 0.0002 2.59 (0.85–7.88) 0.0947

Risk Group
0 CTC 1.00 1.00

1–4 CTCs without CTC-cluster 4.09 (1.86–8.97) 0.0004 4.55 (1.85–11.18) 0.0010
≥5 CTCs without CTC-cluster 8.47 (3.41–21.04) <0.0001 8.83 (2.79–27.92) 0.0002
≥5 CTCs with CTC-cluster 12.11 (4.47–32.80) <0.0001 7.59 (1.82–31.73) 0.0055

1–4 CTCs without CTC-cluster 1.00 1.00
≥5 CTCs without CTC-cluster 2.07 (0.77–5.54) 0.1471 1.94 (0.56–6.72) 0.2959
≥5 CTCs with CTC-cluster 2.96 (1.02–8.57) 0.0451 1.67 (0.42–6.56) 0.4638
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Table 3. Cont.

Variables
Univariate Analyses Multivariate Analyses *

HR (95% CI) p HR (95% CI) p

Association with OS
CTC

0 1.00 1.00
1–4 3.60 (0.72–17.90) 0.1180 2.51 (0.38–16.43) 0.3378
≥5 32.84 (8.42–128.20) <0.0001 28.47 (3.85–210.36) 0.0010

CTC-Cluster
0 1.00 1.00
≥1 9.16 (3.64–23.04) <0.0001 3.90 (1.07–14.20) 0.0387

Risk Group
0 CTC 1.00 1.00

1–4 CTCs without CTC-cluster 3.66 (0.73–18.20) 0.1130 2.87 (0.42–19.77) 0.2847
≥5 CTCs without CTC-cluster 26.56 (6.35–111.00) <0.0001 28.15 (3.62–218.61) 0.0014
≥5 CTCs with CTC-cluster 46.35 (10.65–201.80) <0.0001 48.17 (4.10–566.62) 0.0021

1–4 CTCs without CTC-cluster 1.00 1.00
≥5 CTCs without CTC-cluster 7.26 (1.70–31.01) 0.0074 9.81 (1.70–56.62) 0.0107
≥5 CTCs with CTC-cluster 12.67 (2.83–56.84) 0.0009 16.79 (2.30–122.73) 0.0054

CTC: circulating tumor cell; PFS: progression free survival; OS: overall survival; HR: hazard ratio; CI: confidence interval. *: Adjusted for
performance status, previous therapies, treatments after blood draw, prostate-specific antigen, hemoglobin, alkaline phosphatase, and albumin.
Two different clinical endpoints (PFS and OS) were observed and analyzed. The italic words are explanation of the following results.

We also plotted the dynamic changes of CTCs and CTC-clusters of individual patients.
Figure 3A shows a patient who had persistently increased CTC counts after enrollment,
but no CTC-cluster was identified during repeated measurements. This patient had a
radiologically-confirmed stable disease for >7 months and then experienced clinical pro-
gression. In comparison, another patient who had both high CTC counts and CTC-clusters
in each detection died soon (Figure 3B), which further indicated the possible additional
prognostic information from CTC-clusters.
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3. Discussion

The prognostic values of CTC-clusters have been reported, but mostly only in breast
cancer. Despite a seminal study on CTC-clusters in PCa [22], no study has comprehensively
evaluated the relevance of CTC-clusters in mCRPC, the most aggressive and deadly form of
PCa. In the present study, we investigated the associations of CTCs and CTC-clusters with
the survival of mCRPC patients, individually and jointly. As expected, we confirmed the
associations of CTC counts with PFS and OS in patients with mCRPC in both baseline and
longitudinal analyses. Our results also suggested that the presence of CTC-clusters alone
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had prognostic value and that CTC-clusters may further improve CTC-based prognostic
stratification in mCRPC patients.

CTC-clusters are derived from multicellular groups of tumor cells that are held to-
gether through plakoglobin-dependent intercellular adhesion [22]. Clusters might be
pre-formed before entering the blood or aggregate within the bloodstream [29]. Clusters
are infrequent in peripheral blood, particularly in patients with early-stage cancer, presum-
ably due to being trapped in narrow blood vessels; however, a recent study demonstrated
that over 90% of clusters containing up to 20 cells successfully traversed 5- to 10-µm con-
strictions even in whole blood [21,30]. CTC-clusters have been identified in the circulation
of patients with solid tumors including PCa [22,25–27,31,32]. Cohesive-clusters of human
PCa cells were observed at multiple stages of dissemination as well [33]. In the present
study, we identified CTC-clusters in 12.5% baseline samples from mCRPC patients and in
11.9% longitudinally collected samples. The detection rate of CTC-clusters in our study
was higher than a report in PCa (9.4%) [22], but lower than two reports in mCRPC (17.1%
and 50%) [26,27]. A study in prostate cancer recently showed that the CTC detection rate
using the CellSearch system was the lowest when compared with the CellCollector and
dual fluoro-EPISPOT assays [34]. Therefore, the varied detection rates between the studies
of ours and others may be attributed to the heterogeneity of enrolled patients (PCa vs.
mCRPC) and the use of different platforms for CTC enumeration. Compared with our
previous enumeration results in patients with metastatic breast cancer (MBC) using the
CellSearch platform [24], mCRPC patients had a lower detection rate of both CTCs (37.5%
vs. 60.2% at baseline; 52.4% vs. 65.1% for longitudinal samples) and CTC-clusters (12.5%
vs. 16.4% at baseline; 11.9% vs. 20% for longitudinal samples), likely due to the different
molecular mechanisms underlying these two cancer types.

In vivo studies have shown that CTC-clusters had a 23- to 50-fold increase in metastatic
potential compared to single CTCs in breast cancer [22]. Recent mechanism studies revealed
that CTC-clusters have stem-like features, which facilitate metastasis initiation [29,35]. In-
triguingly, the FDA-approved compounds that are able to dissociate CTC clusters lead
to a decrease in metastasis formation [35]. So far, only a few studies have evaluated the
prognostic value of CTC-clusters at the population level. In our previous studies in MBC
patients, we found that CTC-clusters added additional prognostic values to CTC enumera-
tion alone [23,24]. For the bone-predominant mCRPC, a non-invasive circulating biomarker,
such as CTC-clusters, holds important potential clinical value for cancer prognostication.

The maintenance of cell-clusters, including cell-cell cohesive interactions, has been
observed in the majority of invasive PCa [33,36]. Aceto et al. reported that the presence
of CTC-clusters strongly correlated with a dramatically shorter OS of PCa patients [22].
Although a small study including 41 mCRPC patients failed to identify significant survival
differences between those with and without CTC-clusters [26], a recent study conducted in
the Japanese population found that CTC-clusters were independently associated with both
PFS and OS in mCRPC patients treated with abiraterone or enzalutamide [27]. However, it
was noted that, in that Japanese study, CTCs were not enumerated using the FDA-approved
platform, and an extremely high detection rate (50%) of CTC-clusters was reported [27].
In our current study, we also observed that patients with CTC-clusters had significantly
shorter survival compared to those without CTC-clusters (Table 2). Only the association
between CTC-clusters and OS remained significant after adjusting conventional prognostic
factors, such as performance status and treatments, indicating that a CTC-cluster was an
independent prognostic factor for predicting long-term survival.

We then evaluated the role of CTC-clusters in prognostic stratification. After stratifying
mCRPC patients with unfavorable CTC counts according to the presence or absence of
CTC-clusters, we noted that OS differed significantly between these two groups (Figure 2B).
Compared to the patients with <5 CTCs, those with both ≥5 CTCs and CTC-clusters had
the highest risk for death (Table 2). We further conducted time-dependent analyses using
227 longitudinal samples, which confirmed the complementary prognostic values of CTC-
clusters to CTC-enumeration alone (Table 3). However, unlike in breast cancer [24], we
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did not identify a correlation between the size of CTC-clusters and mCRPC survival. The
majority of patients in the current study had only 2-cell CTC-clusters, which may reduce
the power to identify such correlations, thus further assessment in larger future studies is
needed.

The major strengths of this study include the focus on mCRPC that ensures a homoge-
nous study population and the innovative use of time-dependent analyses of longitudinal
samples with repeated measurements [24,37]. Our study also has several limitations. First,
the results should be interpreted with caution because of the relatively small sample size.
Future prospective studies with a large number of patients are warranted to confirm the
findings in this study. Second, only <30% of patients had newly diagnosed mCRPC in
our cohort. To address the potential confounding effects of treatments, we adjusted both
previous and current treatments in the multivariate analyses (Tables 2 and 3). Moreover,
by conducting stratified analyses, we found that the results in the patients who received at
least one line of previous therapy (Figure S2) were similar to that in the overall population.
Third, we did not include LDH in the multivariate analyses because we failed to identify
an association between LDH and clinical outcomes in the univariate analyses. LDH has
been reported as an important prognostic factor for mCRPC [38]. The non-significant result
in our study is possibly due to the high missing rate (>60%) of LDH among our patients.
Fourth, we defined unfavorable CTC count using the cutoff of ≥5 CTCs. Although this
cutoff is widely adopted, it may not be the optimal one according to the distribution of CTC
counts in our dataset. Fifth, recent studies highlighted the role of molecular biomarkers in
CTCs, for example, androgen receptor splice variants (particularly AR-V7) detected in CTCs
as potential prognostic and predictive biomarkers for mCRPC [39–41]. Nevertheless, in the
present study, we did not conduct genomic and molecular analyses of CTCs/CTC-clusters,
which may further elucidate their clinical values in personalized therapeutic intervention.

4. Materials and Methods
4.1. Study Population

We recruited men with mCRPC who visited the Sidney Kimmel Cancer Center at
Thomas Jefferson University Hospital from March 2018. The enrolled patients had histolog-
ically confirmed prostate adenocarcinoma, a progressive disease despite castration levels
of serum testosterone (<50 ng/dL), and radiographic metastases according to computed
tomography (CT) or technetium-99 bone scan. Patients were excluded if they concurrently
had other primary tumors. Demographic data (e.g., age, race), clinical data (e.g., ECOG per-
formance status, treatments), and laboratory data (e.g., PSA, HGB, ALP, ALB, LDH) were
collected by reviewing medical charts. Blood samples were collected from each patient at
baseline before initiation of a new therapy and at follow-up visits (approximately every
6–8 weeks) for CTC and CTC-cluster enumerations. Assessments of CTC/CTC-cluster,
PSA, and tumor lesions were repeated. Follow-up imaging tests were conducted following
the PCWG3 guideline [42]. This research has been approved by the Institutional Review
Board of Thomas Jefferson University on 10 September 2015 (ethic code: #13D.507). All
patients provided written informed consent to participate in this study.

4.2. CTC and CTC-Cluster Enumeration

Approximately 8–10 mL of peripheral blood was drawn into a 10 mL evacuated blood
draw tube (CellSave tube, MENARINI Silicon biosystems, Huntington Valley, Pennsylvania,
USA), maintained at room temperature, and processed within 96 h of collection. CTC
and CTC-cluster enumerations were conducted using the CellSearch System (MENARINI
Silicon biosystems), which consists of the CellTracks Autoprep and the CellSearch CTC
kit to immunomagnetically enrich cells expressing the epithelial cell adhesion molecule
(EpCAM) and fluorescently label nuclei (DAPI), leukocytes with monoclonal antibodies
specific for leukocytes (CD45), and epithelial cells (phycoerythrin-conjugated cytokeratins
CK-8,18,19). CTCs were defined as nucleated cells lacking CD45 and expressing cytokeratin
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(CK+/DAPI+/CD45−) [12]. CTC-clusters were defined as an aggregation of two or more
individual CTCs containing distinct nuclei and intact cytoplasm membranes [23,24].

4.3. Statistical Analyses

Clinical outcomes analyzed in this study included PFS and OS. PFS was defined
as the time from the date of baseline blood draw to the date of radiologic progression
(on CT scan: ≥20% enlargement in sum diameter of target lesions (Response Evaluation
Criteria in Solid Tumors) [43]; on bone scan: ≥2 new bone lesions not caused by flare),
symptomatic progression (worsening disease-related symptoms or new cancer-related
complications), or death, whichever occurred first [41]. OS was defined as the time from
the date of baseline blood draw to the date of death from any cause. The patients without
an endpoint event at the last follow-up visit were censored. Survival curves were plotted
using the Kaplan-Meier method, and survival differences were compared using the log-
rank test. Associations of CTC and CTC-cluster counts individually and jointly with
PFS or OS were evaluated using HRs with 95% CIs by univariate and multivariate Cox
proportional hazards models. The associations of longitudinal CTCs and CTC-clusters
with clinical outcomes were analyzed as previously [24]. All statistical analyses were
conducted using STATA (Version 11.0, STATA Corp., College Station, TX, USA) and R
(package “survival”, Version 4.0.2, R Foundation for Statistical Computing, Vienna, Austria.
URL http://www.r-project.org) software packages. Two-sided p values of <0.05 were
considered to be of statistical significance.

5. Conclusions

To our best knowledge, this is the first comprehensive analysis of the role of prognosis
stratification by CTC-clusters in mCRPC patients. Our findings suggest the potential of
combing CTC and CTC-clusters as non-invasive means to monitor progression and predict
survival in mCRPC and build a premise for in-depth genomic and molecular analyses of
CTCs and CTC-clusters.
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-6694/13/2/268/s1, Figure S1. CTC and CTC-clusters images from 7.5 mL of blood of mCRPC
patients analyzed by the CellSearch platform, Figure S2. Kaplan-Meier estimates of probability of
progression-free survival (PFS) and overall survival (OS) in mCRPC patients who were previously
treated, Table S1: Enumeration results of CTCs and CTC-clusters at baseline, Table S2: Univariate
analyses of associations with clinical outcomes.
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